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ABSTRACT
We describe a method to quantify robustness in the estima-
tion of probabilities of rare events. Robustness to the un-
derlying probabilistic model is expressed in terms of Rényi
divergences. The main application area discussed is queue-
ing networks.

1. INTRODUCTION
Queueing networks are used as models in various appli-

cation areas such as cloud computing, telecommunications,
manufacturing and human service centers including customer
call centers and hospitals. Uncertainty in the underlying dis-
tributions is a central issue in applying these mathematical
models to the real world applications. As far as theoret-
ical asymptotic results are concerned, scaling according to
the law of large numbers and central limit theorem (often re-
ferred to as fluid and diffusion approximations, respectively)
are relatively tolerant to errors made in the distributional
assumptions, due to the fact that limit results typically de-
pend only on first and second moments. Model uncertainty
is much harder to deal with at the large deviations (LD)
scale, as probabilities of rare events are sensitive to the as-
sumed tails of the primitives that drive the model. This
paper describes a general method to quantify robustness of
performance at the LD scale to the underlying probability
distribution and outlines several directions in which it can
be used for engineering systems, mostly queueing network
models.

The method is based on recently developed perturbation
bounds that, roughly stated, assert that risk-sensitive cost
functionals corresponding to two given underlying distribu-
tions are comparable in terms of a certain information diver-
gence called the Rényi divergence. The precise, general form
of these bounds is given in §2, where it is also demonstrated
that these bounds remain meaningful under LD scaling. Al-
though in the discussion above we emphasized scaling lim-
its, the perturbation bounds are also effective, as we shall
demonstrate, at non-asymptotic settings.

In §3 we outline how the method applies to the generalized
Jackson network. In such a network, service time distribu-
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tions are general (rather than exponential) and as a result
the model is non-Markovian. It is natural to formulate the
perturbation bounds in such a way that they compare per-
formance of a possibly difficult collection of models to one
that is easier to analyze (analytically or numerically). We
present the bounds so that they compare the performance of
a collection of these networks to the Jackson network (i.e.,
the Markovian model). Whereas the discussion focuses on
Jackson networks, it will be clear that these ideas go beyond
the specifics of this model. As we show, in order to apply
the proposed tools, calculations of the so-called Rényi di-
vergence rate for renewal processes become significant. We
provide new bounds on this rate, the proof of which will be
reported elsewhere. §4 discusses several additional queueing
models including another scaling (the many-server scaling),
risk-sensitive cost and control systems, as well as the prob-
lem of small noise diffusions.

2. THE PROPOSED METHOD

2.1 Rényi divergence and logarithmic pertur-
bation bounds

Fix a measurable space (S,F) and denote by P the set
of probability measures on it. For P,Q ∈ P, the relative
entropy is given by

R(Q‖P ) =


∫

log
dQ

dP
dQ if Q� P

+∞ otherwise.

Introduced in [17] (see [12] for a comprehensive treatment),
the Rényi divergence of degree α > 1, for P,Q ∈ P, is
defined by

Rα(Q‖P ) =


1

α(α− 1)
log

∫ (dQ
dP

)α
dP if Q� P

+∞ otherwise.

For α = 1, one sets R1(Q‖P ) = R(Q‖P ). Whereas two dif-
ferent formulas are used for the cases α = 1 and α > 1, it is
a fact that α 7→ Rα(Q‖P ) is continuous on [1, α∗] provided
Rα∗(Q‖P ) < ∞ for some α∗ > 1. To mention few addi-
tional properties, one has that α 7→ αRα is nondecreasing
on [1,∞), and given α ≥ 1, one always has Rα(Q‖P ) ≥ 0,
and Rα(Q‖P ) = 0 if and only if Q = P . A property that
is of crucial importance in our use of Rényi divergence is its
additivity for product measures, in the following sense:

Rα(Q1 ×Q2‖P1 × P2) = Rα(Q1‖P1) +Rα(Q2‖P2). (1)



It is well known that exponential integrals and relative
entropy satisfy a convex duality relation, stated as follows.
Let Q ∈ P. Then for any bounded measurable g : S → R,

log

∫
egdQ = sup

P∈P

[ ∫
gdP −R(P‖Q)

]
. (2)

Recently, an analogous relation has been shown for Rényi
divergences ([2]; related calculations first appeared in [6]).
Namely, fix α > 1. Then

1

α
log

∫
eαgdQ = sup

P∈P

[ 1

α− 1
log

∫
e(α−1)gdP −Rα(P‖Q)

]
.

(3)
The identity (3) may indeed be viewed as an extension of
(2), as the latter is recovered by taking the formal limit α ↓ 1
in the former.

Given P,Q and α, as well as an event A ∈ F , it follows
from (3) by taking g(x) = 0 [resp., −M ] for x ∈ A [resp.,
x ∈ Ac] and sending M →∞, that

α

α− 1
logP (A)− αRα(P‖Q)

≤ logQ(A) ≤ α− 1

α
logP (A) + (α− 1)Rα(Q‖P )

(4)

(provided that P (A) > 0 and Q(A) > 0). In words: the
logarithmic probability of an event under Q is estimated in
terms of the same event under P and Rényi divergence. It
is also a fact that both inequalities in (4) are tight, in the
sense that given α, Q and A one can find P that makes them
hold as equalities (with different P for each equality) [2].

Our point of view is to regard (4) as perturbation bounds.
Given a nominal model P , (4) provides performance bounds
on a true model Q in terms of performance under P and
divergence terms.

2.2 LD scaling
A fact that makes the perturbation bounds particularly

useful is that they remain meaningful under standard LD
scaling. We first demonstrate this in the standard setting of
independent and identically distributed (IID) random vari-
ables (RVs). Let X1, X2, X3 . . . be a sequence of RVs, and
let P and Q be two probability measures that make this
sequence IID. Let Pn and Qn denote the law of Xn =
(X1, . . . , Xn) under P and Q, resp. For each n, let An be an
event that is measurable on σ{Xn}, the σ-algebra generated
by Xn. We are interested in the exponential decay rate

En(P ) = − 1

n
logP (An).

By the IID assumption, we may appeal to (1), according to
which Rα(Qn‖Pn) = nRα(Q1‖P1). Thus by (4) we obtain
the bounds

α− 1

α
En(P )− (α− 1)Rα(Q1‖P1)

≤ En(Q) ≤ α

α− 1
En(P ) + αRα(P1‖Q1).

(5)

In these bounds, the divergence terms remain of order 1 un-
der scaling, and so it is possible to compare the asymptotic
behavior of En(Q) to that of En(P ). Moreover, while stan-
dard problems in the theory of LD are concerned with limits
of expressions such as En(P ) and En(Q), we emphasize that
the bounds (5) are valid for all n.

Regarding En as performance measures in this setting
is indeed natural when one is interested in probabilities

of rare events. Thus (5) allows one to quantify robust-
ness in the following way. Let a collection Q of true mod-
els Q be specified in terms of their divergence from a cer-
tain nominal model P . That is, given a parameter r, let
Q = {Q : Rα(P1‖Q1) ≤ r}. Then (5) gives the upper bound
En(Q) ≤ α(α− 1)−1En(P ) +αr, which holds for all Q ∈ Q.
A lower bound is obtained similarly. In applications, the se-
lection of P should be based on considerations of tractabil-
ity and design. Choosing for P a model that is tractable
achieves guaranteed bounds on a set of possibly intractable
true models Q. Engineering systems often operate under
conditions that are distinct from those they are designed
for. For such systems, the bounds provide guarantees on
their true performance based on the designed performance.

The above instance of the bounds addresses models driven
by an IID sequence. It has various significant generaliza-
tions. First, one can treat models that do not follow an
IID structure. An important class of such models is queue-
ing systems, which are discussed in the next section. If the
driving noise does not consist of independent RVs, one can-
not appeal to (1), and the Rényi divergence terms must be
computed or estimated. Second, the formula (3) allows for
general functionals g that need not express probabilities. In
particular, one may bound risk-sensitive costs. Third, one
may handle settings that accommodate control.

As a final general remark, given a particular event or a
sequence of events that are of interest, one can optimize over
the parameter α for the tightest upper and lower bounds.

3. QUEUEING APPLICATIONS
This section describes how the approach might be applied

to queueing models. The proposed approach is highly rele-
vant to these models because much is known regarding their
LD behavior in the Markovian setting (e.g., [3, 5, 7, 18]),
but considerably less on models with general service time
distributions (e.g., [13]). Since in practice service times are
often non-exponential, there is interest in the study of non-
Markovian models. It is natural to seek comparison to the
Markovian models. Moreover, the authors are not aware of
work on the robustness of these models at the LD scale.

We outline directions of study for the Generalized Jack-
son Network (GJN), which we regard a prototype for a far
greater class of models.

3.1 The generalized Jackson network
We are interested in developing performance guarantees

for GJN based on known sample path LD properties of the
JN. The latter appear in work of Dupuis-Ellis [5] and work
that has emanated from it.

The GJN consists of a fixed, finite number, K, of ser-
vice stations, where at each station jobs queue up to get
service in a FIFO manner, and upon departure they are
routed probabilistically to one of the stations or leave the
system. Exogenous arrivals follow renewal processes, and
service times are IID (for each station). A Jackson Network
(JN) corresponds to the special case in which exogenous ar-
rivals are Poisson and service times are exponential. Thus
the queueing process in a JN forms a Markov process on ZK+ .

A key observation regarding the applicability of our ap-
proach to these models is based on viewing them as dy-
namical systems driven by renewal processes. To make this
point, we shall keep the discussion as simple as possible
as far as the initial configuration is concerned by assum-



ing that there is no stochasticity associated to it (as can
be achieved, for example, by assuming that the initial num-
ber of jobs at each station is deterministic, all servers at
stations that are initially nonempty start a service cycle at
time zero, and the arrival clock also starts afresh at time
zero). Let Sk denote the potential service process for server
k. Namely, the number of jobs this server processes by the
time that it has been busy for t time units is given by Sk(t).
If Tk(t) denotes the busyness time of that server by time t,
Dk(t) = Sk(Tk(t)) jobs have been processed by that time.
Denote by Ak the exogenous arrival processes; these are re-
newal processes by assumption. Denote by {Rk(i)}i∈N the
routing variables; for each k, these are IID RVs taking values
in {1, . . . ,K+ 1}. The primitive processes {Ak, Sk, Rk}k≤K
fully determine the behavior of the system. Moreover, de-
note

∆(t) = {Ak|[0,t], Sk|[0,t], Rk ◦ Sk|[0,t]}k≤K .

Then owing to the fact that Tk(t) ≤ t, the sample paths
{Xk|[0,t]}k≤K of the queue length processes Xk by time t
are determined by ∆(t). However complicated the depen-
dence of the queueing process on the data might be, this
observation allows us to use the approach in a manner simi-
lar to that outlined above for IID driven systems, where the
process ∆ plays the role of the driving process.

Fix t, and consider a sequence of events An, where for each
n, An is measurable on σ{X|[0,nt]}. Then by the discussion
above, it is also measurable on σ{∆(nt)}. Let Q and P
correspond to the GJN and JN, respectively. Thus under
Q, Ak and Sk are renewal processes, and under P these are
Poisson processes. (One has a degree of freedom in choosing
the parameters of the Poissons.) Denote by Pn and Qn
the respective laws of ∆(nt) under the two measures. Then
analogously to the derivation of (5) we obtain

α− 1

α
En(P )− (α− 1)

Rα(Qn‖Pn)

n

≤ En(Q) ≤ α

α− 1
En(P ) + α

Rα(Pn‖Qn)

n
.

(6)

The two Rényi divergence terms above are basically con-
cerned with the Rényi divergence rate (RDR) between a
general renewal process and a Poisson process. We report
on some progress on this direction in §3.2.

3.2 RDR estimates for renewal processes
Calculations and bounds of entropy rate and Rényi en-

tropy rate have been studied for several families of stochas-
tic processes, including Markov chains and hidden Markov
models [8], [14]. However, the precise question that arises
from the above discussion is concerned with the RDR of a
renewal process with respect to a Poisson process, which
seems not to have been addressed before. In this section we
present some results in this direction.

Let Nt be a simple counting process. Assume that under
Q it is a renewal with inter-event distribution π and under
P it is a Poisson(1) process. Let Pt = P ◦N |−1

[0,t] and Qt =

Q ◦N−1
[0,t], and let rα denote the RDR defined by

rα = lim sup
t→∞

t−1 logRα(Qt‖Pt).

Assume that π has a density, denoted by g, and let h denote

the hazard rate, h(x) = g(x)/π[x,∞). Let also

H(x) =

∫ x

0

(1− h(s))ds+ log h(x).

Let Z be a RV distributed according to π. Let β denote the
logarithmic moment generating function of (Z,H(Z)), and
let β∗ be its Legendre transform:

β(λ) = logEeλ1Z+λ2H(Z), λ ∈ R2,

β∗(x) = sup
λ
{〈λ, x〉 − β(λ)}, x ∈ R2.

Let

Gα(θ) = θ sup
x∈R2:x1∈[0,θ−1]

[αx2 − β∗(x1, x2)], θ ∈ (0,∞)

Then we have the following general bound on rα.

Theorem 3.1. If β is finite in a neighborhood of the ori-
gin then

rα ≤
1

α(α− 1)
sup
θ
Gα(θ)+.

The proof uses the explicit expression

Λt = e−
∫ t
0 (1−h(Vs)ds+

∫ t
0 log h(Vs−)dNs

of the Radon-Nikodym derivative, where Vt denotes the time
since the last jump preceding t (or zero). The RDR is
bounded in terms of exponential integrals involving the pair
of partial sums (

∑n
i=1 Zi,

∑n
i=1H(Zi)), where Zi are IID

RVs distributed according to π. LD estimates based on
Laplace’s principle and Cramer’s theorem then provide the
bound stated in the theorem.

In several families of processes we have more concrete
bounds. These include the compound Poisson process and
counting processes with Gamma-distributed inter-events.

Consider a compound Poisson with intensity λ(·) under
Q. Set kα(x) = xα − 1 − αx + α. If 0 < a ≤ λ(t) ≤ b < ∞
a.s., then we have the bound

Rα(Qt‖Pt) ≤
kα(a) ∨ kα(b)

α(α− 1)
t,

for all t. (In particular, the RDR is bounded by the constant
in front of t above).

Next, the Gamma distribution has been proposed as a
model for service times in applications (eg. in [1], [15]). For
renewal processes with Gamma inter-event distribution we
have the following. Assume π = Γ (k, ρ) with k ≥ 1, ρ > 1,

namely g(x) = ρk

Γ (k)
xk−1e−ρx. Then

sup
θ
Gα(θ)

≤
(Γ (1 + α(k − 1))

Γ (k)α
ραk
) 1

1+α(k−1) − α(ρ− 1)− 1. (7)

Along with Theorem 3.1, this gives a bound on the RDR rα
in this case.

In the exponential case, k = 1, the expression in (7) above
reduces to

ρα − α(ρ− 1)− 1,

which, as we can verify, gives a tight upper bound on the
RDR.



4. DISCUSSION AND OPEN PROBLEMS

4.1 Exact expressions for the RDR
While the RDR estimate of Theorem 3.1 can be useful to

obtain perturbation bounds along the lines described above,
it is desirable to obtain exact expressions. Moreover, the
lower perturbation bound requires information on the RDR
of a Poisson process with respect to the renewal process.
This motivates the following.

Problem 4.1. Compute the RDR of a renewal process
with respect to a Poisson, and for a Poisson with respect to
a renewal process, for broad families of renewal processes.
More generally, compute (or provide useful bounds) for the
RDR of one renewal process with respect to another.

Carrying out the proposed program for a given queueing
model depends on the bounds one has on the Rényi diver-
gence term as well as on the particular choice of events of
interest. Quality of service considerations in heavily loaded
cloud computing applications may be approached by consid-
ering large delays building up in a GJN. In other applications
one may be concerned with buffer overflows.

4.2 The G/G/n model
There has been much interest in recent years in theG/G/n

model in a setting where the number of servers n plays also
the role of the scaling parameter, and the arrival process is
scaled proportionally to n. This specific scaling has been
referred to as a many-server scaling. This model and scal-
ing were studied for their LLN and CLT asymptotics in [10],
[11], [16]. The method outlined above seems useful in study-
ing robust LD estimates for the G/G/n model based on the
much easier M/M/n model.

For G/G/n models that accommodate abandonment [9],
one may be interested in the event of a large abandonment
count over a given time interval.

4.3 Risk-sensitive control
We focus on one out of various RS control problems that

are of interest in the many-server G/G/n setting. Consider
a parallel server model consisting of a many-server pool with
multiple customers classes and customer abandonment. The
term ‘parallel server’ refers to the fact that each arrival re-
quires a single service that can be attained at any one of the
servers. A recurring theme in the literature on this model
is how to choose service policy to minimize abandonment
count over a given time interval. The motivation comes
from large call centers. The need to cover general service
time distribution as well as patience time distribution, has
been recognized many times in earlier work on this model.
The question of RS cost has not been addressed before. It
is reasonable to expect that one might solve the problem
for the Markovian setting (which here means exponential
service and patience times). The perturbation bounds then
can be used to yield performance guarantees for the non-
Markovian setting.

4.4 Small noise diffusion
In this work we have focused on queuing systems where

the driving ‘noise’ is given by renewal processes. Many engi-
neering systems are described through noise processes that
are Gaussian or appropriate perturbations of Gaussian pro-
cesses. Bounds as in (6) can be used for deriving robust

large deviation bounds for such systems as well. A basic
example of such bounds is as follows. Suppose that ν is
the standard Wiener measure on C = C([0, 1] : Rd) (the
space of Rd-valued continuous functions on [0, 1] equipped
with the uniform topology). Denote the canonical coor-
dinate process on C by W and the canonical filtration by
{Ft}. For ε ∈ (0, 1) and K ∈ (0,∞) let Uε be the collection
of Rd-valued progressively measurable processes that satisfy∫
[0,1]
‖u(s)‖2ds ≤ K/ε. For u ∈ Uε let θu denote the proba-

bility law of W (·) +
∫ ·
0
u(s)ds, and let Mε be the collection

of all such measures. Then we have the bound

lim sup
ε→0

sup
θ∈Mε

ε logPθ(
√
εW (·) ∈ A)

≤ −([
√
I(A)−

√
K/2]+)2,

where I is the classical rate function in Schilder’s theorem,
namely for a Borel set A in C

I(A) = inf

{
1

2

∫
[0,1]

‖ϕ̇(s)‖2ds : ϕ ∈ A

}
.

This bound is obtained by appealing to (4), evaluating the
Rényi divergence and optimizing over the parameter α. A
research program that aims to develop such robust large
deviation bounds for various quantities of interest, such as
path probabilities for diffusion processes, probabilities asso-
ciated with exit times and locations from bounded domains,
invariant measure probabilities, etc., is still in very early
stages.

4.5 Partly uncertain models
In some systems there may be parts of the model that

are well modelled (e.g., exponential interarrival time distri-
butions), and one would like bounds which can distinguish
these parts of the model from the parts one wishes to con-
sider as uncertain. An approach to this issue in the setting of
ordinary performance measures and using relative entropy,
spelled out in [4], could possibly be adapted to the situation
where performance is determined by risk-sensitive costs.
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[17] A. Rényi. On measures of entropy and information. In
Proc. 4th Berkeley Sympos. Math. Statist. and Prob.,
Vol. I, pages 547–561, Berkeley, Calif., 1961. Univ.
California Press.

[18] A. Shwartz and A. Weiss. Large Deviations for
Performance Analysis: Queues, Communication and
Computing. Chapman and Hall, New York, 1995.


