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Reactor noise, caused both by the probabilistic nature of the fission chains and external reactivity noises,
is one of the basic topics in nuclear science and engineering, both in theory and practice. Classical
approaches to modeling this noise and neutron count distribution in the detection system rely on the
stochastic transport equation for the probability generating function and on transfer function response
to random perturbations. In recent years, a third modeling approach has been proposed, relying on Ito
stochastic differential equations, which enjoys the tractability that the first aforementioned approach
has, and at the same time accounts for fluctuations, by modeling noise in terms of Brownian motion.
This paper develops the latter approach to incorporate the stochasticity in the detection process to the
model equations. The resulting neutron count distributions are explicitly computable.
As an application of our approach we present a straightforward derivation of the well-known

Feynman-Y formula. We then propose an alternative to the traditional sampling scheme of this formula,
based on mean absolute deviation, known from the statistics literature to be more robust than the mean
square deviation estimator. The study focuses on a single energy point model and neglects the effect of the
delayed neutrons. Extensions of the approach to multiple energy levels and the incorporation of delayed
neutrons are discussed, as well as further applications of the approach and its advantages over existing
diffusion scale approximations.

� 2017 Published by Elsevier Ltd.
1. Introduction

Reactor noise and neutron flux fluctuation is one of the basic
topics in nuclear science and engineering, both in theory and prac-
tice. Applications of the theory of neutron fluctuationmay be found
both in monitoring and measurements (Uhrig, 1970), and in non
destructive assay of special nuclear materials (Ensslin et al.,
1998). Fluctuations in the neutron population size may be attribu-
ted to two types of statistical noises: Internal noises, governed by
the statistical nature of the neutron interactions, and external
noises, reflecting stochasticity of other elements of the system, such
as temperature fluctuations, mechanical instabilities, electronic
noise in the monitoring system and more (Williams, 1974).

Reactor noise and neutron fluctuations are general terms used to
describe the modeling and sampling of higher moments of the neu-
tron population distribution in multiplying systems due to both
internal and external factors. The theory of reactor noise is very
different between the so called Zero Power Reactors (ZPR), where
the main contribution to the statistical variance is due to the inter-
nal factors, and full scale power reactors, where the statistical vari-
ance is largely dominated by the external factors. Due to the many
differences between the internal and external noises, the two are
traditionally modeled differently and analyzed using distinct
mathematical tools. Internal noises are studied through the proba-
bility generating function and the Kolmogorov equation (a compre-
hensive overview may be found in Pazsit and Pal (2008)), when
external noises are often treated as random perturbation on the
point reactor kinetics equation (PKE), and are typically analyzed
through transfer function input/output analysis (Williams, 1974).
In particular, whereas the perturbation is considered random, the
analysis does not consider the noise as a true stochastic process,
and the results are typically specified in terms of the output
response to a fixed perturbation. Indeed, the transfer function is
very useful in determining the amplitude of the response to a ran-
dom noise but says little on the probabilistic characteristics of the
response.
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Hayes and Allen (2005) proposed a new modeling approach for
reactor noise based on the diffusion approximations,1 by which the
central limit theorem (CLT) provides a model for the stochastic fluctu-
ations. The model is expressed in terms of Ito stochastic differential
equations (SDE) (Karatzas and Shreve, 1991). In a sense, this model-
ing scheme is intermediate, lying between the deterministic point
reactor kinetic equation and the full stochastic transport equation.
Formally it corresponds to versions of the point reactor kinetic equa-
tion with terms accounting for stochastic perturbations.2

The goal of this paper is to develop the SDE approach by incor-
porating stochasticity associated with the detection process.
Despite the crucial role played by the stochastic detection process,
existing SDE models have accounted only for the stochastic fluctu-
ations in the neutron population. However, a model that lacks the
detection aspect is arguably incomplete, since it is only possible to
infer the population size through the detector response. Thus cou-
pling the detector response with the equation for the population
size appears to be of utmost importance for any practical imple-
mentation of the approach.

This paper offers three main contributions, that are all related to
the detection stochasticity. (i) The incorporation of the detection
process into the SDE model, in a way that accounts for its stochas-
tic nature. The model is formulated as a coupled pair of SDE, cosist-
ing of an equation for the neutron population and another for the
detection count. (ii) Derivation of explicit formula for the Feynman
variance-to-mean ratio (which also serves as a strong validation of
the proposed model). (iii) Based on the proposed model, a discus-
sion of an alternative method for sampling the Feynman-Y curve,
via the mean average deviation.

The analysis in this paper is restricted to the single energy point
model (an assumption that is also in force in Hayes and Allen
(2005)), and the delayed neutrons are neglected (incorporating
the delayed neutrons is doable, but extremely lengthy, and in the
present context, with no real gain).

The paper is organized as follows. The remainder of the present
section describes the motivation. In Section 2 some background on
both reactor noise and stochastic analysis is given. Section 3, which
constitutes the main contribution, introduces the SDE of relevance,
and provides some basic analysis thereof. Section 4 is devoted to a
proposed method of sampling the Feynman-Y function, that is the-
oretically based on our SDE model, for which we provide experi-
mental evidence. The main idea of the method is to use the
mean absolute deviation to estimate the variance, rather than the
traditional mean squares. Section 5 lists our conclusions from this
study.

1.1. Motivation

Introduced in the early 1950’s in the seminal work of Feynman
(1945) and having been covered by numerous textbooks on the
subject since then, the modeling and analysis of reactor noise are
important both in theory (Malinovitch and Dubi, 2015;
Demeshko et al., 2016) and applications (Diniz and dos Sontas,
2006; Diniz and dos Sontas, 2002). Still, it is widely accepted that
reactor noise is not fully understood. In his book from 1974, M.
M.R. Williams states (Williams, 1974):

‘‘. . .noise analysis of power reactors is in its infancy due mainly to a
1 It should be clarified that the use of the term diffusion approximation in this paper
is different than its more standard use in the nuclear physics literature. That is, i
refers to the identification of CLT-scale limits describing the neutron dynamics over
time (as well as other stochastic processes), not to be confused with spatial diffusion
approximation, associated with Fick’s law, that is often used in relation to the
Boltzmann equation.

2 Diffusion scale approximations have been also used before in this field in the
context of partial differential equations (PDE), specifically by appealing to the Fokker-
Planck equation (Williams, 1974) (Ch. 5.6).
t

lack of knowledge about the variety of noise mechanisms involved. . .In
terms of the input - output concept we are not only ignorant of the
nature of the input but in many cases of the system response function
as well. . .the great number of noise sources and fluctuating parame-
ters is the main stumbling-block for scientists in the field, especially
for those who have become accustomed to the fascinating clearness
of zero-power noise studies. At the same time it is precisely the difficul-
ties that constitute the merit of the topic;...”

Since 1974, the topic has been vastly studied by many contrib-
utors, but no fundamental breakthrough was achieved in our basic
understanding of how a random fluctuation in the reactor param-
eters would propagate on to the power level and the neutron flux.
Since the SDE model was introduced in Hayes and Allen (2005), the
model was adopted by many contributors, including the following
(to state a few): in Ha and Kim (2010), the model was extended to a
stochastic PDE, allowing 1D spatial dependence of the neutron
population, in Ha and Kim (2011), the reactor transient behavior
was studied, in Allen (2013), the doubling time of a subcritical
assembly was studied and in da Silva (2016), numeric solutions
to the SDE were studied.

As already mentioned, in all previous work, the detection pro-
cess was completely neglected. From the theoretical viewpoint of
studying the population dynamics per se, this can be justified:
the effect of the detection can merely be thought of as absorption.
However, from a practical point of view, modeling the detection
process is crucial, since the neutron detections are the only observ-
able that can be directly linked to the neutron population.

2. Background

2.1. The point reactor kinetics equation

The Point reactor Kinetics Equation (PKE), describing the aver-
age neutron population, takes the form Ott and Neuhold (1985)

dNðtÞ
dt

¼ q� beff

K
NðtÞ þ

Xj
j¼1

kjCjðtÞ þ SðtÞ; ð1Þ

dCjðtÞ
dt

¼ �kjCjðtÞ þ
bj

K
NðtÞ; ð2Þ

where
N denotes the number of neutrons,
Cj the concentration of the jth delayed neutron group precursor,
q the reactivity,
K the generation time,
kj the decay constant of the jth delayed neutron group

precursor,
bj the fraction (in units of reactivity) of the jth delayed neutron

group precursor,
beff the delayed neutron fraction (in units of reactivity), defined

by beff ¼
Pj

j¼1bj.
This is one of the most basic equations in nuclear engineering,

with numerous applications. In common practice we assume that
there are j ¼ 6 delayed neutron groups, and the values of the

parameters fkjg6j¼1; fbjg6j¼1 may be found in the literature.

A simplified version of the PKE is the prompt reactivity model,
where the delayed neutron fraction is treated as an external
source, and the dynamics are governed by a simplified, point
equation

dNðtÞ
dt

¼ q� beff

K
NðtÞ þ SðtÞ: ð3Þ



3 Notice that we neglect the effect of the delayed neutrons, while in Hayes and
llen (2005) it is not neglected.

610 C. Dubi, R. Atar / Annals of Nuclear Energy 111 (2018) 608–615
The term a ¼ �ðq� beff Þ=K is often referred to as the decay coef-
ficient (or sometimes the a eigenvalue) of the system.

Denoting by �m the average number of neutrons emitted in a fis-
sion, the multiplication factor may be written as k ¼ pf �m, where pf

is the fission probability. Using the relation q ¼ ðk� 1Þ=k, the coef-
ficient of NðtÞ in (3) is equal to ðpf �m� 1Þ=‘, where ‘ is the average
lifetime of a neutron. Transforming to the average lifetime scale
by t ! t=‘, we obtain

dNðtÞ
dt

¼ ðpf �m� 1ÞNðtÞ þ SðtÞ: ð4Þ

In the above equation, the source term S was also normalized to
the average life time scale. Eq. (4) may be derived using the reac-
tion intensities. If we denote by kf the fission probability per time
unit (or fission intensity), by ka the absorption intensity, by
k ¼ ka þ kf the total intensity and by SðtÞ external source intensity,
then the neutron balance equation may be written as

dNðtÞ ¼ �kNðtÞdt þ �mkf NðtÞdt þ SðtÞdt: ð5Þ
As stated, the PKE is a basic tool in analyzing the kinetics of

research and power reactors. Yet, it only describes the mean field
of the neutron population, without capturing its stochastic nature.

2.2. Stochastic differential equations

Dynamic evolution that involves randomness, viewed at diffu-
sion scale, gives rise to SDE in a large variety of settings. This occurs
in application fields such as population genetics, queuing net-
works, finance, communication systems, and theoretical physics.
When the fluctuations of the dynamics are diffusive, working with
SDE often simplifies their description considerably while keeping
the essence. The method by which evolution dynamics are approx-
imated by SDE is referred to in the literature as diffusion approxima-
tion. Diffusion approximations have been successfully applied in
various application fields in all the areas alluded to above.

The two most basic processes underlying the neutron popula-
tion dynamics are the Poisson process, that provides a natural
model for the particle injection, absorption and detection, and
branching processes, that model fission. Both processes lie in the
classical realm of probability theory, and specifically, their scaling
limits, including law of large numbers (LLN) and CLT, are well
understood. It seems that (Pakes, 1971) was first to provide rigor-
ous derivation of LLN and CLT results for the total progeny of sub-
critical branching processes with immigration. For nearly critical
branching processes, the limiting behavior is given by continuous
state branching process with immigration when the initial condi-
tion is getting large, a direction that started from Kawazu and
Watanabe (1971). The state of the art is described in the recent
book (Dawson and Li, 2012) (see eg., Theorem 3.43 there). In this
work we are interested in the formulation and study of SDE that
arise as diffusion approximations of nuclear dynamics.

An SDE is an equation of the form

dXt ¼ bðt;XtÞdt þ rðt;XtÞdWt ; X0 ¼ x; ð6Þ
where the unknown is a stochastic process X, that has continuous
sample paths taking values in Rd, for some positive integer d; b
and r are given coefficients; and W is a d-dimensional Brownian
motion (BM). A process X is regarded a solution if it satisfies, for

every t;Xt ¼ xþ R t
0 bðXsÞdsþ

R t
0 rðXsÞdWs, where the last term in

this integral equation is an Ito integral. The special case where
r ¼ 0 corresponds to an ordinary differential equation.

Questions of existence and uniqueness of solutions to SDE such
as (6), their Markov structure, properties of the solutions, as well as
solution methods have been of great interest and enjoyed a
remarkable success ever since the 1960’s, although the pioneering
work goes back to Ito (1946, 1951) and Gihman (1947, 1950). The
rich literature includes qualitative theory such as boundedness and
stability of solutions, solution methods, representation of solu-
tions, most notably via the Girsanov transformation, the study of
fine properties of solutions, as well as the description of time evo-
lution and steady state distribution by means of Kolmogorov’s for-
ward and backward equations; a small sample of books addressing
the subject is Karatzas and Shreve (1991), Øksendal (2003), Gard
(1988), Karlin and Taylor (1981) and Ethier and Kurtz (1986). in
Hayes and Allen (2005), a refinement of Eq. (5), in the form of a
SDE such as (6).

In a nutshell, the goal of this paper is to extend the model intro-
duced in Hayes and Allen (2005) to a set of SDE’s, incorporating the
detection process and its inherent stochastic nature.
3. Modeling stochastic dynamics of neutron population by SDE

The main contribution of this paper is contained in this section,
where we derive a set of SDE’s for the neutron population dynam-
ics coupled with the neutron detection.

under sub-critical branching. The model is constructed under
three main assumptions. First, only internal noises are modeled.
These consist of the stochastic fluctuations due to the Poissonian
nature of the times of injections by the source, the randomness
in the underlying branching mechanism, and the randomness asso-
ciated with absorption. Second, we consider a single energy point
model (an assumption that is also in the basis of the derivation
of the RPK equation). Finally, we assume a prompt reactivity
model, and thus neglect the effect of the delayed neutrons.

In Section 3.1, for sake of completeness, we partially repeat the
the analysis in Hayes and Allen (2005) and provide a derivation of a
basic diffusion approximation for the neutron population.3 In Sec-
tion 3.2, which forms the main contribution of our study, a finer
model is derived, that accounts for the destruction associated with
detection. The diffusion approximation in this case consists of a cou-
pled pair of SDE. Section 3.3 substantiates the model just introduced
by deriving from it the well-known Feynman-Y formula.

Notation related to random variables (RV) is as follows. For a RV
X, we denote by EðXÞ and VarðXÞ its mean and variance, respec-
tively. The covariance between two RVs X and Y will be denoted
by CovðX;YÞ.

3.1. An SDE for the neutron population

Under the single energy point model, the neutron population is
modeled in terms of three parameters:

1. The fission probability per time unit, denoted by kf .
2. The absorption probability per time unit, denoted by ka.
3. The distribution of the number of neutrons emitted in a fission

(or the neutron multiplicity), denoted by fpðmÞgmmax
m¼0 . We will

denote by m and m2 the first and, resp., second moments of this
distribution.

Denote by k ¼ kf þ ka the reaction probability per time unit.
This parameter can otherwise be characterized as the reciprocal
average die-away time of a neutron. Moreover, pf ¼ kf =k and
pa ¼ ka=k give the fission and absorption probabilities, respectively.
Consider a short time interval ½t; t þ Dt� and suppose one focuses on
a specific neutron that is alive at time t. Let X denote the number of
neutrons originating from that specific neutron, that are alive at
time t þ Dt. That is, let X ¼ 1 on the event that the neutron has
A
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made no reaction, let X ¼ 0 on the event of absorption, and let X be
the number of offspring on the event that fission has occurred. Let
Y ¼ X � 1 denote the increase in the number of neutrons of that
particular neutron, by the end of the aforementioned time interval.
Accordingly,

X ¼
0 w:p: kpaDt;

1 w:p: 1� kDt;

m w:p: kpf pðmÞDt; m � 1:

8><
>:

This can otherwise be written as

X ¼
0 w:p: kaDt þ kf pð0ÞDt;
1 w:p: 1� kDt þ kf pð1ÞDt;
m w:p: kf pðmÞDt; m � 2:

8><
>:

We can therefore compute

E½X� ¼ 1� kDt þ kf pðqÞDt þ
X
m�2

kf pðmÞmDt ¼ 1� kDt þ kfmDt;

E½X2� ¼ 1� kDt þ kf pð1ÞDt þ
X
m�2

kf pðmÞm2Dt ¼ 1� kDt þ kfm2Dt:

Hence

E½Y � ¼ E½X� � 1 ¼ �kDt þ kfmDt;

and

VarðYÞ ¼ VarðXÞ ¼ E½X2� � E½X�2

¼ � kDt þ kfm2Dt þ 2ðk� kfmÞDt
¼ ½kþ kf ðm2 � 2mÞ�Dt;

where in the last display we have neglected terms of order ðDtÞ2.
With the notation

a ¼ k� kfm; ~r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ kf ðm2 � 2mÞ

q
; ð7Þ

we have

E½Y � ¼ �aDt; VarðYÞ ¼ ~r2Dt:

Now, recall that we denote by Nt the size of the neutron popu-
lation at time t. Then one can associate a RV Yi to the ith neutron,
for i ¼ 1;2; . . . ;Nt , where fYigi2N is a given independent, identically
distributed sequence with Yi equal in distribution to Y, for each i.
Thus denoting the increase in the population size by
DNt ¼ NtþDt � Nt , the size of the population at time t þ Dt is given
by

NtþDt ¼ Nt þ DNt ¼ Nt þ
XNt

i¼1

Yi:

We can analyze the last term above by appealing to the CLT,
which states that, as n ! 1,

1ffiffiffi
n

p
Xn
i¼1

Yi þ aDt
~r

ffiffiffiffiffiffi
Dt

p ) Nð0;1Þ;

where ‘)’ denotes convergence in distribution. According to this, if
n is a large number then one may approximate

Xn
i¼1

Yi¼d � naDt þNð0;n~r2DtÞ;

where ¼d denotes equality in distribution. Since the number of neu-
trons is typically very large – starting from 109 in small ZPR up to
1019 in full scale power reactors – it is reasonable to use the above
display with n ¼ Nt . This gives the approximation

DNt ¼
XNt

i¼1

Yi¼d � aNtDt þNð0;Nt ~r2DtÞ: ð8Þ

Next, if fWtg is a standard BM and DWt denotes WtþDt �Wt ,
then we can use the fact that DWt is distributed according to
Nð0;DtÞ to write the above equality in distribution as

DNt ¼d �aNtDt þ ~r
ffiffiffiffiffi
Nt

p
DWt : ð9Þ

Formally, this gives rise to the following SDE

dNt ¼ �aNtdt þ ~r
ffiffiffiffiffi
Nt

p
dWt: ð10Þ

In developing (10), the external neutron source has not been
accounted for. This is addressed next. From a physical point of view
it is a shot noise, emitting each time a single neutron with fixed
intensity which we denote by S. Over a time interval of length
Dt � 1, the probability of emission is given by SDt, independently
over non-intersecting intervals. This structure is known to lead to a
Poisson process with rate S. Again, with DSt denoting the increase
in the number of emissions over the time interval ½t; t þ Dt�, an
argument that uses the CLT as above gives rise to the
approximation

DSt ¼d SDt þ
ffiffiffi
S

p
DWt: ð11Þ

Hence, modifying (9) to account for the source gives

DNt ¼d �aNtDt þ SDt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~r2Nt þ S

p
DWt: ð12Þ

Taking a formal limit gives the SDE

dNt ¼ �aNtdt þ Sdt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~r2Nt þ S

p
dWt :

A further simplifying step amounts to approximating the factor
Nt under the root by its steady state mean field value, S=a. From a
physical point of view, this can be justified by the assumptions that
the statistical fluctuations are sufficiently smaller than Nt . Clearly,
this approximation is only possible if there are no rapid power
shifts in the core.

Denote

r̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~r2 S
a
þ S

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S
a
kfmðm� 1Þ þ 2S

r
; ð13Þ

where the last equality follows from (7). Then we have

dNt ¼ �aNtdt þ Sdt þ r̂dWt : ð14Þ
We will refer to Eq. (14) as the zero power stochastic PKE, or the

SPKE, for short.
From a mathematical point of view, the SDE (14) that we have

just introduced is closely related to the Fokker-Planck equation
(FPE) presented in Williams (1974) in the following sense. The evo-
lution of the probability density function of the stochastic process
Nt of (14) is given by the solution to the FPE. The modeling
approach on the other hand is very different. The SDE describes
the neutron population dynamics directly, whereas the FPE
describes its probability density function.

Remark 3.1. Notice that the coefficient a is consistent with the
coefficient k� �mkf from the mean field Eq. (5), as follows from the
identity (7). Thus it is natural to view (14) as a version of (5) with
an additional stochastic term that models the noise.
The derivation of the SPKE was based on the CLT approximation
as well as treating the mean field counterpart as a steady state. The
latter assumption is relevant also for the initial condition. That is,
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for the system to be at or near equilibrium, one must assume that
N0 is close to S=a, the asymptotic mean field value. Our precise
assumption on the initial condition appears below in Remark 3.2.

We shall need the following standard facts about solutions to
SDE of the form

Xt ¼ �AXt þ Sdt þ rdWt

where A > 0 and r > 0 are constants, such as (14). If the initial con-
dition is normal and independent of the driving BMW, then the pro-
cess X is a Gaussian process, known as an Ornstein-Uhlenbeck
process (Øksendal, 2003). If, specifically, the initial condition X0 is
distributed as NðS=A;r2=ð2AÞÞ then the process is stationary, and
one has

EðXtÞ ¼ S
A
; EðXðtÞ2Þ ¼ r2

2A
þ S2

A2 ; VarðXtÞ ¼ r2

2A
: ð15Þ

Moreover, its autocorrelation function, defined by
/XðsÞ ¼ EðXtXtþsÞ, is (independent of t and) given by

/XðsÞ ¼
r2

2A
e�As: ð16Þ

Remark 3.2. We shall assume that the initial condition N0 is
distributed as NðS=a; r̂2=ð2aÞÞ, independent of the driving BM. By
the preceding paragraph, this process is then a stationary Gaussian
process, and formulas (15) and (16) are in force.
3.2. Coupled SDE for a model with destructive detection

Whereas the neutron population size is perhaps the most basic
quantity in a nuclear system, a practical viewpoint must take into
account that it cannot be measured noiselessly. There are several
reasons for this. First, measuring the population size is always per-
formed over a timewindowof positive duration rather than at a sin-
gle epoch. Second, the detection precess itself amounts to a random
sampling procedure, resulting with an inevitable sampling noise.
Third, in contrast to the model assumption, the neutron population
has a spatial distribution and the detection system has detectors
only in designated positions, thus only a small fraction of the neu-
trons will be detected, and the actual fraction might be unknown.
Finally, the detection process is also a destructive one, as detections
are achieved by absorption of neutrons in the detector, and as a
result, detection directly influences the overall population.

To model the detection count we consider it as one more reac-
tion type. From the population dynamics point of view, the detec-
tion is nothing more than absorption. Therefore, as far as the
population size is concerned, the analysis from Section 3.1 covers
the case of destructive detection once one modifies the absorption
intensity parameter ka to account for the absorption associated
with detection. In what follows, we aim at deriving the evolution
of the population size and detection count jointly.

Let us then denote by kd the probability per time unit of a neu-
tron to create a detection reading, and by k‘ the probability per
time unit for an absorption of a neutron not associated with detec-
tion. Then ka ¼ k‘ þ kd, and k ¼ ka þ kf ¼ k‘ þ kd þ kf gives the prob-
ability per time unit for any reaction. Thus the detection efficiency
is given by kd=k.

Let fDtg be the detection counting process, where, for each t, Dt

equals the number of detections in the time interval ½0; t�. Fix an
interval ½t; t þ Dt� and denote by DDt ¼ DtþDt � Dt the number of
detections over the interval. If Dt is small then, conditionally on
Nt ;DDt is approximately given by a binomial with parameters
ðNt ; kdDtÞ. A CLT approximation thus gives
DDt � NtkdDt¼d N 0;NtkdDtð Þ: ð17Þ

Let fWtg and ffWtg be two independent standard BM. Then we
can couple the increment DDt with the neutron population Nt to
obtain

DNt ¼d �a1NtDt þ SDt þ r1DWt � DDt ð18Þ
DDt ¼d kdNtDt þ r2D ~Wt ; ð19Þ
where (18) is obtained from (12) by correcting for the loss due to
detection, and (19) expresses (17) under a steady state assumption.
Here,

a1 ¼ kf þ k‘ � mkf ;

where we did not include kd in the coefficient of NtDt, since the
losses due to detection are accounted for in the term �DDt ,

r2
1 ¼ S

a
ðkf þ k‘ þ kf ðm2 � 2mÞÞ þ S

is the variance of the contribution of all the reactions but the detec-
tions, and

r2
2 ¼ S

a
kd

is the variance associated with detection. The latter two parameters
were computed as follows. The first part of Eq. (13) gives r̂ in terms
of ~r. We used the same relation, but replaced ~r of (7) by taking
kf þ k‘ in place of k, for the same reason specified above. Note how-
ever that in the expression S=a for the mean field steady state, we
kept a rather than using a1, as the steady state value is clearly
affected by the detection losses. Similarly, r2 was calculated based
on (17), where Nt was replaced by its mean field steady state value
S=a.

Once again we take formal limits. We obtain from (18) and (19)
the coupled system of SDE

dNt ¼ �a1Ntdt þ r1dWt � dDt þ Sdt;

dDt ¼ kdNtdt þ r2d ~Wt:

�
ð20Þ

Remark 3.3. We can obtain an autonomous SDE for Nt from the
coupled pair (20) by substituting dDt from the second equation
into the first. The equation obtained this way is

dNt ¼ �ða1 þ kdÞdt þ Sdt þ r1dWt � r2dfWt : ð21Þ
Notice that a1 þ kd ¼ a, while

r2
1 þ r2

2 ¼ S
a
ðkf þ k‘ þ kf ðm2 � 2mÞÞ þ Sþ S

a
kd

¼ S
a
ðkþ kf ðm2 � 2mÞÞ þ S

¼ r̂2; ð22Þ
precisely matching the coefficients of (14). We thus conclude that
Eqs. (14) and (20) describe the same dynamics as far as Nt is con-
cerned, as we have earlier anticipated.
3.3. Recovering the Feynman-Y formula

The analysis presented in this subsection is based solely on the
set of SDE (20) derived in Section 3.2. Our goal is to validate (20) by
using it in a computation that recovers one of the most basic for-
mulas in reactor noise, namely the Feynman variance to mean ratio.
Often referred to as the Feynman-Y function, this formula describes
the ratio between the variance and the mean of the number of
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counts in an interval of duration T, as a function of T (Feynman,
1945).

Evaluating themeannumberof counts is doneby integrating (20)
in the interval ½0; t� and taking the expectation. Using (15), this gives

E Dtð Þ ¼ kdE
Z t

0
Nsds ¼ kdSt=a ¼ pdSt=ð1� kÞ: ð23Þ

As expected, the result for the mean coincides with value found
in the literature (Pazsit and Pal, 2008).

Computing the variance is a bit more complicated, and requires
several steps. First, implementing Ito’s formula (Øksendal, 2003),
we have

D2
t ¼ D0 þ 2

Z t

0
DsdDs þ

Z t

0
ðdDsÞ2; ð24Þ

DtNt ¼ D0N0 þ
Z t

0
DsdNs þ

Z t

0
NsdDs þ

Z t

0
dNsdDs: ð25Þ

Then through (20), we have

DtdDt ¼ DtðkdNtdt þ r2d ~WtÞ
NtdDt ¼ NtðkdNtdt þ rd ~WtÞ
DtdNt ¼ Dtð�a1Ntdt þ r1dWt � dDt þ SdtÞ
ðdDtÞ2 ¼ ðkdNtdt þ r2d ~WtÞ2 ¼ r2

2dt

dNtdDt ¼ � ðdDtÞ2 ¼ �r2
2dt:

The final two identities above use the so-called multiplication

table of the Ito calculus, according to which ðdtÞ2 ¼ 0; dtdWt ¼ 0,

dtd ~Wt ¼ 0; dWtd ~Wt ¼ 0, while ðdWtÞ2 ¼ ðdfWtÞ
2 ¼ dt (see Theo-

rems 4.1.2 and 4.2.1, especially Eq. (4.1.8), in the book Øksendal,
2003). Substituting in Eqs. (24) and (25), and using D0 ¼ 0, yields

E D2
t

� �
¼ 2kd

Z t

0
E DsNsð Þdsþ r2

2t ð26Þ

E DtNtð Þ ¼ � a
Z t

0
E DsNsð Þdsþ S

Z t

0
EDsdsþ kd

Z t

0
EN2

s ds� r2
2t; ð27Þ

where on the second line we used the identity a1 þ kd ¼ a. More-
over, recalling that we assume stationarity of the process N, we
have from (15),

E N2
t

� �
¼ r̂2

2a
þ S

a

� �2

¼
S
a kfmðm� 1Þ þ 2S

2a
þ S

a

� �2

:

Denoting f ðtÞ ¼ E DtNtð Þ, using the above identities, Eq. (27)
reduces to

df
dt

¼ �af þ kd
S2

a
t þ kd

S
a

� �2

þ kd
2a2 Skfmðm� 1Þ:

This equation admits an explicit solution, given by

f ðtÞ ¼ kdS
2a3 kfmðm� 1Þð1� e�atÞ þ 2aSt

� �
:

Substituting in (26) and performing the integration, we obtain

E D2
t

� �
¼ mðm� 1Þkf k2dSt

a3 GðtÞ þ kdSt
a

� �2

þ kdSt
a

; ð28Þ

where we denote

GðtÞ ¼ 1� 1� e�at

at
:

Combining identities (23) and (28) gives

Var Dtð Þ � E Dtð Þ ¼ EðD2
t Þ � ½EðDtÞ�2 � EðDtÞ

¼ mðm� 1Þkf k2dSt
a3 GðtÞ: ð29Þ
Recalling the notation pd ¼ kd=k for the detection efficiency,
pf ¼ kf =k for the fission probability as well as the identity
a ¼ kðk� 1Þ, we may write the above relation as

Var Dtð Þ � E Dtð Þ ¼ Stmðm� 1Þpf p
2
d

ð1� kÞ3
GðtÞ;

or

Var Dtð Þ
E Dtð Þ � 1 ¼ mðm� 1Þpf pd

ð1� kÞ2
1� 1� e�at

at

� �
: ð30Þ

Eq. (29) coincides with the well known Feynman-Y formula
(see, for instance, Pazsit and Pal, 2008). While the derivation of this
formula is usually performed using the exact model (typically by
the probability generating function method, as in Dubi and Kolin
(2016)), the one just presented is based on our diffusion model,
obtained from CLT approximation in steady state. We regard the
fact that the Feynman-Y formula is recoverable in its precise form
from our model as a strong substantiation of the latter, since this
formula has indeed been validated numerous times.
4. Sampling the Feynman-Y function using the mean absolute
deviation

4.1. A proposed estimator

In this section we propose an alternative to the traditional way
of sampling the Feynman-Y function. While the variance is usually
estimated by means of evaluating the mean squares (MS) of the
sampled detection counts, we propose to use the mean absolute
deviation (MAD) instead. Here, for a collection of samples
fXngn 6 N , the estimators alluded to above are defined as

MN ¼ 1
N

XN
n¼1

Xn; MSN ¼ 1
N�1

XN
n¼1

Xn�MNð Þ2; MADN ¼ 1
N

XN
n¼1

jXn�MN j: ð31Þ

Clearly,MN andMSN are estimators for the expectation and vari-
ance, respectively. Recall that the first absolute moment of a RV X is
defined as

labs
X ¼ EðjX � lX jÞ: ð32Þ
Then MADN is seen to be a natural estimator for labs

X .
At the heart of the scheme to be proposed lies the diffusion

approximation developed in the previous section, according to
which the detection count is approximately a Gaussian process.
As a result, any detection count over a finite time window is also
approximated as a Gaussian RV. For a Gaussian RV, the first abso-
lute moment and the variance are related via the formula

VarðXÞ ¼ p
2
½labs

X �2: ð33Þ

The method we propose is to estimate the variance in the
Feynman-Y formula by

VarðXÞ � p
2
MAD2

N; ð34Þ

in place of the traditional estimation scheme

VarðXÞ � MSN :

The statistics literature on the use of the MAD and MS as mea-
sures of dispersion goes many years back. There are known advan-
tages and disadvantages to using each of them (as well as other
estimators). Specifically, an advantage of MAD over MS is in the
context of robust statistics (Huber, 2011), where it is known to
be (in a way that can be made mathematically precise) more



Fig. 1. Measured values for the variance and the MAD in all four signals.
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robust than other estimators to perturbations in the underlying
distribution, and more resistant to outliers. Our motivation to
using this estimator stems from these properties.

For a general distribution, the first absolute moment is often
harder to compute explicitly than the standard deviation. This is
particularly true in the context of the present study: while the vari-
ance (or any other moment, for that purpose) can be expressed in
terms of the probability generating function (Pazsit and Pal, 2008;
Dubi and Kolin, 2016), the first absolute moment cannot. However,
for the model introduced in the previous section, the Gaussianity of
the distribution settles this computational aspect, for the reasons
explained above. Our proposed approach thus makes full use of
the Gaussian approximation that the model provides. In particular,
the stochastic model (20) allows us to use the MAD in order to esti-
mate the variance of the detection count distribution, by appealing
to (34). This prediction is tested experimentally and further dis-
cussed in the next subsection.

4.2. Experimental validation for using the MAD in the neutron count
distribution

In the present subsection we offer an experimental validation of
the relationship in Eq. (34). The primal objective of the comparison
Table 1
Discrepancy between the sampled values of MSðXÞ and ðp=2ÞMAD2ðXÞ.

Measurement Acq 16 detector 1 Acq 16 d

Average Difference (%) 0.09 1.06

Maximal Difference (%) 0.32 1.8
is to further substantiate the SDE introduced in (20), which pre-
dicted the equality. In addition, we discuss some possible applica-
tions of the equality.

Validation was carried out on a set of 4 detection signals
obtained during Sep. 2014, on the MINERVE reactor (Gilad et al.,
2014, 2017). Measurements were taken at two (sub critical) reac-
tivity levels, each measured in two distinct detectors (resulting
with 4 detection signals). The reported reactivity of the first config-
uration (Acq16) was �270 pcm and �120 pcm for the second
(Acq19). Both reactivity values were obtained by a rod drop exper-
iment. Each measurement lasted approximately 1.5 h.

The MS and the MAD were both measured for a range of detec-
tion gates T ranging between T ¼ 10�3 ½sec� and T ¼ 10�1 ½sec�,
which is a typical range for the prompt neutrons when sampling
the Feynman-Y variance to mean ratio. The sampling was done
in consecutive windows: the detection signal was divided into N
consecutive time gates of duration T, the number of detections in
the nth gate (1 6 n 6 N) is denoted by Xn, and the mean, the
MS and MAD of the detection count distribution were computed
according to (31) above. The sampled values are shown in Fig. 1.

The measured discrepancy between MSðXÞ and p
2MAD2ðXÞ are

listed in Table (1) below.
etector 2 Acq 19 detector 1 Acq 19 detector 2

0.07 0.07

0.23 0.023
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As expected, there is a very high correspondence between the

sampled values of MSðXÞ and p
2MAD2ðXÞ, forming a strong valida-

tion of equality (34) and, consequently, of the diffusion approxima-
tion (20).

The experimental results are not only a validation of a basic
property of the count distribution, namely its approximate Gaus-
sian distribution, that to the best of our knowledge has not been
noticed, but might also have an impact on pile noise measurement
using the Feynman-a method. As already mentioned, the approxi-
mation (34) offers an alternative way to sample the Feynman-Y
function. When estimating the statistical uncertainty of the sam-
pled value of the variance, the dominant term is proportional to
the fourth moment of the detection count distribution. The vari-
ance of the MADðXÞ, on the other hand, is obviously equal to the
variance of X. Thus, the dominant term is proportional only to
the second moment of the detection count distribution. Therefore,
it is reasonable to ask whether sampling the Feynman-Y function

using p
2MAD2ðXÞ rather than VarðXÞ might reduce the statistical

uncertainty. We intend to address this question in future work.
5. Concluding remarks

The motivation to this work stems from the fact that the neu-
tron population size in the core cannot be measured directly, and
thus any practical approach to determining it must eventually take
into account the randomness associated with detection. We thus
regard modeling of the detection count distribution to be of utmost
importance toward implementation of the SDE formalism in
nuclear engineering and reactor core analysis. The contribution
of this work is to develop the SDE approach so as to incorporate
detection into the model equations. To this end, a pair of SDE is
derived, coupling the detection and the neutron population. As in
the basic model for neutron population, the detection process is
modeled via the mean field detection rate and a noise term consist-
ing of Brownian motion.

The model was validated in two ways. First, we analyzed the
detection count distribution based on it, showing that it gives rise
to the same first two moments as a calculation that uses the full
stochastic transport equation. In particular, the FCLT approxima-
tion precisely preserves the first two moments of the detection
count distribution. Second, we have shown experimentally that a
correspondence between the MS and the MAD estimators pre-
dicted by the Gaussian property of the model, holds with high
accuracy. This observation suggests a new sampling method for
the Feynman-Y curve, which might be more robust, and in partic-
ular less affected by detection losses.

The authors believe that the SDE approach and its present
development are promising in analyzing the neutron count distri-
bution in far more complex settings. These include settings that
account for the delayed neutrons, thermal-hydraulic (or other
non-linear) feedback, as well as the effect of dead-time in the
detection system. These aspects will be treated in future work.
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