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Abstract—A Fork-Join Network (FJN) is a natural model
for a queueing system in which customers, or rather tasks
associated with customers, are processed both sequentially and
in parallel. In this paper we analyze a network that, in addition,
accommodates feedback of tasks. An example of a FJN is an
assembly operation, where parts are first produced and then
assembled to ultimately create a final product. Another example
is an emergency department, where a patient “forks” into, say,
a blood test and an X-ray, which must then “join” the patient as
a prerequisite for a doctor examination. There is a fundamental
difference between the dynamics of these two examples: In an
assembly network, parts are exchangeable while, in an emergency
department, tasks are associated uniquely with patients. They are
thus nonexchangeable in the sense that one cannot combine/join
tasks associated with different customers.

In single-server feed-forward FJNs, FCFS processing main-
tains a fully synchronized flow of tasks. Probabilistic feedback,
however, introduces flow disruptions that give rise to task delays
and ultimately a decrease in throughput rate. Nevertheless,
we show that a simple flow control of tasks can render this
decrease of performance asymptotically negligible (though it is
not absolutely negligible). More specifically, we analyze a concrete
FJN, with nonexchangeable tasks and Markovian feedback,
in the conventional heavy-traffic (diffusion) regime. We prove
asymptotic equivalence between this network and its correspond-
ing assembly network (exchangeable tasks), thus establishing
asymptotic throughput-optimality of our control. The analysis
also reveals further interesting properties, such as state-space
collapse of synchronization queues.

I. INTRODUCTION

There are many examples of processing systems where
arriving jobs fork (split) into several tasks, which are then
independently processed along parallel routes, and ultimately
joined (matched) to create a final product. Indeed, the idea of
breaking complex jobs into simpler multiple tasks, which are
then performed simultaneously and sequentially by special-
ized servers, is fundamental. A natural model that captures
the complex dynamics thus described is a Fork-Join (also
called Split-Match) queueing network. Such networks have
found applications in a wide variety of domains, for example
multi-project environments (Cohen, Mandelbaum and Shtub
[7]), multi-processor programming (Towsley, Romel and As-
tankovic [17]), parallel communication networks (Hoekstra,
Van Der Mei and Bhulai [8]), the justice system (Larson, Cahn
and Shell [11]), distributed data-bases (Avi-Itzhak and Halfin
[1]) and, finally, health care systems, which have motivated
the present study.

Fig. 1. Fork-Join network with probabilistic feedback

The main model considered in this paper is depicted in
Fig. 1. In this network, a sequence of i.i.d. customers (jobs)
arrive to the system (process A). Each customer “forks”
into two tasks; these tasks are then processed simultaneously
and independently along two parallel routes (Z1 → Z2 and
Z3 → Z4), each route consisting of two service stations
in tandem; after the second station, some of the tasks are
completed (Li), and the others feed back (Fi) to the first
station of their route (Z1 or Z3). Each first-completed task
joins its Synchronization Queue (Q1 or Q2), waiting there
until its partner task, originating from the same customer,
is completed. Both tasks are then joined, at which time the
corresponding customer departs from the system (Dout).

As noted, we are motivated by health care systems, where
the fork-join construct is prevalent. We thus assume that tasks
are nonexchangeable, in the sense that a task associated with
a specific customer (e.g. a blood test of a patient) cannot
join a task originating in another customer (e.g. an x-ray of
another patient). Note that this same Fig. 1 can also model
an assembly network. Here, the arrival process corresponds to
product orders, and service stations manufacture parts from
which, ultimately, products are assembled, namely tasks in
Q1 and Q2 are joined. In such assembly networks, the tasks
(parts) are naturally exchangeable, which is in contrast to FJNs
that arise in health care. We shall refer to the latter simply
as Fork-Join networks: Each such network, after relaxing
its nonexchangeability constraints, turns into a corresponding
assembly network. This distinction and association between
Fork-Join and assembly networks is central for what is to
come.



II. ON EXCHANGEABILITY

The feedback in Fig. 1 is random (Markovian). Conse-
quently, the order of the arriving customers (according to
process A) is disrupted: It thus differs from the order of
departing tasks (in Li, i = 1, 2). This reshuffled order forces
tasks (e.g. task 5 in Q1 and task 7 in Q2) to wait for
their partner, which would not have happened had tasks been
exchangeable (5 and 7 would then join and leave as a final
product). An (exchangeable) assembly network can thus be
characterized by the following Complementarity Condition:

Q1(t) ∧Q2(t) = 0, ∀t ≥ 0; (1)

in other words, one of the synchronization queues must be
empty at all times (which is clearly not the case in Fig. 1).
Our main result (Theorem 1) shows that a simple flow control
gives rise to asymptotic equivalence between the FJN in Fig.
1 and its corresponding assembly network. More precisely,
the above complementarity condition holds asymptotically, in
(conventional) heavy-traffic, if one always gives preemptive
priority to incomplete tasks whose partnering task is already
waiting in its synchronization queue. Such a strategy will
prove to be asymptotically optimal in the sense of maximum
throughput, but not optimal.

The technical challenge in the proof of our main result stems
from the dependencies caused by the abrupt information ex-
change between routes: A task that reaches a synchronization
queue of one route is immediately changing the priority of
its partnering task on the other route. This complex dynamics
renders inapplicable the standard method of fluid- followed
by diffusion-approximation. Instead, we develope estimates on
down-crossing probabilities to deduce tightness of the queue-
length processes, which turns out to be sufficient for the
purpose of (1). By-products of the proof are some dynamical
properties of our FJN under heavy traffic, specifically state-
space collapse (to one dimension) of the synchronization
queues, and asymptotic equivalence between Fork-Join and
assembly networks.

III. SIMPLER MODELS

While we do not consider in this paper more general models,
it is natural to regard Fig. 1 as a special case of a model
with several processing routes, each containing a critically
loaded Jackson network. The model that we do solve is the
simplest nontrivial representative of this class. The following
progression of models and results clarify this (with further
details provided in [18]):
• Single-server feedforward FJNs [13]: Here a first-come-

first-serve (FCFS) discipline at all stations maximizes
throughput at all times. Indeed, under such FCFS, the
order by which customers arrive is the exact order by
which their corresponding tasks are processed, hence the
Complementarity Condition (1) must prevail.

• Single-server Fork-Join queues with feedback, as in Fig.
1, but with a single station per route: An exhaustive-
service control serves a task until it reaches a synchro-

nization queue, thus maximizing throughput as it reduces
the model to the above feedforward case.

• Multi-server feedforward FJNs [18]: In this case, FCFS
is only asymptotically optimal. Specifically, task-ordering
is disrupted by the parallel processing of many-server
stations, but this disruption is proved to be negligible in
conventional heavy traffic.

IV. OUR FORK-JOIN NETWORK

All our stochastic processes are defined on a common
given probability space. We first introduce the building blocks
for external arrivals, service times, departures and feedback,
followed by the corresponding processes. Let a sequence of
i.i.d. random variables, {u(m), m ≥ 1}, be given, where u(m)
are strictly positive with unit mean; set u(0) = 0. Denote by
λ the average arrival rate. Then the external-arrivals process
is A = {A(t), t ≥ 0}, where

A(t) ≡ max{k :
∑k
m=0 λ

−1u(m) ≤ t}, t ≥ 0.

We also have four unit-rate Poisson processes Sj =
{Sj(t), t ≥ 0}, j = 1, . . . , 4, and corresponding service-rates
µj , where each pair (Sj , µj) is associated with a station j in
Fig. 1. The departure process for station j, Dj = {Dj(t), t ≥
0}, is given by

Dj(t) = Sj(µjBj(t));

Bj(t) =
∫ t
0
I{Zj(s)>0}ds;

Ij(t) = t−Bj(t) =
∫ t
0
I{Zj(s)=0}ds;

here Bj and Ij are, respectively, the Busyness and Idleness
processes associated with station j, and each Zj , to be for-
mally introduced momentarily, is the number of tasks in station
j, either served or waiting in the resource queue preceding
server j.
Remark on Work-Conservation: Following standard terminol-
ogy, a control is work-conserving if it does not idle servers that
are faced with waiting customers. Formally, work-conservation
is precisely the above defining relation of the Bj’s in terms
of Zj’s. We are thus restricting attention to work-conserving
controls which, in fact, turns out to be without loss of
generality. Indeed, as will be formalized in the sequel, we shall
be concerned with maximizing system output (the processes
Dj’s and Dout). Turning a control into work-conserving can
only increase its “Busyness” process and hence its output.

Next, consider two sequences of i.i.d. indicators ξi =
{ξik, k ∈ N}, i = 1, 2 . Each r.v. ξik is {0, 1}-valued, and
is equal to 1 to indicate that task k at route i is fed back
to re-initiate the service process, after completing service at
route i. The probability of feedback on route i is given by pi,
i = 1, 2. The feedback building block for route i, Fi, is then
defined as Fi(d) =

∑d
k=1 ξ

i
k, d = 0, 1, . . ., with Fi(0) = 0.

Note that the customer population is assumed to be homo-
geneous, in the sense that all customers have the same prece-
dence constraints, interarrival time distributions, service time



distributions and feedback probability. It is further assumed
that all building blocks A, Sj , Fi are mutually independent.

Finally, we state basic relations among the stochastic pro-
cesses. These are given, for t ≥ 0, by

Z1(t) = A(t)−D1(t) + F1(D2(t));
Z2(t) = D1(t)−D2(t);
Z3(t) = A(t)−D3(t) + F2(D4(t));
Z4(t) = D3(t)−D4(t);
L1(t) = D2(t)− F1(D2(t));
L2(t) = D4(t)− F2(D4(t));
Qi(t) = Li(t)−Dout(t), i = 1, 2;
N(t) = A(t)−Dout(t).

(2)

The interpretations of the various processes in (2) are as
follows:
• Dout(t) - Throughput process: cumulative number of de-

partures, namely customers that completed their services,
up until time t;

• Li(t) - Route departure process: cumulative number of
departures, namely tasks that completed their services on
route i, till time t;

• Dj(t) - Station departure process: cumulative number of
departures, namely tasks that completed their processing
at station j, till time t;

• Zj(t) - Number of customers in station j, either served
or waiting for service at the resource queue of station j,
at time t;

• Qi(t) - Number of customers in the synchronization
queue at the end of route i, at time t;

• N(t) - Total number of customers within the network,
at time t; (Note that the number of tasks in both routes
at all times is identical, hence equals N(t).)

V. RELATED WORK

Exact analysis of Fork-Join models is extremely hard,
hence their analysis has traditionally focused on bounds and
approximations. Baccelli and Makowski [2] and Baccelli,
Makowski and Shwartz [3] obtained bounds via stochastic
ordering (association of random variables). Squillante et al.
[16] deployed approximate matrix-analytic methods, for the
analysis of general parallel-server Fork-Join queues with dy-
namic task scheduling. Boxma, Koole and Liu [5] reviewed
various solution methods for models of parallel and distributed
systems. And lastly, most relevant to the present work, Nguyen
[13] analyzed single-server feedforward FCFS FJNs, working
within the framework of conventional heavy traffic and de-
riving Brownian approximations. Since [13], to the best of
our knowledge, there as been little if any research progress
on fork-join control in heavy-traffic. An explanation can be
found in [14], specifically in its title and the fact that the paper
is restricted to FCFS. (For example, redoing [14] with static
priorities would turn the model tractable - see Section XI). Our
hope is that the present paper will change this state of affairs.
Specifically, our paper continues [13], and it is based on [18].
We analyze the FJN in Fig. 1, assuming nonexchangeable
tasks. This is more general than the models in [13] in that

it allows feedback. The latter causes throughput degradation,
which we overcome asymptotically in heavy traffic.

VI. HEAVY TRAFFIC

Our FJN will be analyzed in Heavy Traffic, as we now define
precisely. Consider a sequence of FJNs, each as in Fig. 1,
which are indexed by n. The following relations are assumed
to hold, as n ↑ ∞:
• Arrival rates: λn = λ · n+ λ̂ ·

√
n+ o(

√
n);

• Service rates: µnj = µj · n+ µ̂j ·
√
n+ o(

√
n);

• Heavy Traffic: limn→∞ n
1
2 (ρnj − 1) = θj , where ρnj is

the traffic intensity of station j.
These traffic intensities of the stations are given by:
ρn1 = λn

µn1 ·(1−p1)
, ρn2 = λn

µn2 ·(1−p1)
,

ρn3 = λn

µn3 ·(1−p2)
and ρn4 = λn

µn4 ·(1−p2)
.

Note that 1
1−pi is the average number of times that a task “vis-

its” route i (following a Geometric distribution with success
probability 1− pi, i ∈ {1, 2}).
In the above, the following scalars are apriori given and
assumed finite: λ > 0, µj > 0, λ̂, µ̂j ∈ (−∞,∞), pi ≥ 0,
θj ≤ 0. A simple sufficient condition for Heavy Traffic is

λ = µ1 · (1− p1) = µ3 · (1− p2); µ2 = µ1, µ4 = µ3.

The following notation for scaled (and possibly cen-
tered) stochastic processes is standard: resource-queue length
Ẑnj (t) =

Znj (t)√
n

, synchronization-queue length Q̂ni (t) =
Qni (t)√

n
,

potential service Ŝnj (t) =
Snj (µ

n
j t)−µ

n
j t√

n
and idleness process

Înj (t) =
Inj (t)√
n

, all defined for t ≥ 0.

VII. OPTIMAL CONTROL

As already discussed, the order of customer departures
becomes unsynchronized due to the random feedback at the
end of each route. This phenomena causes a delay in the
join process and hence reduces throughput. Heuristically, the
optimal performance (maximal throughput) is that of a corre-
sponding assembly network, with exchangeable tasks. Thus,
one could attempt to characterize optimal performance by
the Complementarity Condition (1). We shall now rigorously
formulate our control problem, and demonstrate that (1) is
indeed a sufficient condition for optimal performance, in the
sense of maximum throughput.

A. Optimality Criteria

The identity of the job being processed at time t by server
j, for every t and j, is regarded as the control process.
We use α to denote a generic control processes. A rigorous
definition requires significant additional notation, which we
prefer to avoid and thus settle for the above verbal description.
Similarly, we do not provide a complete definition of the term
state process, but only a verbal description. The state process
is defined as the information on the identity of all jobs at
each station at each time. Note that this does not include
information on which jobs are being processed at each time,
and so thus the control, in general, cannot be reconstructed



from the state. We will regard a control admissible if it is
adapted to the filtration of the state process. Note, in particular,
that such a control is nonanticipating, in the sense that it does
not obtain information from future events.

Denote by A the set of admissible controls.

Definition 1. Optimality is defined in terms of maximal
achievable number of departures over a finite time-horizon,
namely maximal throughput. More precisely,
• Exact Optimality: Control γ ∈ A is optimal if, for all
T > 0, γ attains esssupα∈A(Dα

out(T )). (Here, and in
the sequel, a control is appended as a superscript of a
process (e.g. Dα

out) to indicate that this process evolves
under that control.)

• Asymptotic Optimality: Control γ ∈ A is asymptotically
optimal if for any other control α ∈ A and for all T > 0,

D̂n,γ
out(T ) ≥ D̂n,α

out (T )− εn(T ), with εn(T )→ 0,

where the convergence of εn(·) is uniformly on compacts
(u.o.c.), in probability. (Here, and in the sequel, a super-
script n of a stochastic process (e.g. D̂n,γ

out ) indicates that
this process arises from the nth network in the heavy-
traffic sequence.)

Proposition 1. Each of the following conditions implies its
corresponding Definition 1:
• Exact Optimality: Q1(T ) ∧Q2(T ) = 0, ∀T > 0;
• Asymptotic Optimality: Q̂n1 (·)∧ Q̂n2 (·) p→n 0, where

p→n

denotes convergence u.o.c., in probability.

Proof of Proposition 1: The proof is a direct consequence of
three sample-path properties of our system. These will now
be formulated and their proofs outlined. (For the full details,
here and in the sequel, readers are referred to [18].)
Property 1: Restricting to work-conserving controls, the
processes Zj , Dj and Li do not depend on the control,
for all routes i and stations j. This independence is due to
servers time being server dependent, as opposed to customer
dependent. (Alternatively, only the following are control-
dependent processes: Qi, Dout and N ; this dependence is due
to the departure synchronization constraints associated with
nonexchangeable tasks.)
Property 2: argmaxα∈A(Dα

out(T )) =
= argminα∈A[

∑4
j=1 Zj(T ) +Qα1 (T ) +Qα2 (T )]

Property 3: Qα1 (T ) +Qα2 (T ) =

= |L1(T )− L2(T )|+ 2 ·Qα1 (T ) ∧Qα2 (T ), ∀α ∈ A. (3)

Proof of Property 1: By tracking sample-path evolutions
(according to our system equations), it does indeed follow
that as long as there is no forced idleness of servers, task-
counts (Zj’s) and flows prior to the synchronization queues
(A,Dj , Li and F1(D2), F2(D4)) are control-independent. The
network output (Dout), on the other hand, generally does
depend on the control, which affects the Qi’s and N as
well.

Proof of Property 2: The total number of customers within
each route is the same at each given time, since a customer

Fig. 2. Customer classes under the γ-control

joins and departs all routes simultaneously. It follows that 2 ·
Nα(T ) =

∑4
j=1 Zj(T ) + Qα1 (T ) + Qα2 (T ), for any control

α. Now, the external arrival process A is primitive and thus
uncontrollable. Recalling the definition of Dout in (2) now
yields Property 2.

Proof of Property 3: We omit the α for notational conve-
nience. Using the relation N(T ) = A(T )−L1(T )+Q1(T ) =
A(T )−L2(T ) +Q2(T ), we deduce that |Q1(T )−Q2(T )| =
|L1(T )−L2(T )|, for all T ≥ 0. However, Q1(T ) +Q2(T ) =
Q1(T ) ∨ Q2(T ) − Q1(T ) ∧ Q2(T ) + 2 · Q1(T ) ∧ Q2(T ).
Therefore, for all T ≥ 0,

Q1(T ) +Q2(T ) = |L1(T )− L2(T )|+ 2 ·Q1(T ) ∧Q2(T ).

In view of the above three properties, the Exact Optimality
condition in Proposition 1 implies Definition 1. We now con-
tinue with asymptotic optimality. For any control α ∈ A and
T > 0, one has Qα1 (T ) +Qα2 (T ) ≥ |L1(T )−L2(T )|. Hence,
Qγ1(T ) + Qγ2(T ) ≤ Qα1 (T ) + Qα2 (T ) + 2 · Qγ1(T ) ∧ Qγ2(T ),
for any α, γ. Taking γ in Proposition 1, and letting εn(·) =

Q̂n,γ1 (·) ∧ Q̂n,γ2 (·) p→n 0, one deduces that

Q̂n,γ1 (T ) + Q̂n,γ2 (T ) ≤ Q̂n,α1 (T ) + Q̂n,α2 (T ) + εn(T ),

for all T > 0 and any α ∈ A. Property 2 now enables one to
translate this last inequality for Q’s to an inequality for D’s,
as in Definition 1.

B. Control Policy

The exact control problem for the model in Fig. 1 seems
intractable. We now propose a control that, while not optimal,
will be proved asymptotically optimal.
Proposed Control (referred to as Cronyism- or γ-control):
Within each route, assign preemptive priority to tasks of
customers whose service was completed in the other route.
(Preemptive priority entails interrupting and resuming a task
at a later time.)

The Cronyism-control creates a natural division of all cus-
tomers into two classes:
• LP (Low Priority) Customers: Customers whose service

is still incomplete in both routes; e.g., gray customers in
Fig. 2.

• HP (High Priority) Customers: Customers whose service
is completed in one of the routes but is still incomplete
in the other; e.g., black customers in Fig. 2.



Finally, assume FCFS within each class, which now fully
characterizes the control. (The control is adaptive in the
sense that decisions depended solely on immediate system
state.) Note that the γ-control requires information exchange
between routes, which creates dependencies between routes.
This dependency, on one hand, is the reason for asymptotic
optimality but, on the other, is the main technical challenge in
establishing it.
In the sequel, we use the following notation for a generic
process Gj : GHj (GLj ) is the process associated with the
High-Priority (Low-Priority) tasks, respectively, and GTj is
associated with all customers. We then have

ZH1,2 = Q2 and ZH3,4 = Q1, (4)

where ZH1,2 = ZH1 +ZH2 and ZH3,4 = ZH3 +ZH4 . Hence, mini-
mizing synchronization queues is equivalent to minimizing the
number of tasks within the resource queues that are associated
with HP customers.

Denote by AHj = {AHj (t), t ≥ 0} the “Birth” (”arrival”)
process of HP customers in Station j. For example, assume
a departure of a task from Route 2, associated with an LP
customer; then this departure causes a priority change (to HP)
of that customer, as well as a count increase in AHj , if j is
the station on Route 1 where the partner task is then present.

VIII. ASYMPTOTIC OPTIMALITY

The following is our main result. Its proof is outlined in
Section X.

Theorem 1 (Asymptotic Optimality). For any fixed interval
[0, T ] and any ε > 0,

P(maxt∈[0,T ][Ẑ
n,H
1,2 (t) ∧ Ẑn,H3,4 (t)] > ε)−→n0, (5)

where Ẑn,H1,2 = Ẑn,H1 + Ẑn,H2 , and Ẑn,H3,4 = Ẑn,H3 + Ẑn,H4 .

From (4), we now conclude that Q̂n1 (·) ∧ Q̂n2 (·) p→n 0.
A central part of the proof is to establish tight estimates

on the number of HP customer at the various stations. The
challenge stems from the dynamics of HP customers being
coupled with that of LP customers. Specifically, the departure
of a task associated with an LP customer at a given route,
joining the corresponding synchronization queue, triggers a
priority change of that customer (its task in the other route),
from LP to HP. The dynamics of LP customers, in turn,
is constrained by the presence of HP customers. These HP
“Birth” processes (AHj ) are far from standard models of arrival
processes: their precise analysis would entail tracking, for
every individual customer in the system, the precise station
where each of its tasks is located, which would give rise to
an intractable state-description. Instead, rather than making
an attempt to characterize AHj , our approach is to develop
estimates (Lemma 3) that are uniform over all birth processes
with intensity that is not too large. Since these HP births are
caused by departures of LP customers from the other route,
showing that the birth intensity is indeed not too large amounts
to bounding the intensity of LP departure (Lemma 2).

Fig. 3. System Dynamics in Heavy Traffic

Asymptotically Optimal but Not Optimal. Our γ-control
will be proved asymptotically optimal, but it is not optimal.
To see that, consider the following γ′-control: In each route,
assign preemptive priority to tasks of customers whose service
was completed in the other route, as before, but also to tasks of
customers whose service was initiated in the departure station
(Station 2 or Station 4) in the other route; again, assume FCFS
within each priority class. Consider now the realization in Fig.
2, for this extended γ′-control: the task to be scheduled for
service in Station 3 (bottom-left station) is associated with
customer 11; in contrast, the previous γ-control would have
served Customer 10, adhering to FCFS of LP customers. We
now explain that

∃T s.t. P(Dγ′

out(T ) > Dγ
out(T )) > 0,

assuming, without loss, the scenario in Fig. 2 at some time
T0.

Denote by T jl the departure time of the l-th customer from
station j (l = 1, 2, . . . ,). Consider the event {T 3

1 < T 2
1 < T 4

1 <
T 4
2 < T 3

2 < T 4
3 }; for this event, and for the above departures

from Stations 2 and 4, we further assume that these departures
directly join the corresponding synchronization queue (no
feedbacks). Thus, under the γ′-control, one has Dγ′

out(T
4
2 ) −

Dγ′

out(T0) = 2 (departures of Customers 5 and 11); this is in
contrast to the γ-control, where Dγ

out(T
4
3−) −Dγ

out(T0) = 1
(departure of Customer 5 only). The above event has a positive
probability, hence there must be a deterministic time T for
which P(T ∈ [T 4

2 , T
4
3 ], Dγ′

out(T ) > Dγ
out(T )) > 0.

IX. SYSTEM DYNAMICS IN HEAVY TRAFFIC

Theorem 1 and Properties 1-3 reveal asymptotic equivalence
between our FJN under γ-control and a corresponding as-
sembly network: same topology, arrivals and services; ex-
changeable tasks with FCFS control. To see that, note the
following relations for an assembly network, at all T > 0, each
of which reflects exchangeability in the assembly dynamics:
Q1(T ) ∧ Q2(T ) ≡ 0, Q1(T ) ∨ Q2(T ) ≡ |L1(T ) − L2(T )|,
Dout(T ) ≡ L1(T ) ∧ L2(T ) (the latter following from the
general relation Dout(T ) ≡ L1(T )∨L2(T )−Q1(T )∨Q2(T )).
The equivalence alluded to amounts to having these last
relations hold also for the FJN with non-exchangeable tasks,
though only asymptotically after rescaling, as we now explain.

State-space Collapse of Synchronization Queues. The rela-
tion Q̂n1 ∧ Q̂n2

p
≈ 0 (Theorem 1) implies that the 2-dimensional

stochastic process Q̂n1 , Q̂
n
2 collapses to 1-dimension, being



restricted (with high probability) to an ε-environment of the
axes (ε > 0 arbitrarily small); see Fig. 3, the right graph.

Throughput Equivalence, or Asymptotic Exchangeability.
For the two networks (fork-join under γ-control and assembly
under FCFS control), the processes Zj , Dj and Li have
identical sample paths, for all routes i and stations j. To see
that, first consider both networks with FCFS control, in which
case the considered sample paths are clearly equal. Then,
according to Property 1, the processes Zj , Dj and Li do not
depend on the control.

Theorem 1 is one way of expressing asymptotic exchange-
ability under γ-control. Together with Property 3, it also
implies that Q̂n1 (·)∨ Q̂n2 (·)

p
≈ 1√

n
|Ln1 (·)−Ln2 (·)|, from which

we deduce: Dn,γ
out(·) ≡ Ln1 (·) ∨ Ln2 (·) − Qn,γ1 (·) ∨ Qn,γ2 (·)

p
≈

Ln1 (·) ∧ Ln2 (·).
The significance of asymptotic exchangeability is that, in

heavy-traffic, applying γ-control to our FJN yields a through-
put process Dout that has approximately the same distribution
as that of an assembly network under FCFS control. The latter
is the minimum of the Li’s, each of which is the exogenous
output process of a 2-station Jackson network (with feedback);
as such, each Li is a Poisson process with rate λ, though the
Li’s are dependent (emanating from the same exogenous input
A). The distribution of Dout = L1 ∧ L2 is thus tractable, in
principle, following from the joint distribution of exogenous
output processes from a Generalized Jackson Network [6].

X. PROOF OUTLINE FOR THEOREM 1

We now outline the proof of Theorem 1. (More details
appear in [18].) Fix any interval [0, T ] and ε > 0.

Proof of Theorem 1: Introduce
En,T = {maxt∈[0,T ]{Zn,H1,2 (t) ∧ Zn,H3,4 (t)} > ε

√
n}.

Then define
σ = inf{t : Zn,H1,2 (t) ∧ Zn,H3,4 (t) > ε

√
n};

τ = sup{t < σ : Zn,H1,2 (t) ∧ Zn,H3,4 (t) ≤ ε
3

√
n}.

Now let En = En,T ∩ {Zn,H3,4 (τ) ≤ Zn,H1,2 (τ)}. Then on En
and during the time-interval (τ, σ) (Fig. 4):
• Both processing routes contain more than ε

3

√
n HP

customers;
• The number of HP customers in Zn,H3,4 increases by more

than ε
2

√
n.

We prove Theorem 1 by showing that P(En)−→n0. The
proof that P(Ẽn)−→n0, where Ẽn = En,T ∩ {Zn,H3,4 (τ) >

Zn,H1,2 (τ)}, is completely analogous. The proof of the former
is based on the following three lemmas; their proofs are given
subsequently.

For any process, say X , and random times a ≤ b, we write
X[a, b] for X(a)−X(b).

Lemma 1. (Bounding HP idleness): Fix δ ∈ (0, 1/4). Then

P(In,H2 [τ, σ] > n−
1
2+δ)−→n0;

P(In,H4 [τ, σ] > n−
1
2+δ)−→n0.

(6)

Fig. 4. Example of possible sample-path for event En

Lemma 2. (Bounding number of LP departures): Fix δ ∈
(0, 1/4). Then

P(Dn,L
2 (σ)−Dn,L

2 (τ) > n
1
2+δ)−→n0. (7)

Lemma 3. (Bounding |σ − τ |): Fix δ ∈ (0, 1/4). Then

P(|σ − τ | < n−δ, An,H3,4 [τ, σ] ≥ ε

2
·
√
n)−→n0. (8)

Now consider the event
Hn = {∃σ, τ ∈ [0, T ] s.t. An,H3,4 [τ, σ] ≤ nδ+

1
2 , Bn,H4 [τ, σ] ≥

n−δ

2 , Zn,H3,4 [τ, σ] > ε
2

√
n}.

Using Lemmas 1-3, system’s equations (Section IV) and some
computation, one can verify that

P(En) ≤ P(Hn) + αn, αn−→n0.
Hence it is enough to prove that P(Hn)−→n0. To this
end, divide [0, nT ] into K intervals with fixed interval-length
|Jk| ≈ n1−δ . On the event Hn there is at least one interval
on which ∆kS4 < nδ+

1
2 , where S4 is the unit-rate Poisson

process defined above (Section IV). It follows that
P(Hn) ≤ P(∃k ∈ {1, . . . ,K} s.t. ∆kS < nδ+

1
2 ) −→n 0,

where ∆kS is the increment of S over the interval Jk. This
completes the proof of Theorem 1.

Proof of Lemma 1: We shall prove the claim for
In,H2 [τ, σ]; the proof for In,H4 [τ, σ] is similar.

For a fixed δ ∈ (0, 1/4), define the event Ên = En ∩
{In,H2 [τ, σ] > n−

1
2+δ}. Recall that, for any t > 0,

Zn,H2 (t) = Zn,H2 (0) + An,H2 (t) + SH1 (µn1B
n,H
1 (t)) −

SH2 (µn2B
n,H
2 (t)), where An,H2 denotes the birth process of

HP tasks in Station 2. Note that An,H2 is a positive increasing
process. Scale by

√
n and define

X̂n
2 (t) = Ŝn,H1 (BH1 (t))− Ŝn,H2 (BH2 (t)) + (µ̂1 − µ̂2) · t. (9)

Then the following relation holds on the event En:

Ẑn,H2 (t) = Ẑn,H2 (0) + increasing process + X̂n
2 (t)+

µn2 · Î
n,H
2 (t)− µn1 · Î

n,H
1 (t);{ ∫ t

0
I{Ẑn,H2 (s)>0}dÎ

n,H
2 = 0;∫ t

0
I{Ẑn,H2 (s)< ε

4}
dÎn,H1 = 0;

(10)

Hence the measures induced by the increasing processes
În,H1 , În,H2 do not charge the set of times t where Ẑn,H2 (t) ∈
(0, ε4 ). Define the following random times, e.g., Fig. 5 (where



the infimum over the empty set is +∞).
A1 = inf {τ ≤ t ≤ σ : Ẑn,H2 (s) = 0};
B1 = inf {A1 < t ≤ σ : Ẑn,H2 (s) ≥ ε

4};
continue in an inductive manner, for i = 1, 2, . . . :

Ai+1 = inf {Bi < t ≤ σ : Ẑn,H2 (s) = 0};
Bi+1 = inf {Ai+1 < t ≤ σ : Ẑn,H2 (s) ≥ ε

4}.
For every interval [Bi, Ai+1) contained in (τ, σ), define

Ci = sup {t ∈ [Bi, Ai+1) : Ẑn,H2 (s) ≥ ε
4}. By the defini-

tions above, one sees that, on the intervals [Ci, Ai+1), Ẑn,H2

starts at ε
4 and ends at zero without exiting (0, ε4 ). We shall

refer to [Ci, Ai+1), for which Ai+1 <∞, as Down Crossing
intervals.
Claim. Denote by Rn[τ, σ] the number of down crossings on
[τ, σ]. Then Rn[τ, σ]1Ên are tight r.v.s.
Proof of Claim. Define HK = Ên ∩ {Rn[τ, σ] > K}.
Using (10), positivity of the arrival process and the fact that
[τ, σ] ⊆ [0, T ], one can verify that
HK ⊆ {∃0 ≤ s1 ≤ t1 ≤ s2 ≤ . . . ≤ tK ≤ T s.t.

|X̂n
2 [si, ti]| ≥ ε

4 , ∀i ∈ {1, . . . ,K}}.
Thus
P(HK) ≤ P(∃i s.t. |X̂n

2 [si, ti]| ≥ ε
4 , 0 ≤ ti − si ≤ T

K )

≤ P(modT (X̂n
2 ,

T
K ) ≥ ε

4 ).

Here modT (X, δ) = sup0≤s≤t≤T,t−s≤δ |X(t)−X(s)|.
The processes Ŝn,Hj are centered, scaled Poisson processes,

which converge weakly to a Brownian Motion (BM) process.
In particular, they are C-tight, that is, tight in the Skorohod J1
topology, and having a.s. continuous sample paths for every
subsequential limit. Since BHj have sample paths that are
Lipschitz with constant 1, the processes X̂n

2 are also C-tight.
Thus ∀η > 0 ∃K ∈ N s.t. P(HK) ≤ η, as follows from
Proposition VI.3.26 of [10], which characterizes C-tightness.
This proves the claim.

We now return to the proof of Lemma 1. Given η let K be so
large that P (HK) < η/2. Let us analyze the event Ên ∩Hc

K .
On this event one has less than K + 1 intervals of [Ai, Bi).
Note that În,H2 does not increase outside these intervals.
Therefore, there exists an interval j on which În,H2 [Aj , Bj)

increases by nδ−1

K+1 . Using (10) and positivity of the arrival
process, on this event one must have |X̂n

2 [Aj , Bj)| > | n
δ

K′
|, for

some constant K ′ (that depends on K). By the C-tightness of
the processes X̂n, the probability for such an event converges
to 0, as n −→∞.
As a result, for all large n, P(Ên) ≤ η; since η is arbitrary,
we obtain P(Ên) −→n 0.
This completes the proof of Lemma 1.

Proof of Lemma 2: Fixing δ ∈ (0, 1/4), consider Hn =
{Dn,L

2 (σ)−Dn,L
2 (τ) ≥ n 1

2+δ}. Define

α = inf {τ ≤ t ≤ σ : Dn,L
2 (t)−Dn,L

2 (τ) ≥ 1
3 · n

1
2+δ};

β = inf {τ ≤ t ≤ σ : Dn,L
2 (t)−Dn,L

2 (τ) ≥ n 1
2+δ}.

On Hn α, β are finite. With δ
′

= δ
2 ,

P(Hn) = P(Hn, I
n,H
2 [α, β] > nδ

′
− 1

2 ) + P(Hn, I
n,H
2 [α, β] ≤

nδ
′
− 1

2 ).

Fig. 5. Illustration of ZH
2 sample-path

On the event Hn∩{In,H2 [α, β] > nδ
′
− 1

2 }, the following holds:
P(Hn, I

n,H
2 [α, β] > nδ

′
− 1

2 ) ≤ P(In,H2 [α, β] > nδ
′
− 1

2 ) ≤
P(In,H2 [τ, σ) > nδ

′
− 1

2 )−→n0, according to Lemma 1.

On the event Hn ∩ {In,H2 [α, β] ≤ nδ
′
− 1

2 }, notice that
Bn,L2 [α, β] ≤ In,H2 [α, β], since In,H2 [α, β] = In,T2 [α, β] +
Bn,L2 [α, β]. Therefore on the event considered, the following
relations hold:
• Averaged LP departure rate: µn2B

n,L
2 [α, β] ≤ n 1

2+
δ
2 ;

• LP cumulative departures: Dn,L
2 [α, β] ≥ 1

2n
1
2+δ .

One can verify that the probability for such an event converges
to zero, as n→∞. This completes the proof of Lemma 2.

Proof of Lemma 3: Note that Dn,L
2 [τ, σ] ≥ An,H3,4 [τ, σ] ≥

ε
2

√
n, since An,H3,4 (t) = Dn,L

2 (t)−F1(Dn,L
2 (t)). For any fixed

δ ∈ (0, 1/4), we now define the event Hn = {|σ − τ | <
n−δ, Zn,H1,2 (s) ≥ ε

3

√
n, ∀s ∈ [τ, σ], Dn,L

2 [τ, σ] ≥ ε
2

√
n}. Let

α = inf {t ≥ τ : Zn,H2 (t) ≥ ε
4

√
n};

σ
′

= inf {τ ≤ t ≤ σ : Dn,L
2 [τ, t] ≥ ε

2

√
n};

and represent P(Hn) = P(Hn, α ≤ σ
′
) + P(Hn, α > σ

′
).

On the event Hn ∩ {α ≤ σ
′}, Zn,H2 must perform at least

one Down Crossing from ε
4

√
n to 0, before the completion of

∆Dn,L
2 ≥ ε

2

√
n. i.e., server 2 will not serve LP tasks unless

the number of HP tasks decreases to 0. Hence, the probability
for such an event is less than P(modT (X̂n

2 , n
−δ) ≥ ε

4 ) −→ 0,
where the latter convergence is due to C-tightness.

On the event Hn∩{α > σ
′}, Station 2 serves more than ε

2

√
n

LP tasks on interval [τ, σ
′
], while Server 1 is continuously busy

(Zn,H1,2 (s) ≥ ε
3

√
n, hence Zn,H1 (s) ≥ ε

12

√
n, ∀s ∈ [τ, σ]) with

HP tasks, which are served and depart to Server 2. Note that

Dn,T
2 [τ, σ

′
] = Dn,L

2 [τ, σ
′
] +Dn,H

2 [τ, σ
′
]. (11)

On the event Hn ∩ {α > σ
′}, one has

∆Dn,T
2 [τ, σ

′
] = ST2 (µn2B

n,T
2 (σ

′
))− ST2 (µn2B

n,T
2 (τ));

∆Dn,L
2 [τ, σ

′
] ≥ ε

2 ·
√
n;

∆Dn,H
2 [τ, σ

′
] ≥ SH1 (µn1B

n,H
1 (σ

′
))− SH1 (µn1B

n,H
1 (τ)).

The last inequality is due to the preemptive control, i.e., all HP
tasks must be served before LP service can begin. Therefore,
on the event considered, the following relations hold:
• ∆Dn,T

2 [τ, σ
′
]−∆Dn,H

1 [τ, σ
′
] ≥ ε

2

√
n;



• |σ′ − τ | ≤ |σ − τ | < n−δ;
• Bn,H1 [τ, σ

′
] = |σ′ − τ | ≥ Bn,T2 [τ, σ

′
], since server 1 is

always busy with HP customers;
• Recall also that µ2 = µ1 (Section VI).

One can verify that the probability for such an event converges
to zero, as n→∞. This completes the proof of Lemma 3.

XI. GENERALIZATION AND EXTENSIONS

We have not calculated the limiting distribution of the
throughput process (Section IX). Our derivations are also
restricted to preemptive controls and exponential service du-
rations. We believe, however, that ideas from the proof (e.g.,
C-tightness, down-crossing considerations) may be used in far
greater generality.

The model considered can be extended in various ways.
We now describe some that are especially relevant to our
healthcare motivation (in an increasing order of difficulty).
Multiple processing routes. Consider M parallel routes,
rather that 2 as in Fig. 1.
Optimality conditions (maximizing throughput):
• Exact Optimality:

∧
i∈{1,..,M}(Qi(T )) = 0,∀T > 0;

• Asymptotic Optimality:
∧
i∈{1,..,M}(Q̂

n
i (·))→ 0, u.o.c.,

in probability.
Optimal control: At each route, assign preemptive pri-
ority to tasks of customers whose service is com-
pleted at all other routes. Optimality is based on
the following analogue of Property 3 in Section VII:∑M
i=1Qi(T ) =

∑M
i=1 (Li(T )−

∧
i∈{1,..,M}(Li(T ))) + M ·∧

i∈{1,..,M}(Qi(T )), for all T > 0.
The Customer View, or the Snapshot Principle. The
principle asserts [15], [13] that the “state” (e.g. queue-
lengths) which a customer ”sees” upon arrival does not change
(in diffusion scale) during that customer’s sojourn within
the system. The validity of this principle thus dramatically
simplifies the prediction of customer sojourn times, a prob-
lem that is important in our motivating service (healthcare)
applications. However, our asymptotically optimal γ-control
creates a volatile environment of priority switches (LP to HP).
This renders challenging even the precise articulation of the
snapshot principle, which we thus leave as a natural significant
direction for future research.
Heterogeneous customer population. Consider a FJN with
several customer classes: each class has its own precedence
constraints, interarrival-time and service-time distributions.
This is the model in Nguyen [14] where, in addition, a FCFS
discipline was enforced at each station. The heavy traffic limits
in [14] turn out intractable, which is due to task disordering
in view of ample overtaking. However, we conjecture that
applying static priority among customer classes (the same
priority uniformly across stations, with FCFS within a class),
will reduce in heavy traffic to a fork-join critical single-class
FCFS network. This is a consequence of the collapse of high-
priority processes [15] that “see” a network in light-traffic,
which leaves only the lowest priority class in heavy-traffic.
A far more challenging question is (asymptotically) optimal

control of such heterogenous networks (eg. mixing global γ-
control with station-level Gcµ).
Many-server FJNs. Consider a FJN in which the number
of servers per station is very large. Due to a high level of
parallel processing, the phenomena of customer overtaking be-
comes both uncontrollable (as long as parallel servers operate
independently) and non-negligible (if the number of servers
scales up sufficiently fast). This is in contrast to multi-servers
in conventional heavy-traffic [18]. The question that now arises
is whether there exists a control under which Fork-Join and
assembly networks are asymptotic equivalent. An interesting
scaling to contemplate is the one in Halfin and Whitt [9]. Such
many-server networks seem important since they naturally
arise in intelligence or biological networks.
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