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Abstract

We study a diffusion regime, earlier considered by Gurvich, Mandelbaum, Shaikhet and
Whitt in the case of the M/M/N queue, that is, in a sense that we make precise, a midpoint
between two well-known heavy traffic diffusion regimes, the conventional and the quality and
efficiency driven regimes. Unlike the other two, this regime, that we call the non-degenerate
slowdown regime, enjoys the property that delay and service time are of the same order of
magnitude, a property that is often desirable from a modeling viewpoint. Our main result is
that in the case of heterogeneous exponential multi-server systems, this regime gives rise to new
limit processes for the sojourn time. In particular, the joint limit law of the delay and service
time processes is identified as a reflected Brownian motion and an independent process, whose
marginal is a size-biased mixture of exponentials. Our results also motivate the formulation and
study of new diffusion control problems, based on sojourn time cost.
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ED and QED regimes, non-degenerate slowdown regime

1 Introduction

Diffusion asymptotic analysis of queueing systems in heavy traffic has been the subject of exten-
sive research within stochastic network theory, motivated by the convenient approximations which
diffusion models offer. This paper focuses on a many-server diffusion regime where the number
of servers grows without bound, that was earlier considered by Mandelbaum and Shaikhet [15],
[17], Whitt [22], and Gurvich [10], and is unique in that delay and service time remain comparable
under scaling. While the model analyzed by the above mentioned authors was the M/M/N queue,
with N → ∞, our main focus is on heterogenous many-server systems, where this asymptotic
regime gives rise to new limit processes for the sojourn time, and provides motivation to study new
diffusion control problems.
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Foundation (Grant 2008466), and the Technion’s fund for promotion of research
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1.1 On heavy traffic regimes

To place the framework of this paper among other heavy traffic regimes, it is instructive to recall
the classification of Garnett, Mandelbaum and Reiman [9]. Consider the M/M/N+M model with
parameters λ, µ and θ, of a Markovian N -server queue, where customers may abandon while waiting
to be served. The three parameters represent arrival rate, per-server service rate, and per-customer
abandonment rate, respectively. The ratio R = λ/µ is often referred to as the offered load. As
measures of performance consider the steady state probability that an incoming customer does not
find an available server immediately upon arrival, and the steady state probability that a customer
abandons. Denote these quantities by PW and PA, respectively (where W and A are mnemonic for
‘wait’ and ‘abandonment’). This model is analyzed in [9] in three many-server asymptotic regimes,
which differ in how N and R are related, and the following results are shown.
(i) When, for some fixed β ∈ (−∞,∞), N = R + β

√
R, one has PW → α(β) ∈ (0, 1) and PA → 0,

as R → ∞ (and consequently N → ∞);
(ii) When N = R+ εR, some fixed ε > 0, one has PW → 0 and PA → 0, as R → ∞;
(iii) When N = R− εR, some fixed ε ∈ (0, 1), one has PW → 1 while PA → ε, as R → ∞.

Result (i) is an extension, to a model that accommodates abandonment, of the well-known square
root rule for safety staffing (see Whitt [20] as well as references therein to earlier treatments), which
proposes how the staffing level, N , should be determined from R so as to achieve a desired level
of quality of service. When stated for the G/M/N queue (with no abandonment), this rule asserts
that if R is large and N is selected according to the formula

N = R+ β
√
R,

then the quality of service, as measured by PW , is dictated by the parameter β (required in this case
to be positive). Whitt [20] rigorously justifies this rule based on Halfin and Whitt [11], where it is
shown via diffusion limit techniques, that the large R limit of PW exists as a number in the interval
(0, 1), and is solely determined by β and the inter-arrival squared coefficient of variation (assumed
finite). Result (i) of [9], alluded to above, thus asserts that an analogous rule continues to hold for
the model with abandonment. Note that it also addresses the other measure of performance, PA.

Results (ii) and (iii) are concerned with a system operating at a high level of quality of service,
and, respectively, high efficiency. Accordingly, [9] propose to classify asymptotic regimes for multi-
server systems with abandonment according to whether (N −R)/

√
R converges to

+∞, −∞, or some β ∈ (−∞,+∞),

(corresponding to results (ii), (iii), and, respectively, (i)), and to refer to these three regimes,
respectively, as

Quality-Driven (QD), Efficiency-Driven (ED), and Quality- and Efficiency-Driven (QED).

Similarly, for models without abandonment (say, M/M/N), the three limiting values dictating the
regimes are, respectively,

+∞, 0, or some β ∈ (0,+∞),
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where one assumes N > R so that steady state is well-defined. Because result (i) was first estab-
lished by [11] (in absence of abandonment), the QED regime is also often called the Halfin-Whitt
regime.

There is a vast literature on heavy traffic diffusion limits, and the models which have been
studied are many, including very general stochastic network systems. The majority of these works
analyze models containing a fixed number of servers [12, 13, 14, 21]. It is standard to refer to such
a setting as the conventional diffusion regime (as e.g., in [4]). In recent years there has also been
much interest in many-server limits of critically loaded systems, and the model suggested by Halfin
and Whitt has been extended in various ways. This body of work, inspired by the approach of [11],
addresses systems in the QED regime. On the other hand, the conventional heavy traffic is an ED
regime. To see this, consider the M/M/N queue. Fix µ and N , and let λ = λn = Nµ − cn−1/2,
some c > 0. Since (N −R)/

√
R = (N −λn/µ)(λn/µ)

−1/2 → 0, these assumption correspond to the
ED regime. As in result (iii) alluded to above, it is well-known that PW → 1. A well-known limit
result states that, with Qn denoting the corresponding queue-length process, the rescaled process
Q̂n(t) = n−1/2Qn(nt) converges to a reflected Brownian motion (RBM) on R+ with specified
parameters (assuming convergence of initial conditions). What makes the conventional regime very
useful is that these limit results are much more general, and continue to hold, e.g., for the G/G/N
queue (under moment assumptions).

However, the conventional diffusion regime is not the only ED regime. Mandelbaum and
Shaikhet [15], [17], and Whitt [22] (Theorem 2.2) have identified the following scaling that is
ED, with N → ∞. Consider an M/M/N queue with µ = 1 and

λ = λN = N − c+ o(1), (1)

where c > 0 is constant. Note that (N − R)/
√
R → 0 as R → ∞. Denote by QN the queueing

process, and by XN the number-in-system process. These authors show that

N−1QN (Nt) (2)

converges to a RBM, where [22] also characterizes the limiting delay process and shows that it is a
RBM. Gurvich [10] (Proposition 5.1.1) extended these results to show, under a natural condition
on the load, that

N−δ(XN (N2δ−1t)−N) (3)

converges to a RBM for any δ ∈ (12 , 1].

1.2 ED regimes and slowdown

In both the conventional and the QED regimes, the expected delay and service time experienced by
a customer scale differently as a function of the scaling parameter, n. In fact, delay turns infinitely
larger (smaller) than service time in the conventional (respectively, QED) regime. From a modeling
viewpoint, it is desirable to allow for these two important performance measures to be comparable
under the scaling. As observed by [15], [17], [22], their scaling alluded to above is unique, in that
the delay and the service time remain comparable as n → ∞.
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Figure 1: Diffusion regimes on the α-axis: The interval [0, 1) corresponds to the ED regimes, with
the conventional (α = 0) and the NDS (α = 1/2) as special cases. The point 1 corresponds to the
QED regime.

To understand this, consider the M/M/N model where the parameters λ, µ and N all depend
on some scaling parameter n. In particular, given α ∈ [0, 1], assume that

λn = n− λ̂n1/2, Nn = [νnα], µn = ν−1n1−α,

where ν and λ̂ are constants (a more general formulation appears below in Section 2). In the
case α = 0, ν is assumed to be an integer. Note that the system is critically loaded in the sense
λn ≈ Nnµn. Then the cases α = 0 and α = 1 are seen to correspond to the conventional, and QED
regimes, respectively, and this parametrization can be thought of as an interpolation between the
two (see Figure 1). Moreover, any α ∈ [0, 1) represents an ED regime, because

Nn −Rn√
Rn

= O(n− 1
2
+α

2 ) → 0.

By a simple calculation it is seen that the case α = 1/2 corresponds to the scaling (1), (2) above,
while the interval α ∈ [12 , 1) corresponds to (3) with δ ∈ (1/2, 1]. A typical diffusion limit result in

either the conventional or the QED regime shows that queue-length scales as O(n1/2). Since the
overall processing rate at each station scales as n in both regimes, this means that the expected delay
scales as n−1/2. On the other hand, the mean service time is the reciprocal service rate, behaving
like O(n−1) and O(1) in the conventional and the QED regimes, respectively. See columns I and III
of Table 1. For a general α ∈ [0, 1], the delay scales as n−1/2 just as in both regimes, while service
time scales as n−1+α. Hence the case α = 1/2 is special, in that delay and service time have the
same rate of decay in n.

One often defines the slowdown as the ratio between the sojourn time and the service time
experienced by a typical customer. The foregoing discussion shows that the slowdown degenerates
in the limit as n → ∞, to ∞ or to 1, for any α in the interval [0, 1] except α = 1/2. We therefore
refer to the case where α = 1/2, considered by [15], [17], [22] and [10], as the Non-Degenerate
Slowdown (NDS) diffusion regime (column II of Table 1 and point 1/2 in Figure 1).

While the discussion above is on critically loaded, diffusion regimes, there are, of course, other
useful asymptotic approaches. Whitt [23] proposes an overloaded, fluid many-server ED regime,
where individual abandonment time and service time are held fixed, while arrival rates and number
of servers increase in such a way that the traffic intensity exceeds one. A unique feature of this
regime is that the probability of eventually being served approaches a limit strictly between zero
and one. Just like the NDS diffusion regime, the ED regime of [23] has the property that delay and
service time are comparable.
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Diffusion regime I. Conv. II. NDS III. QED

Arrival rate O(n) O(n) O(n)

Number of servers O(1) O(n1/2) O(n)

Individual service rates O(n) O(n1/2) O(1)

∆ := Delay O(n−1/2) O(n−1/2) O(n−1/2)

Σ := Service time O(n−1) O(n−1/2) O(1)

Relation ∆ and Σ ∆ ≫ Σ ∆ ∼ Σ ∆ ≪ Σ

Table 1: Comparison of three heavy traffic diffusion regimes. Under the conventional and the QED
regimes, delay and service time experienced by a typical customer scale differently in n, while they
are comparable under the non-degenerate slowdown regime.

1.3 Non-degenerate slowdown in applications

The NDS diffusion regime is meaningful and useful in applications where

(a) The traffic intensity is close to one,

(b) Delays and service times are of the same order,

(c) The fraction of abandoning customers is of the order of 1/N or lower, where N is the number
of servers.

Items (a) and (b) merely express the critical load condition and non-degeneracy of the slowdown.
As will be argued in Remark 2.2(a) below, the abandonment fraction is of order n−1/2 in this regime.
Our formulation of item (c) is based on this and the physical meaning of n, as the squared number
of servers (another important meaning is the squared ratio between arrival rate and individual
service rate).

The main motivation of [9], as well as many other works on many-server asymptotics, arises
from the analysis and design of call centers. Whitt [23] argues that his approach, alluded to above,
gives rise to efficient approximations for call center applications, provided that abandonment is
significant and the quality of service is somewhat low, or when queue length and waiting times
are relatively large. Although the reason for comparability in this case is different than in the
present paper, and stems from the strong effect of abandonment, the applicability of such ED
approximations to call center analysis does indicate that non-degenerate slowdown indeed occurs
in practice.

Following is an example of a system that meets conditions (a)–(c) above, and which is therefore
meaningful to approach by NDS diffusion approximations. A detailed empirical study of a particular
banking call center operations is reported in Brown et al. [7], based on data of more than 1,200,000
calls over the period of a year. This call center is seen to operate with traffic intensity between
0.86–1.22 (as can be seen from [8, Table 6, p. 48] where λ is within 103–116 calls/hour; and Nµ
is within 1.7–2 min). Moreover, it operates with comparable delay and service time. Indeed, the
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overall average service time reported in this study is 201 sec (with standard deviation of 248 sec)
[7, Table 1., p. 39], [8, Table 2, p. 15], while the overall average delay is 98 sec (with standard
deviation of 105 sec) [8, Table 3, p. 24], giving a ratio of 2.05, approximately. A more detailed
comparison arises when one examines the four types of service that are offered. The types, and the
ratio alluded to above for each type, are as follows. Regular service 179 sec/96 sec ≈ 1.86; service
to new customers 115 sec/136 sec ≈ 0.85; service related to stock trading 270 sec/114 sec ≈ 2.37;
and internet assistance 401 sec/159 sec ≈ 2.52 (this data corresponds to callers who waited for
service, i.e., excluding abandoning customers). In summary, the ratio between average service time
and delay, under different circumstances, varies between 0.85 and 2.52, and it is very reasonable to
consider them comparable.

Further, the fraction of abandoning customers in this empirical study meets condition (c) above.
Indeed, it varies from 10% to 24% [8, Table 6, p. 48]. The number of active agents is N = 6, as
documented in the same table, and 1/N ≈ 17% fits well with the range stated above.

These figures clearly indicate a good fit with the working assumptions (a)–(c) of the NDS
diffusion regime, and it is therefore expected that the NDS diffusion regime provides, in this case,
more efficient approximations than, for example, QED with abandonment (a framework that has
often been studied in relation to call centers), or any other critically loaded diffusion regime. The
alternative approach of [23] is also useful here when the traffic intensity exceeds 1 (recall that it
varies between 0.86–1.22). It is interesting to ask, given a real-world system, which asymptotic
framework fits better than the other, and in particular whether the NDS diffusion regime or the
ED approach of [23] fits better than the other in this particular case. We will not address these
questions here, but note that a serious treatment of this issue requires tools from statistics (such
as those implemented in [7] for related questions of model fitting).

In data obtained from one of the authors of [7]–[8] by private communication [16], the behavior
of delay over one-hour periods was examined. It was found that its mean and standard deviation
over each period were consistently of the same order of magnitude, including periods where the
number of callers was relatively high (30–150 calls). This shows that local fluctuations over time are
considerable, just as one expects in a diffusion regime. This provides an additional indication that
critically loaded diffusion approximations are effective (arguably, more than fluid approximations).

We would like to point out that although the NDS regime is obtained by letting the service
rates (and arrival rates) grow without bound, it should not be regarded unsuitable for applications
where service is, in some sense, “slow” (such as systems operated by humans). In fact, speeding up
the rates is merely a convenient way of applying an acceleration of the processes involved, and this
is how it should be thought of (this is similar to the situation in the conventional regime, which can
be defined with O(1) service and arrival rates and time acceleration, or alternatively, with O(n)
rates).

1.4 Theoretical significance of the NDS diffusion regime

The NDS diffusion regime is an ED regime (as is any point on the α-axis, α ∈ [0, 1)), and it resembles
the conventional regime in that the limiting delay probability is one and the limiting rescaled queue-
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length is a RBM. The main point of this paper is to argue that under server heterogeneity it is
unique among all other ED or QED diffusion regimes, in two ways. First, as shown by our main
result, a new limit process arises for the sojourn time. Although in the case of an M/M/N queue
the limiting service time distribution is a plain exponential (as it is in the prelimit), our results
establish a more interesting behavior in the heterogenous case. One expects that more general
network settings and service time distributions will involve further issues regarding the joint law. A
second aspect making this regime unique is related to control formulations. There are many papers
on diffusion control problems associated with heavy traffic scaling limits of queueing networks. As
a consequence of the fact that sojourn time is distinct from delay and service time in this regime,
this is the only diffusion regime where it is natural to formulate dynamic control problems with
sojourn time costs as opposed to ones based on delay or service time costs. This point is elaborated
in Section 3.

Our main result (Theorem 2.2) is concerned with a many server queue with server heterogeneity
and customer abandonment, and considers a general class of work-conserving first-come-first-served
policies. The result identifies the limiting joint law of delay and service time under the NDS regime,
in the sense of finite dimensional distribution convergence, in the form of a reflected Ornstein-
Uhlenbeck (ROU) process (or, in the case without abandonment, a RBM), and an independent
‘white noise’ process whose marginal is a size-biased mixture of exponentials. These limit processes
do not depend upon the routing policy. The most important consequence is a description of the
limiting sojourn time process as the sum of the two processes mentioned above.

On the way to proving the main result, we obtain, in Theorem 2.1, convergence of the diffusion-
scaled queue-length process to a reflected diffusion, in a setting which includes as special case the
α-parameterized model for any α ∈ [0, 1).

A standard way of modeling server heterogeneity with N → ∞ is to consider a fixed, finite
number of server pools each containing servers with identical characteristics, and let the number at
each pool grow without bound. An example of a paper that uses such a setting is Armony [2]. We
take a more general approach where servers need not be divided into pools. Instead, assumptions
are imposed on the total rate ((6), (7) and (8)), the minimal rate (9), and the empirical measure of
the (suitably scaled) rates ((26) and (27)). This is a reminiscent of the setting of Atar and Shwartz
[6], where, however, the asymptotic regime is QED.

Let us finally mention additional works on diffusion limits in ED regimes for models with
abandonment. Ward and Glynn [18] study a model in the conventional regime and obtain ROU
as the limiting process. Whitt [23, Section 4] obtains a diffusion limit, in the form of an Ornstein-
Uhlenbeck process, in a scaling very similar to the NDS diffusion regime, but where traffic intensity
is kept fixed above one rather than equal to one.

Organization of the paper. The rest of this paper is organized as follows. The model and
main results are presented in Section 2, where Theorem 2.1 identifies the limiting queue-length
process in a relatively general many-server regime, and Theorem 2.2 treats the delay and service
time under the NDS regime. Concluding remarks appear in Section 3. The Appendix [3], published
online, contains the proofs, where Theorem 2.1 is proved in Subsection A.1 and Theorem 2.2 in
Subsection A.2.
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2 Model and results

Let a complete probability space (Ω,F ,P) be given, supporting all random variables and stochas-
tic processes defined below. Expectation w.r.t. P is denoted by E. We will use the following
notation. The symbol ⇒ denotes convergence in distribution. We write R∗

+ for [0,∞) ∪ {∞}.
By saying that Gn converge in distribution to G as n → ∞ (and writing Gn ⇒ G), where Gn,
n ≥ 1, and G are (R∗

+)
d-valued random variables, we mean that E[f(Gn);max1≤i≤dG

n
i < ∞] →

E[f(G);max1≤i≤dGi < ∞] for every f ∈ Cb(R+ : R). We write ∆M(t) = M(t)−M(t−), t > 0, for
any càdlàg function M , and x± = max(±x, 0) for x ∈ R. Finally, |f |∗t = sup[0,t] |f |.

2.1 Model and convergence of queue-length process

The model consists of a parallel server system with a single queue and multiple servers. It is param-
eterized by n ∈ N. Nn denotes the number of servers in the nth system, and Kn := {1, 2, . . . , Nn}
is an index set for servers. It is assumed that Nn → ∞ as n → ∞, and that infnNn ≥ 1. The
arrivals are modeled as renewal processes. To this end, we are given parameters λn > 0, n ∈ N
and a sequence of positive i.i.d. random variables {IA(l), l ∈ N} (the letters IA are mnemonics for
‘inter-arrival’), with mean E[IA(1)] = 1 and variance C2

IA = Var(IA(1)) ∈ [0,∞). With
∑0

1 = 0,
the number of arrivals up to time t for the nth system is given by

An(t) = sup
{
l ≥ 0 :

l∑
i=1

λ−1
n IA(i) ≤ t

}
, t ≥ 0.

Denote the time of the first arrival after time t by

ATn(t) = inf{s > t : ∆An(s) > 0}, t ≥ 0. (4)

The parameters are assumed to satisfy limn λn/n = λ > 0, and

λ̂n := n−1/2(λn − nλ) → λ̂ ∈ (−∞,∞), (5)

as n → ∞. Next, let µkn > 0, k ∈ Kn be given constants, representing the service rate of server k
at the nth system. The sum

µn =
∑
k∈Kn

µkn (6)

is assumed to satisfy
µ̄n := n−1µn → µ > 0, as n → ∞, (7)

and
µ̂n := n−1/2(µn − nµ) → µ̂ ∈ (−∞,∞), as n → ∞. (8)

It is also assumed that
µmin
n := min

k∈Kn

µkn → ∞, as n → ∞. (9)

The system is assumed to be critically loaded in the sense

λ = µ. (10)
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We let Xn, Qn and In be processes representing the number of customers in the system, the
number of customers in the buffer, and, respectively, the number of servers that are idle. It is
assumed that the routing policy is work conserving, in the sense that

Qn(t) = (Xn(t)−Nn)
+, In(t) = (Xn(t)−Nn)

−, t ≥ 0. (11)

For k ∈ Kn, let Bkn be a stochastic process taking values in {0, 1}, representing the status of server
k, as follows: Bkn(t) = 1 if and only if server k is busy at time t. We set Ikn = 1−Bkn. Note that
In =

∑
k∈Kn

Ikn. (The letters B and I are mnemonics for busy and idle, resp.). To model service
time according to the exponential distribution, assume we are given i.i.d. standard (rate 1) Poisson
processes Sk, k ∈ N, independent of the arrival process. The number of service completions by
server k, during the time interval [0, t] is assumed to be given by

Dkn(t) = Sk(Tkn(t)), k ∈ Kn, t ≥ 0, (12)

where

Tkn(t) = µkn

∫ t

0
Bkn(s)ds, k ∈ Kn. (13)

The total number of service completions till time t is given by

Dn(t) =
∑
k∈Kn

Dkn(t). (14)

We also include customer abandonment in the model. The abandonment rate per unit time,
per customer waiting in the queue, is given by the constant γn ≥ 0, assumed to satisfy

γn → γ ∈ [0,∞). (15)

Letting Z be a standard Poisson process, the number of customers abandoning while waiting to be
served, by time t, will be given by

Zn(t) := Z(T̃n(t)), (16)

where

T̃n(t) = γn

∫ t

0
Qn(s)ds. (17)

Notice that it is a legitimate special case to let γn = 0 for all n, removing abandonment from the
model. The following equation follows from the foregoing verbal description

Xn(t) = Xn(0) +An(t)−Dn(t)− Zn(t). (18)

The processes An, Sk, Z, Xn, Qn, In, Bkn are all assumed to have càdlàg sample paths. The
primitive processes A, {Sk}, Z, and the initial condition ({Bkn(0), k = 1, . . . , Nn}, Qn(0)) are
assumed to be mutually independent (for each n).

It will be assumed throughout that every server can only serve one customer at a time, hence
that processor sharing disciplines are not allowed. Apart from the assumptions on the policy,
regarding work conservation and ruling out processor sharing, we must require that the routing
mechanism does not use information from the future. To this end we impose the following assump-
tion throughout.
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Assumption 2.1. For each n there exists a filtration Fn = {Fn(t), t ≥ 0} that is right-continuous
and P-complete, such that the following holds:

i. The processes An, Xn, Qn, In, Bkn, Tkn, Dkn, Zn are adapted to the filtration;

ii. For each k ∈ Kn,
Dkn − Tkn is a martingale with respect to Fn; (19)

iii. Given any a.s.-finite Fn-stopping time τ , the conditional joint law of the Nn processes

{Sk(Tkn(τ) + s)− Sk(Tkn(τ)), s ≥ 0, k ∈ Kn},

conditioned on Fn(τ), is that of Nn i.i.d. standard Poisson processes.

iv. For any t ≥ 0 and any event En ∈ Fn(t), the Nn-dimensional process

{Sk(Tkn(t) + s)− Sk(Tkn(t)), s ≥ 0, k ∈ Kn},

the process
{An(ATn(t) + s)−An(ATn(t)), s ≥ 0},

and the event En are mutually independent.

The combination of items (i)–(iv) above asserts that the distribution of future service times
and inter-arrival times is independent of events from the past. This assumption will be violated by
(unrealistic) routing policies that can access information from the future, and make decisions based
on this. It does hold for any reasonable routing policy that does not have access to information
from the future at the time of routing. Consider for example the policy to always route to the
fastest server among those that are available, and the policy to always route to the slowest one.
These are special cases of feedback policies: each routing decision, say at time t, is performed by
selecting a server k according to a given mapping ϕ, say by k = ϕ(Bkn(t), Dkn(t), k ∈ Kn). These
all meet Assumption 2.1. More general policies that meet the assumption may include randomness
in the decisions, and yet more generally, decisions may be based on the whole past of the processes
listed in item (i) above (for example, one may always select the server that, at the time of routing,
has been idle most). The proof of this claim is standard, and thus omitted (for a proof of a closely
related statement, albeit for a different model, the reader is referred to the appendix of [5]).

The first result will be concerned with the diffusion scale processes

X̂n(t) = n−1/2(Xn(t)−Nn), (20)

Q̂n(t) = n−1/2Qn(t) = X̂n(t)
+, În(t) = n−1/2In(t) = X̂n(t)

−, (21)

(where (11) was used), and

Ln(t) = n−1/2
∑
k∈Kn

µkn

∫ t

0
Ikn(s)ds. (22)

10



The initial number of customers in the system is assumed to satisfy

X̂n(0) ⇒ ξ0, as n → ∞, (23)

where ξ0 is a random variable satisfying ξ0 ≥ 0 with probability one. Let w be a standard Brownian
motion, independent of ξ0, and let Ft be the P-completion of the smallest σ-field with respect to
which ws, 0 ≤ s ≤ t and ξ0 are measurable. Denote β = λ̂ − µ̂ and σ = (λC2

IA + µ)1/2 =
λ1/2(C2

IA + 1)1/2. A pair (ξ, l) will be said to be a solution to the Skorohod equation

ξ(t) = ξ0 + βt− γ

∫ t

0
ξ(s)ds+ σw(t) + l(t), t ≥ 0, (24)

with data (ξ0, w), if ξ and l are continuous, {Ft}-adapted processes satisfying the following condi-
tions P-a.s.:

• equation (24) holds;

• ξ(t) ≥ 0, t ≥ 0;

• l is non-decreasing;

•
∫
[0,∞)

1{ξ(t)>0}dl(t) = 0.

It is well-known [1] that there exists a unique solution (ξ, l) to equation (24) with given data.
Because the drift term is linear, the process ξ is often referred to as a ROU process when γ > 0.
When γ = 0, ξ is a RBM.

Theorem 2.1. Let {An, Xn, Qn, In, Bkn, Tkn, Dkn, Zn} be any sequence of processes satisfying all
assumptions stated above. Then (X̂n, Ln, Q̂n, În) converge in distribution, uniformly on compacts,
to (ξ, l, ξ, 0), where (ξ, l) denotes the unique solution to the Skorohod equation (24) with data (ξ0, w).

Remark 2.1. Note that the theorem addresses any sequence of processes satisfying the assump-
tions, not one dictated by a specific routing policy. Yet the limit process ξ does not depend on the
policy. As is well known, the ROU process, as a reflected diffusion on R+, has the property that
it is strictly positive at any given time t > 0, with probability one. Roughly speaking, this means
that, with high probability, for most times, all servers are busy. For a heuristic argument, consider
a simplified model in which all server are busy all time. Clearly, the routing policy, affecting which
server is busy at each time, plays no role in this scenario. This may explain the asymptotic insensi-
tivity to the policy in the true model. Moreover, in view of this property, it is reasonable to expect
that the model is asymptotically equivalent to the M/M/1+N (or M/M/1) with service rate given
by

∑
k µkn. This provides an explanation why the limit should be a ROU (or a RBM) process.

Example 2.1. α-parametrization, homogeneous servers. Assume that the number of servers in
given by Nn = [νnα], for some ν > 0 and α ∈ [0, 1). Assume all servers work at the same rate

µkn = µ1n =
n

Nn
(µ+ µ̂n−1/2).

Then µ̄n = n−1
∑

k µkn → µ, while µ̂n = n−1/2(
∑

k µkn − nµ) → µ̂. By Theorem 2.1, the limit
process is independent of α and of the routing policy (so long as it satisfies the hypotheses). Note
that the case α = 1 is not covered because (9) requires that µ1n → ∞.
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Example 2.2. α-parametrization, fixed number of large server pools. Fix α ∈ [0, 1) and let Nn be
as in the above example. Assume that for some constant l, constants ν1, . . . , νl that sum up to 1,

and constants M1, M̂1, . . . ,Ml, M̂l, there is, for each i, a pool of N
(i)
n := νiNn +O(1) servers, each

working at rate

µkn =
νin

N
(i)
n

(Mi + M̂in
−1/2),

except for the case α = 0, where this should hold without the O(1) term. Note that for pool i,

µkn ∼ n1−α(Mi + n−1/2M̂i). The theorem holds with µ̄n → µ =
∑

i νiMi, and µ̂n → µ̂ =
∑

i νiM̂i.

Example 2.3. Two server pools with rates at different scales. This example considers a combi-
nation of two regimes on the α-scale. Let µ1 and µ2 be positive constants, and let µ̂1 and µ̂2 be
constants. Denote µ = µ1 + µ2 and µ̂ = µ̂1 + µ̂2. Let α1 and α2 be some constants in [0, 1), and

assume that, for i ∈ {1, 2}, N (i)
n servers work at rate µ

(i)
n , where N

(i)
n = [nαi ], and

µ(i)
n =

n

N
(i)
n

(µi + µ̂in
−1/2).

The total number of servers is given by Nn = N
(1)
n + N

(2)
n . It is easy to check that µ̄n → µ, and

that µ̂n → µ̂. Again, Theorem 2.1 applies, and its conclusion is independent of α1 and α2.

2.2 Convergence in the NDS regime

We will retain all assumptions imposed thus far and introduce some new ones. First, in accordance
with the α-parametrization with α = 1/2, we assume that

Nn = νn1/2 + o(n1/2), (25)

for some constant ν > 0. However, in contract to Example 2.1, we will allow for server heterogeneity.
Letting

µ̂kn = n−1/2µkn, k ∈ Kn, (26)

we assume that the empirical measure of {µ̂kn} converges weakly, namely that

mn :=
1

Nn

Nn∑
k=1

δµ̂kn
→ m, (27)

for some probability measure m on R+. Here, δx denotes the unit point mass at x. Recall that
conditions (7)–(10), that also concern µkn, are still in force. To see how they are related to (27),

let µ(1) =
∫
ym(dy) and µ

(1)
n =

∫
ymn(dy) denote respective first moments of m and mn. Under

the conditions just introduced, (7) is equivalent to µ
(1)
n → ν−1µ. Hence by Fatou’s Lemma

µ(1) ≤ ν−1µ. (28)

In general equality need not hold, and we do not require that it does (a case with strict inequality
is presented in Example 2.6 below).
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The further structure and assumptions we will now introduce are related to the fact that we
analyze delay and service time experienced by individual customers. Thus customers must be
labeled and information about them, such as their relative positions in the queue, have to be
contained in the filtration. Let us then number all customers not initially in the system in order
of arrival: for t ≥ 0, Cn(t) will denote the serial number of the customer to arrive first after time
t. In other words, Cn(t) = An(t) + 1. Given t, the arrival time of customer Cn(t) is ATn(t) (see
(4)). It is assumed that the customers are served according to a first-come-first-served discipline,
and that service is non-interruptible, in the sense that whenever a server is assigned a new job, it
works continuously on it until completion.

Next, the stochastic primitive Z and the process Zn determine how many abandonments occur
up to a given time, but it will now be important to identify which customer abandons at each epoch
where ∆Zn > 0. We need an additional stochastic primitive for that. We let Ui, i ≥ 1, be i.i.d.
random variables, uniform over [0, 1], independent of all other primitives. Ui will be used to select
a customer uniformly among those present in the queue, according to their positions. Namely, if
∆Zn(t) > 0 then the customer to abandon at t is the one that at time t− is at position i, where i is
the unique i ∈ {1, 2, . . . , Qn(t−)} for which UZn(t)Qn(t−) ∈ [i− 1, i). This sets up an independent
exponential clock for each customer (see Lemma A.4(i) of [3]).

At a given time t, a customer may be in position i ∈ {1, 2, 3, . . .} in the queue, it may be in
service with server k ∈ Kn, it may have completed service, or it may have abandoned the queue.
This information is encoded in the following random variables. Fix s, t. POSn(s, t) will be an
N ∪ {∞}-valued random variable representing the position of customer Cn(s) at time t, where
position 1 corresponds to the head of the line. It takes the value ∞ if the customer is not in the
queue at that time. ABn(t) is the time when Cn(t) abandons the queue; it takes the value ∞ on
the event that this customer never abandons. RTn(t) and RDn(t) take values in R∗

+ and Kn∪{∞},
and represent the time when Cn(t) is routed to a server and the identity of the assigned server,
respectively (RT and RD are mnemonics for ‘routing time’ and ‘routing decision’). They both take
the value ∞ on the event that the customer abandons the queue. DEPn(t), taking values in R∗

+,
will denote the time when the same customer completes service; it is equal to ∞ on the event
{ABn(t) < ∞}. EXn(t) = DEPn(t)∧ABn(t) is the time when the customer exits the system either
by completing service or by abandoning. Note that it is always finite.

The result will be concerned with the quantities ∆n(t) and Σn(t), defined as

∆n(t) = RTn(t)−ATn(t), Σn(t) = DEPn(t)− RTn(t), on {ABn(t) = ∞},

∆n(t) = Σn(t) = ∞, on {ABn(t) < ∞},

representing, respectively, the time Cn(t) spends in the queue, since arrival until being accepted to
service, and the time it spends in service (the letters ∆ and Σ are mnemonics for delay and service
time). In case of abandonment we have set these random variables to ∞. See Figure 2.

The filtration Fn = {Fn(t), t ≥ 0} referred to in what follows, is the same as the one from
Assumption 2.1.

Assumption 2.2. Fix n. Given any t ∈ [0,∞), the random times RTn(t), DEPn(t) and ABn(t)
are stopping times of the filtration Fn. Given any s and t, and any k ∈ Kn, i ∈ Z and b ∈ R, the

13
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Figure 2: Quantities associated with the customer to arrive first after time t. On the event of
abandonment, ∆ and Σ are set to ∞.

events {RTn(s) ≤ t,RDn(s) = k} and {Zn(t) = i, Ui ≤ b}, and the random variable POSn(s, t) are
measurable on Fn(t).

The comment following Assumption 2.1, regarding its wide scope, applies for Assumption 2.2
as well.

Denote the diffusion scale delay and service time processes by

∆̂n(t) = n1/2∆n(t), Σ̂n(t) = n1/2Σn(t), t ≥ 0,

and let
Πn(t) = (∆̂n(t), Σ̂n(t)), t ≥ 0.

Note that the two components of Πn(t) correspond to the delay and service time of the same
customer. Our main result asserts that the scaled delay and service time processes jointly converge
in the sense of finite dimensional distributions, and identifies the limit.

Theorem 2.2. Let all assumptions stated in this section hold. Given j ∈ N and 0 < t1 < t2 <
· · · < tj < ∞, we have

(Πn(t1),Πn(t2), . . . ,Πn(tj)) ⇒ ((ξ̄(t1), η1), (ξ̄(t2), η2), . . . , (ξ̄(tj), ηj)), as n → ∞. (29)

Here, ξ̄ is the normalized version µ−1ξ of the process ξ defined by the Skorohod equation (24), and
ηi are i.i.d., independent of ξ, and the distribution of η1 over [0,∞) is given by

a0δ0(dx) + f(x) Leb(dx), (30)

where δ0 an atom at the origin, Leb denotes the Lebesgue measure on [0,∞), and

a0 = 1− νµ(1)

µ
, f(x) =

ν

µ

∫
y2e−yxm(dy), x ∈ [0,∞). (31)

Remark 2.2. (a) The probability to abandon tends to zero but abandonments are not negligible.
Recall that the delay and service time are set to infinity on the event of abandonment. Since the
random variables on the r.h.s. of (29) take finite values, the convergence stated in the theorem
implies (recalling the convention on convergence of R∗

+-valued r.v.s) that the probability that any
one of the customers Cn(ti) 1 ≤ i ≤ j abandons, converges to zero. This, however, does not mean
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that abandonment can be neglected. Indeed, it affects the limit process via the integral term γ
∫
ξ

of equation (24). By a rough calculation, each of the O(n) customers entering the system in a unit
time spends O(n−1/2) units of time at the queue, and thus O(n1/2) customers do abandon (the
abandonment fraction is therefore O(n−1/2)). As a result, the number of abandoning customers is
at the same scale as the queue-length, which explains why this ingredient of the model must affect
the limiting dynamics (24).
(b) Limiting service time process is a white noise. Because the limiting finite dimensional distri-
bution of (Σ̂n(t1), Σ̂n(t2), . . . , Σ̂n(tj)) is that of (η1, η2, . . . , ηj) and ηi are independent, the result
expresses convergence of the scaled service time to a ‘white noise’ process.
(c) Limiting service time is a size-biased mixture of exponentials. Consider the case where a0 = 0,
so f integrates to one. In this case f is the p.d.f. of a mixed exponential. A corresponding random
variable (such as η1) can be obtained by first drawing a random variable Y from the distribution
ym(dy)/

∫
zm(dz), and then letting η1 be exponentially distributed with parameter Y . The result

thus expresses the fact that, asymptotically, a typical customer is served exponentially with a rate
Y , where P(Y ∈ dy) is proportional to ym(dy).
(d) Explanation of the mixture of exponentials. Remark 2.1 can heuristically explain the distri-
bution of the service time as a size-biased mixture of exponentials. Indeed, in a simplified model
where all servers are busy all the time, the departure process is clearly Poisson with rate given
by the sum

∑
k µkn. Moreover, a customer that is at the head of the line will be assigned the

“first server whose exponential clock ticks”, namely, it will be assigned server k with probability
proportional to µkn, and the resulting service time will be a mixture of exponentials. Taking into
account that the limiting empirical distribution of the (normalized) service rates is m, this model
gives rise to the p.d.f. f (31).
(e) What may cause a0 to be positive.

Recall the foregoing discussion on µ(1) versus µ. In case the inequality (28) holds with equality,
the weight a0 of the Dirac measure vanishes, and we obtain a pure mixture of exponentials for
the distribution of η1, just as discussed in the above remark. When a0 > 0, the result asserts
that, with probability a0, a typical customer experiences an extremely short service time, that is
o(n−1/2). This may happen when relatively few servers work much faster than most other servers,

so they affect the overall service rate µ
(1)
n considerably, while they are too few to affect the limiting

distribution m. Example 2.6 below identifies such a situation.

The following result is an immediate outcome of Theorem 2.2. It demonstrates that the sojourn
time behavior is dramatically different than in the conventional and QED asymptotic regimes.
Denote by SOn(t) the sojourn time experienced by Cn(t), namely ∆n(t)+Σn(t), and set ŜOn(t) =
n1/2SOn(t).

Corollary 2.1. Under the assumptions and notation of Theorem 2.2, one has the finite dimensional
convergence of sojourn time, as follows

(ŜOn(t1), ŜOn(t2), . . . , ŜOn(tj)) ⇒ (ξ̄(t1) + η1, ξ̄(t2) + η2, . . . , ξ̄(tj) + ηj), as n → ∞.

Following are some examples of settings that are covered by the framework of Theorem 2.2.

Example 2.4. Homogeneous servers. Assume that µkn = µn1/2+ µ̂ for all n and all k ∈ Kn, where
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Nn satisfies (25). In this case f is simply exponential with mean µ. Also, a0 = 0 and there is no
atom at the origin.

Example 2.5. Fixed number of large server pools. Assume now that for some constant l and

constants ν1, . . . , νl summing up to 1, one has N
(i)
n := νiNn +O(1) of the servers working at rate

µkn =
νin

N
(i)
n

Mi, i = 1, 2, . . . , l (32)

(where Nn satisfies (25)). Note that this is a special case of Example 2.2, and thus µ =
∑

νiMi,
µ̂ = 0 (one can work with a more general µ̂). Now, m is given by

∑l
i=1 νiδMi , and a0 = 0. Hence

η1 is a mixed exponential, having the distribution f(x)Leb(dx), where

f(x) =
1

µ

l∑
i=1

νiM
2
i e

−Mix, x ∈ [0,∞).

Example 2.6. Fixed number of large server pools, and few fast servers. This example is based on
the previous one, but identifies a situation where Fatou’s inequality does not hold as equality. As

before, assume there are N
(i)
n = νiNn + O(1) servers working at rate according to (32), but now

assume in addition that N0 servers serve at rate µkn = M0n, where both N0 ≥ 1 and M0 > 0 are
constants independent of n. Then limn n

−1
∑

k µkn = µ + M0N0. η1 has distribution a0δ0(dx) +
f(x)Leb(dx), where now

a0 = 1− µ

µ+M0N0
, f(x) =

1

µ+M0N0

l∑
i=1

νiM
2
i e

−Mix, x ∈ [0,∞).

Example 2.7. Uniform distribution of rates. For some fixed 0 < a < b, assume µkn = (b +
kn−1/2)n1/2 for k ∈ Z such that |k| < an1/2 (in this example the index set Kn is not of the form
{1, 2, . . . , Nn} but this will not cause confusion). The distribution of the rates is symmetric about
b, Nn = 2an1/2 +O(1), and so ν = 2a, ν−1µ = b, and µ̂ = 0. The limiting distribution m is clearly
uniform over [b− a, b+ a]. Of course, one may consider much more general distributions than the
uniform.

Finally, let us mention that the steady state distribution of both the limiting processes ξ̄ and η
are not hard to compute. Clearly, the distribution of η does not depend on time, and is given by
Theorem 2.2. A simple calculation gives its mean, namely

E[η1] =
∫ ∞

0
xf(x)dx =

ν

µ
. (33)

The process ξ is positive recurrent when γ > 0. Its steady state distribution is given by the
conditional distribution of N given N ≥ 0, where N is normally distributed with parameters
(b, c2) := (βγ ,

σ2

2γ ) (see [19]). When γ = 0, a stability condition is needed, namely that β < 0, and

the steady state distribution is then exponential with mean σ2

2|β| [19]. Denoting by ξ∞ (resp., ξ̄∞)

a random variable distributed according to the steady state of ξ (resp., ξ̄), we have

E[ξ̄∞] = µ−1E[ξ∞] =
1

µ

∫∞
0 xe−(x−b)2/2c2dx∫∞
0 e−(x−b)2/2c2dx

when γ > 0, (34)
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and

E[ξ̄∞] =
σ2

2µ|β|
when γ = 0 and β < 0. (35)

One may regard (33)–(35) as the expected service and delay asymptotic values under the NDS
regime in steady state, and accordingly define the slowdown as the ratio between the corresponding
expected sojourn time and expected service time. This gives

slowdown = 1 +
1

ν

∫∞
0 xe−(x−b)2/2c2dx∫∞
0 e−(x−b)2/2c2dx

when γ > 0, (36)

and

slowdown = 1 +
σ2

2ν|β|
when γ = 0 and β < 0. (37)

Note that this discussion is only formal as we have not proved that the steady state distributions of
the prelimit processes converge, in any sense, to those of ξ̄ and η. This will be addressed in future
work.

3 Conclusion

We have identified the joint limit law of delay and service time, and consequently, that of sojourn
time, under the NDS regime for a system with heterogenous servers. The limit law of sojourn time
is distinct from that under any other asymptotic regime, and captures the comparability of delay
and service time. We expect that delay and service time are comparable under similar parametric
assumptions in far greater generality. It is thus desirable to consider models with general service
time distributions as well as network settings. One would also like to complete the steady state
analysis discussed at the end of Section 2. It is plausible that explicit expressions for slowdown
such as (36)–(37) can be developed for a general set up.

Control of queueing networks under both the conventional and QED diffusion regimes (as well
as fluid regimes) has been a very active research topic in recent years. From the viewpoint of the
customer, sojourn time is an important measure of performance, and it is desired to seek control
schemes that optimize it. In the conventional regime, a control policy that is good for minimizing a
delay-related cost is also good for minimizing a sojourn time cost, because service time is negligible.
A control problem with sojourn time cost (or, more generally, cost defined in terms of delay and
service time simultaneously) is natural to be considered in the NDS regime, where it is distinct from
formulations based on either delay or service time. Because it involves the limiting distribution
of service time in addition to reflected diffusion processes representing delay, such a formulation
would lead to diffusion control problems and asymptotically optimal control schemes distinct from
those obtained under the conventional regime.
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