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Abstract

A parallel server system is considered, with I customer classes and many servers, operating
at a heavy traffic diffusion regime where the queueing delay and service time are of the same
order of magnitude. Denoting by X̂n and Q̂n the diffusion scale deviation of the headcount
process from the quantity corresponding to the underlying fluid model and, respectively, the
diffusion scale queue-length, we consider minimizing r.v.’s of the form cnX =

∫ u

0
C(X̂n(t))dt

and cnQ =
∫ u

0
C(Q̂n(t))dt over policies that allow for service interruption. Here, C : RI → R+

is continuous and u > 0. Denoting by θ the so called workload vector, it is assumed that
C∗(w) := min{C(q) : q ∈ RI

+, θ · q = w} is attained along a continuous curve as w varies in R+.
We show that any weak limit point of cnX stochastically dominates the r.v.

∫ u

0
C∗(W (t))dt for a

suitable reflected Brownian motion W , and construct a sequence of policies that asymptotically
achieve this lower bound. For cnQ, an analogous result is proved when, in addition, C∗ is convex.
The construction of the policies takes full advantage of the fact that in this regime the number
of servers is of the same order as the typical queue-length.

1 Introduction

Gurvich, Mandelbaum, Shaikhet, and Whitt ([5], [8], [11] and see further references in [1]) analyzed
a many-server queueing system (in the form of an M/M/N queue) in a critically loaded diffusion
regime that is unique in that the typical queueing delay and service time are of the same order of
magnitude. In [1] it was proposed to refer to this as the non-degenerate slowdown (NDS) diffusion
regime, and the setting was extended to cover heterogeneous servers. Moreover, the sojourn time
asymptotics were identified and shown to be distinct from the many-server regime of Halfin and
Whitt [6], as well as the conventional heavy traffic (where a critically loaded system with a fixed
number of servers is considered). In both the conventional and Halfin-Whitt heavy traffic regimes
there has been work on control problems for queueing models to achieve asymptotic optimality. An
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important work in this direction is that of van Mieghem [10] on a multi-class single-server queueing
model in conventional heavy traffic, where a generalized cµ rule is proposed and proved to be
asymptotically optimal for minimizing a convex delay-related cost. The goal of this paper is to
study a similar control problem in a setting with a single pool of identical servers, parameterized in
the NDS regime. The assumption on the service time distribution is more restrictive than in [10] in
that the service time are exponential rather than general. Also, the cost we focus on is associated
with headcount and queue-length processes, rather than delay. On the other hand, apart from
working in the NDS regime, a main novelty of our approach is the ability to handle a cost function
of quite a general structure.

We denote by X̂n and Q̂n the diffusion scale deviation of the headcount process from the quantity
corresponding to the underlying fluid model and, respectively, the diffusion scale queue-length (see
precise definitions in Section 2). We consider minimizing r.v.’s of the form

cnX =

∫ u

0
C(X̂n(t))dt and cnQ =

∫ u

0
C(Q̂n(t))dt, (1)

where C : RI → R+ is a continuous function, non-decreasing in the usual partial order, and u > 0
is a constant. We show that any weak limit point of cnX stochastically dominates the r.v.∫ u

0
C∗(W (t))dt (2)

for a suitable one-dimensional reflected Brownian motion W . Denoting by θ the so called workload
vector (see Section 2), we then assume that C∗(w) := min{C(q) : q ∈ RI

+, θ · q = w} is attained
along a continuous curve, as w varies in R+. The minimizing curve is denoted by f . We define an
interruptible service policy based on the function f , that attempts to keep

X̂n(t) ≈ f(θ · X̂n(t))

for large values of n, so that X̂n evolves close to the minimizing curve. We show that, as a
consequence, the policy asymptotically achieves the lower bound (2). For cnQ, analogous lower
bound and asymptotic attainability result are proved when, in addition, C∗ is convex.

While in conventional heavy traffic the difference between X̂n and Q̂n (or rather between pro-
cesses defined analogously to X̂n and Q̂n) is negligible when n is large, they may differ significantly
in the NDS regime due to the fact that the number of servers is large (while Q̂n is non-negative, X̂n

may assume negative values that are O(1)). The results that we obtain are indeed different, with
those for X̂n stronger than those for Q̂n. The cost considered by [10] in conventional heavy traffic
is of the form

∑I
i=1

∑
k∈Ki

Ci(τk), where I is the number of customer classes, i is an index to the
class, Ki is the set of all class-i customers arriving within a given finite time horizon, Ci are convex
nondecreasing functions, and τk is the delay experienced by customer k. It is well understood (and
was used, for example, by Mandelbaum and Stolyar [9]) that delay costs are closely related to
headcount and queue-length costs. Recast in terms of headcount or queue-length, the cost of [10]
corresponds to (1), where C(x) takes the form

∑I
i=1Ci(xi), and Ci are convex. Viewed this way,

the assumption on C made in this paper is much weaker, as far as the results on cnX are concerned,
and in particular, C need not be of sum form nor convex. Moreover, only partial convexity is
needed for the results regarding the cnQ cost (i.e., that of C∗).
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To work in the NDS regime we consider a sequence of systems indexed by n, and scale the
number of servers as O(n1/2), the arrival rates as O(n) and the individual service rates as O(n1/2).
The form of the proposed policy takes full advantage of the fact that the typical queue length
O(n1/2) is of the same order as the number of servers.

In a work in progress [2] the problem is studied for a multiple pool model with non-interruptible
service policies.

The model and results are presented in Section 2. The proofs appear in Section 3.

2 Model and main results

We use the following notation. For x ∈ R, x± = max(±x, 0). For x ∈ Rk, ‖x‖ =
∑k

i=1 |xi|. For
x : [0, u] → Rk and t ∈ [0, u] denote ‖x‖∗t = sups∈[0,t] ‖x(s)‖, and in the case k = 1 write |x|∗t in
place of ‖x‖∗t .

2.1 The queueing model and asymptotic regime

Let a complete probability space (Ω,F ,P) be given. Unless otherwise stated, the stochastic pro-
cesses introduced below are defined on (Ω,F ,P). We write E for expectation w.r.t. P. We consider
a parallel server system with I classes of customers and a pool of identical servers. The index set
for the classes is I = {1, 2, . . . , I}. We will consider a sequence of systems, indexed by n, that have
the same structure but differ in the values of the parameters.

The arrivals are modeled as independent renewal processes, denoted by Ani , i ∈ I. To define
these processes, let Ai, i ∈ I be independent renewal processes, where, for each i, the time of the
first arrival and the inter-arrival times are positive i.i.d. random variables with mean 1 and variance
(Ci,IA)2 ≥ 0. The processes Ani are defined from Ai via time acceleration, namely

Ani (t) = Ai(λ
n
i t), t ≥ 0, i ∈ I.

The acceleration parameters satisfy limn λ
n
i /n = λi > 0, and moreover

λ̂ni := n−1/2(λni − nλi)→ λ̂i ∈ (−∞,∞), i ∈ I, (3)

as n → ∞. The index n will take values in N′ = {k2 : k ∈ N}, so that n1/2 will always be integer.
The number of servers in the nth system is given by

Nn = n1/2. (4)

Service time distributions are exponential, with class-dependent parameter. We denote by µni the
rate at which a class-i customer is served, and assume

µni = n1/2µi, i ∈ I, (5)
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for some constants µi > 0. The traffic intensity for class i, namely λni /(N
nµni ), has the limit

ρi = λi/µi, i ∈ I. It is assumed that the system is critically loaded, namely∑
i∈I

ρi = 1.

Let Bn
i represent the number of servers working on class-i customers. Let Xn

i , Qni and In denote
the number of class-i customers in the system, the number of class-i customers in the buffer, and
the number of servers that are idle, respectively. Note that

Xn
i = Qni +Bn

i , i ∈ I, (6)

Nn = In +
∑
i∈I

Bn
i . (7)

We are given standard Poisson processes Si, i ∈ I. The number of service completions of class-i
jobs by time t is given by

Dn
i (t) = Si(T

n
i (t)), (8)

where

Tni (t) = µni

∫ t

0
Bn
i (s)ds. (9)

We have
Xn
i (t) = Xn

i (0) +Ani (t)−Dn
i (t). (10)

The processes Ani , Si, X
n
i , Qni , Bn

i , In will always be assumed to have càdlàg sample paths.
For each n, the processes Ani , i ∈ I, Si, i ∈ I, and the initial condition ((Bn

i (0), i ∈ I)), Qni (0)) are
assumed to be mutually independent.

The diffusion-scaled queueing processes are defined by

Q̂ni (t) = n−1/2Qni (t), i ∈ I. (11)

The diffusion scale deviation of the headcount process from the quantity reflected by the fluid
model, is given by

X̂n
i (t) = n−1/2(Xn

i (t)− ρiNn), i ∈ I. (12)

We also define the diffusion scale idleness process În = n−1/2In. For simplicity, we will impose the
following assumption on the initial value of the above process, namely

X̂n(0)⇒ 0, as n→∞. (13)

Note that this is an assumption on the initial condition alluded to above, because Xn
i (0) is the sum

of Qni (0) and Bn
i (0).
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2.2 The cost function and an asymptotic lower bound

We are given a continuous function C : RI → R+, non-decreasing with respect to the usual partial
order (x ≤ y iff xi ≤ yi for all i). It will serve as a ‘running cost’. That is, we will be interested in
the random variables ∫ u

0
C(Q̂n(t))dt and

∫ u

0
C(X̂n(t))dt,

where u > 0, and attempt to find control policies that asymptotically minimize them. The so-called
workload process plays an important role in solving this asymptotic control problem. By workload
one means the time it takes a single server to complete the service of all customers present in the
system. Note that the conditional mean of the workload at time t, given Xn(t), is equal to

Wn(t) =
∑
i∈I

Xn
i (t)

µi
= θ ·Xn(t),

where we denote θ = (θi)i∈I , θi = 1/µi. W
n is therefore called the workload process. The process

Ŵn(t) = θ · X̂n(t) (14)

represents the diffusion scale deviations of Wn from the nominal value. To present an asymptotic
lower bound on the cost we need the following notation. Denote

C∗(w) = inf{C(q) : q ∈ RI
+, θ · q = w}, w ≥ 0. (15)

Define the Skorohod map Γ : D([0,∞) : R)→ D([0,∞),R+) by

Γ [ζ](t) = ζ(t) + sup
s≤t

(−ζ(s))+, t ≥ 0, (16)

and denote by W the reflected Brownian motion Γ [Zθ]. Here, Zθ is a Brownian motion starting
from zero, with drift θ · λ̂ and diffusion coefficient (

∑
i θ

2
i (λiC

2
i,IA + µiρi))

1/2.

Theorem 2.1. Let an arbitrary sequence of policies be given and let Q̂n, X̂n and Ŵn denote the
corresponding processes from (11) and (14). Fix u > 0. Then there exists a sequence of processes,
{Ln}, defined on [0, u], taking values in R, and converging in law to W , such that the following
holds.

1. For each n, Ln is a.s. dominated by Ŵn. As a result, any weak limit point of the sequence∫ u
0 C(X̂n(t))dt stochastically dominates the r.v.

∫ u
0 C

∗(W (t))dt.

2. For each interval [a, b] ⊂ [0, u], [
∫ b
a θ · Q̂

n(s)ds−
∫ b
a L

n(s)ds]− → 0 in probability. As a result,

provided that C∗ is convex, any weak limit point of the sequence
∫ u
0 C(Q̂n(t))dt stochastically

dominates the r.v.
∫ u
0 C

∗(W (t))dt.
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2.3 Asymptotic optimality

Preemptive policies. We will be interested in policies that are preemptive and of feedback form,
by which we mean that, at every time t, the value of Qn(t) is determined solely by n and the
current ‘state’ of the system, Xn(t). (While it is convenient to refer to Xn as state, note that this
is an abuse of usual terminology because this process is not a true state descriptor of a controlled
Markov process, except in the case when the arrivals are Poisson processes). Note that once Qn(t)
is selected, Bn(t) is determined via Bn = Xn − Qn. Given n and a vector Xn ∈ ZI, a vector
Qn ∈ ZI

+ is said to be feasible for the state Xn (for the nth system), if it satisfies the following
conditions:

(a) 0 ≤ Qni ≤ Xn
i for all i,

(b) 1 ·Xn − 1 ·Qn ≤ Nn.

(17)

These relations express the facts that the ith queue length cannot exceed the number of class-i
customers, and that the total number of customers in service cannot exceed the number of servers.
Under a preemptive policy, the queue length vector Qn can be selected among all feasible vectors
for Xn. A policy is said to be work conserving if, for every t, In(t) > 0 implies 1 · Qn(t) = 0.
Equivalently, the following relation holds at all times:

(1 ·Xn −Nn)+ = 1 ·Qn. (18)

Note that (17b) is automatically satisfied when relation (18) holds. Expressed in terms of the
diffusion-scale processes, (17a) is equivalent to

0 ≤ Q̂ni ≤ X̂n
i + ρi, i ∈ I, (19)

while (18) can be written as

(1 · X̂n)+ = 1 · Q̂n [equivalently, (1 · X̂n)− = În]. (20)

Construction of a policy. The main goal of this paper is to construct a sequence of policies
that asymptotically attains the lower bound identified in Theorem 2.1. We keep the continuity and
monotonicity assumptions on the cost function C, and add the following.

Assumption 2.1. (Existence of a continuous minimizing curve) The function C and the
corresponding function C∗ of (15) satisfy the following. There exists a continuous function f :
R+ → RI

+ such that

θ · f(w) = w and C∗(w) = C(f(w)), w ∈ R+. (21)

Note that f(0) = 0. For notational purposes it will be convenient to extend f to R by letting
f = 0 on (−∞, 0). We refer to the curve w 7→ f(w), w ∈ R as the minimizing curve.

Remark 2.1. Two important families of functions C satisfying Assumption 2.1 are as follows.
1. Continuous, homogeneous of degree α > 0 (linear being a special case): C(ax) = aαC(x), a > 0.
If x∗ ∈ arg min{C(x) : θ · x = 1} then it is easy to check f(w) = wx∗ is a minimizing curve.
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2. Strictly convex. In this case, min{C(x) : x ∈ RI
+, θ · x = w}, as the minimum of a strictly

convex function over a compact convex set, is attained at a unique point, f(w). Let us show that
f is continuous. Arguing by contradiction, assume there exist w ≥ 0 and a sequence wn → w such
that xn = f(wn) → x̃ 6= x = f(w). Consider two cases. Case 1: w > 0. Set x̂n = xwn/w. Then
x̂n satisfies x̂n · θ = wn hence C(xn) ≤ C(x̂n). By continuity of C, C(x̃) ≤ C(x), a contradiction.
Case 2: w = 0. In this case it is easy to see that both x and x̃ must be zero, a contradiction. This
shows f is a continuous minimizing curve.

The main step toward the asymptotic attainability is to establish this result (in Theorem 2.2)
under a more restrictive condition, that is later dropped (in Theorem 2.3).

Condition A. There exists r > 0 such that (a) fI(w) > r for all w > r; and (b) fi(w) = 0 for all
i < I and w ∈ [0, r].

The asymptotic attainability under Assumption 2.1 and Condition A will be established by
constructing a sequence of preemptive, work conserving policies of feedback form, under which

Qn(t) = gn(Xn(t)), t ≥ 0, n ∈ N,

for some functions gn mapping ZI
+ into itself. The structure of the policies is motivated by the

attempt to keep the relations

X̂n(t) ≈ f(Ŵn(t)), Q̂n(t) ≈ f(Ŵn(t))

hold for large values of n, so that the state and queue-length processes evolve close to the minimizing
curve.

For a precise definition of the policy we have to specify how Qn(t) is determined from Xn(t).
Let Xn = Xn(t) be given, and recall that X̂n = n−1/2(Xn − ρNn).

1. First, define a candidate queue-length vector, Qn,∗ (the actual queue-length will typically be
equal to the candidate queue-length, but not always; this is stated precisely in item 3). To
this end, consider two cases.

(a) 1 ·Xn ≤ Nn. In this case set Qn,∗ = 0.

(b) 1 ·Xn > Nn. Let [x] denote the integer part of a real number x, and for x ≥ 0, define
roundn(x) := n−1/2[n1/2x]. Set

Q̂n,∗i = roundn fi(Ŵ
n) = roundn fi(θ · X̂n), for all i < I. (22)

Note that the rounding operation assures that the quantities Qn,∗i take integer values.
Next, for the last component, let

Q̂n,∗I = 1 · X̂n −
∑
i<I

Q̂n,∗i . (23)

Finally, let Qn,∗ = n1/2Q̂n,∗.
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2. Next we need to fix some auxiliary work conserving policy, that will play a secondary role.
For concreteness, it can be the policy that assigns absolute preemptive priority according to
the order of the indices. That is, let Qn,0 = Xn −Bn, where

Bn
1 = Xn

1 ∧Nn, Bn
2 = Xn

2 ∧ (Nn −Bn
1 ) , . . . , Bn

I = Xn
I ∧

(
Nn −

∑
i<I

Bn
i

)
.

3. Now determine Qn as follows

Qn =

{
Qn,∗, if Qn,∗ is feasible for Xn,

Qn,0, otherwise.

Note that, by definition, Qn is always feasible for Xn. Given n and f , we refer to the above policy
as the (n, f) policy.

Theorem 2.2. Let Assumption 2.1 and Condition A hold. For each n, let Q̂n and X̂n denote the
processes associated with the policy (n, f) defined above. Then (Q̂n, X̂n) converge in law, u.o.c., to
(f(W ), f(W )). As a result,∫ u

0
C(Q̂n(t))dt⇒

∫ u

0
C∗(W (t))dt and

∫ u

0
C(X̂n(t))dt⇒

∫ u

0
C∗(W (t))dt.

We now drop Condition A by invoking approximations. Recall that, under Assumption 2.1, the
function f is continuous, vanishes at the origin, and satisfies fI ≥ 0. Thus, it is easy to see that a
sequence {fk} exists, where, for each k, fk : R+ → RI

+ satisfies

1. Equation (21),

2. Condition A with r = 1/k,

3. supR+
‖fk − f‖ ≤ c0/k, for some c0 that does not depend on k.

The asymptotic attainability under Assumption 2.1 alone is established by applying the policies
(n, fk), with k = k(n).

Theorem 2.3. Let Assumption 2.1 hold. Then the conclusions of Theorem 2.2 hold for the sequence
of policies (n, fk(n)), for a suitable choice of {k(n), n ∈ N′} (i.e., growing sufficiently slowly).

3 Proofs

3.1 Proof of Theorem 2.2

In this subsection we prove Theorem 2.2. Throughout this subsection, Assumption 2.1 and Con-
dition A are in force, and the stochastic processes Qn, Xn, etc., correspond to the sequence of
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policies (n, f). We begin by introducing rescaled versions of the processes involved, and specifying
relations that they satisfy. Let

T̄ni (t) = n−1Tni (t) ≡ n−1/2µi
∫ t

0
Bi(s)ds, (24)

Âni (t) = n−1/2(Ani (t)− λni t), (25)

Ŝni (t) = n−1/2(Si(nt)− nt), (26)

B̃n
i = Bn

i − ρiNn, B̂n
i = n−1/2B̃n

i , (27)

V n
i = n−1/2(Dn

i − Tni ) ≡ Ŝni ◦ T̄ni , (28)

and
Zni (t) = λ̂ni t+ Âni (t)− V n

i (t). (29)

The second and third terms in the above display represent diffusion scale deviations of the arrival
and, respectively, departure processes. As we will argue below, they asymptotically behave as
Brownian motions (under some assumptions). This will be the basis of the proof of convergence of
the diffusion-scale workload process to a reflected Brownian motion. Since

∑
i ρi = 1, we have by

(7)

In +
∑
i

B̃n
i = 0. (30)

By (6) we have
X̂n
i = Q̂ni + B̂n

i . (31)

Next, by (8), (9), (10), (12),

X̂n
i (t) = X̂n

i (0) + n−1/2Ani − n−1/2Dn
i (t)

= X̂n
i (0) + Zni (t)− n−1/2µni

∫ t

0
B̃n
i (s)ds.

Thus

X̂n
i (t) = X̂n

i (0) + Zni (t)− µi
∫ t

0
B̃n
i (s)ds. (32)

Using (31), we obtain

Q̂ni (t) = X̂n
i (0) + Zni (t)− µi

∫ t

0
B̃n
i (s)ds− B̂n

i (t). (33)

Identities (32) and (33) will be particularly important in the sequel.

Let ε0 = mini ρi
2I ∧ r

2 and denote

Eε = {x ∈ RI : ‖x− f(θ · x)‖ ≤ ε}, E = Eε0 , E ′ = Eε0/2.

We have the following (the proofs of the lemmas stated in this subsection appear in the next
subsection).
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Lemma 3.1. For each n, the policy (n, f) is work-conserving. Moreover, if n−1/2 < ε0
2I and X̂n ∈ E

then Qn,∗ is feasible for Xn (hence so is Qn).

Let
τn = inf{t : X̂n(t) /∈ E ′} ∧ u.

For v > 0, denote by Dv the space of RCLL functions from [0, v] to R. Endow Dv with the usual
(J1) Skorohod topology. A sequence of processes with sample paths in Dv is said to be C-tight if
it is tight, and every subsequential weak limit has continuous sample paths a.s. For x ∈ Dv and
δ > 0, denote

w̄v(x, δ) = sup
s,t∈[0,v];|s−t|≤δ

|x(s)− x(t)|.

A useful characterization of C-tightness is as follows. A sequence Rn is C-tight if and only if one
has

(i) |Rn|∗v is a tight sequence of r.v.s, and

(ii) for every positive ε and ε′ there exist n0 and δ such that (34)

n > n0 implies P(w̄v(Rn, δ) > ε) < ε′

(see e.g., [7, Proposition VI.3.26]).

Toward proving the theorem, let us first argue that, for each i, the sequence of processes
Zni , n ∈ N′ is C-tight. As is well known, for each i, the scaled processes Ani and Sni converge
in distribution, uniformly on compacts, to a zero mean Brownian motion (BM) with diffusion

coefficient λ
1/2
i Ci,IA, and 1, respectively [3, Section 17]. Because of the independence assumption

of the primitive processes, the collection (Âni , i ∈ I, Ŝni , i ∈ I) jointly converges in law, as n→∞,
to a collection ((Zi,A)i∈I , Zi,S) of 2I independent BMs, with the laws specified above.

By (24), clearly 0 ≤ d
dt T̄

n
i (t) ≤ µi, thus T̄ni are uniformly Lipschitz. It is easy to see, using the

C-tightness characterization above, using (28), that V n
i are C-tight. In turn, using (29), so are Zni .

Based on this, one can show the following.

Lemma 3.2. For each i, (X̂n
i )− ⇒ 0.

Lemma 3.3. The exists a continuous function γ : R+ → R+, vanishing at zero, such that the
following holds. Whenever X̂n ∈ E,

|Q̂ni − fi(θ · X̂n)| ≤ γ
(

max
j∈I

(X̂n
j )−

)
+ n−1/2, i < I.

Next, by (31) and (32), we have

B̂n
i (t) = Fni (t)− µin1/2

∫ t

0
B̂n
i (s)ds, (35)

where
Fni (t) = X̂n

i (0) + Zni (t)− Q̂ni (t). (36)
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A crucial element of the proof is Lemma 3.4 below, which is based on equation (35). For each i
and n, consider B̂n

i as the solution to this equation with data Fni . If Fni were, say, C1 functions

with bounded first derivative, one could express d
dtB̂

n
i as the convolution of d

dtF
n
i with e−µin

1/2t,

and immediately obtain a uniform estimate on B̂n
i , that vanishes as n → ∞. The purpose of the

lemma is to show that merely C-tightness of Fni is sufficient for a similar estimate to hold.

Lemma 3.4. Fix i. Given u > 0 and δ ∈ (0, u), for all n,

|B̂n
i |∗u ≤ 2|Fni |∗ue−µi

√
nδ + w̄u(Fni , δ).

Thus if the sequence Fni is C-tight then B̂n
i converges to zero u.o.c. in probability.

To present the proof we need one more result.

Lemma 3.5. The sequence Ŵn is C-tight. Moreover, if (Z,W ) is any subsequential limit of the

pair (θ · Zn, Ŵn) then W = Γ (Z).

The main obstacle in applying Lemma 3.4 is that we do not a priori know the Fni ’s are C-tight.
We have to argue step by step.

To this end, note first, using the fact that all jumps of X̂n are of order n−1/2 a.s. and the
definition of τn, that, for all sufficiently large n, X̂n(t) ∈ E for all t ∈ [0, τn], a.s. on the event
X̂n(0) ∈ E ′.

By Lemmas 3.2 and 3.3,

max
i<I
|Q̂ni − fi(θ · X̂n)|∗τn → 0, in probability. (37)

Combined with Lemma 3.5, the fact Ŵn = θ · X̂n, and the continuity of the function f , this shows
that for i < I, Q̂ni (· ∧ τn) are C-tight. As a result, using Lemma 3.4, for all i < I, B̂n

i (· ∧ τn) → 0
uniformly on [0, u], in probability.

Next, we argue that for all i ≤ I, X̂n
i (· ∧ τn) are C-tight. For i < I this is immediate from (31)

using the tightness, shown above, of Q̂ni and B̂n
i , stopped at τn. As for i = I, write X̂n

I as a linear

combination of θ · X̂n = Ŵn and X̂n
j , j < I (where we use the fact that θj > 0 for all j). Now use

Lemma 3.5 and the C-tightness of X̂n
j , j < I, stopped at τn.

As verified in both cases (a) and (b) of item 1 in the definition of the policy, for t ≤ τn,

Q̂nI = (1 · X̂n)+ −
∑
i<I

Q̂ni .

As a result, Q̂nI (·∧τn) are C-tight. Using again Lemma 3.4, now for i = I shows that B̂n
I (·∧τn)→ 0.

Summarizing what we have shown thus far, we have, for all i ≤ I,

Q̂ni (· ∧ τn) and X̂n
i (· ∧ τn) are C-tight, and ‖B̂n‖∗τn = ‖X̂n − Q̂n‖∗τn → 0 in probability. (38)
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Now this statement can be lifted to hold for the unstopped processes, provided

P(τn < u)→ 0. (39)

To show (39), note that (38) and (37) together show that for i < I, |X̂n
i − fi(θ · X̂n)|∗τn → 0. As for

i = I, using θ · f(w) = w for w ≥ 0, we have on [0, τn],

fI(Ŵ
n)− X̂n

I = θ−1I

∑
i<I

θi(X̂
n
i − fi(Ŵn)),

provided Ŵn ≥ 0. When Ŵn < 0, we have

fI(Ŵ
n)− X̂n

I = −X̂n
I .

Denote ξn = maxi supt∈[0,u](X̂
n
i (t))−, θmin = mini θi, θmax = maxi θi. Since Ŵn < 0, we have∑

i θi(X̂
n
i )+ <

∑
i θi(X̂

n
i )−, and it follows that θmin

∑
i(X̂

n
i )+ ≤ Iθmaxξ

n. As a result, for every i,

|X̂n
i | ≤ c2ξn, where c2 = Iθmax/θmin. Thus

|fI(Ŵn)− X̂n
I | ≤ c2ξn.

Combining the two cases,

|fI(Ŵn)− X̂n
I |∗τn ≤ c1

∑
i<I

|X̂n
i − fi(Ŵn)|∗τn + ξn.

Thus, based on the result for i < I, and on Lemma 3.1, the r.h.s. of the above display converges to
zero in probability. As a result, ‖X̂n − f(θ · X̂n)‖∗τn → 0 in probability. By the definitions of τn
and E ′, this shows (39). We thus have, for all i ≤ I,

Q̂ni and X̂n
i are C-tight, and ‖B̂n‖∗u = ‖X̂n − Q̂n‖∗u → 0 in probability. (40)

Similarly, (37) holds with τn replaced by u.

By (24) and (27),

T̄ni (t) = µi

∫ t

0
B̂n
i (s)ds+ µiρit. (41)

Denoting Ti(t) = µiρit, we have from (40) that T̄ni ⇒ Ti. By a lemma regarding random change of
time [3, p. 151], it follows from (28) that ((Âni )i∈I , (Vi)i∈I)⇒ ((Zi,A)i∈I , (Zi,S ◦ Ti)i∈I). In view of
(29), the processes θ · Zn converge to the process we denote Zθ, that is a BM starting from zero,
with drift θ · λ̂ and diffusion coefficient (

∑
i θ

2
i (λiC

2
i,IA + µiρi))

1/2.

A use of Lemma 3.5 along with (40) now shows that (Ŵn, θ · Zn), as well as (θ · Q̂n, θ · Zn),
converge to (Γ (Zθ), Zθ).

Let X be any subsequential limit of X̂n. Then, along the subsequence, it is also a limit of Q̂n,
due to (40). Moreover, W := θ ·X is the limit of Ŵn. Hence by (37) and continuity of f ,

Xi = fi(θ ·X) = fi(W ), i < I.
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A similar relation is true for i = I, because, using the above display and arguing again by the
property θ · f(w) = w, w ≥ 0,

fI(W ) = θ−1I

(
θ · f(W )−

∑
i<I

θifi(W )
)

= θ−1I

(
W −

∑
i<I

θiXi

)
= XI.

Thus,
X = f(θ ·X) = f(W ) = f(Γ (Z)),

where we used Lemma 3.5. We have shown that (X̂n, Q̂n) converge in law to (f(Γ (Z)), f(Γ (Z))),
uniformly on [0, u]. This completes the proof of the first assertion in Theorem 2.2. The second
assertion follows by continuity of C and the definition of f , by which C∗ = C ◦ f .

3.2 Proof of Lemmas

Proof of Lemma 3.1. To see that the work conservation condition (18) (equivalently (20)) holds
for Qn,∗, note by property 1(a) in its definition that (18) holds when 1 · Xn ≤ Nn, and by (23),
that (20) holds when 1 · Xn > Nn. For Qn,0 the property is verified directly. Consequently, Qn

satisfies the same condition.

Next we prove the assertion regarding feasibility. Let n satisfy 2In−1/2 < ε0 and let X̂n ∈ E .
Since the work conservation condition holds, by the discussion on preemptive policies it suffices to
verify that Q̂n,∗ and X̂n satisfy (19). Note that the rounding operation performed in (22) has the
property |x− roundn(x)| ≤ n−1/2 for x ≥ 0. Hence by (22), for i < I,

|Q̂n,∗i − X̂
n
i | ≤ |fi(θ · X̂n)− X̂n

i |+ n−1/2 ≤ ε0 + n−1/2 ≤ ρi.

Since we also have that fi(·) ≥ 0, we see that (19) holds for i < I. For i = I, by (23),

|Q̂n,∗I − X̂n
I | ≤

∑
i<I

|Q̂n,∗i − X̂
n
i | ≤ I(ε0 + n−1/2) ≤ ρI,

and the second inequality of (19) holds for I as well.

It remains to prove the non-negativity of Q̂n,∗I . This is where Condition A is used. In case 1(a)
of the definition of the policy, the non-negativity is immediate (because Qn,∗ is set to zero). In

case 1(b) we have 1 · X̂n > 0. Consider two subcases. First, if Ŵn ≤ r, then by Condition A(b),

Qn,∗i = 0 for i < I, hence by (23) Q̂n,∗I = 1 · X̂n > 0. Next, if Ŵn > r, we have by Condition A(a)

that fI(Ŵ
n) > r, hence by (23),

Q̂n,∗ = fI(Ŵ
n) + [X̂n

I − fI(Ŵn)] +
∑
i<I

[X̂n
i − roundn ◦ fi(Ŵn)]

≥ r − ‖X̂n − f(Ŵn)‖ − In−1/2 ≥ r − r

2
− r

4
> 0.

This proves that Qn,∗ is feasible for Xn.
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Proof of Lemma 3.2. Fix i. Fix an interval [0, u]. Since by assumption X̂n(0)→ 0 in probability,
it suffices to prove that, for every a > 0, P(X̂n

i (0) > −a, inf [0,u] X̂
n
i ≤ −3a) → 0. Using the fact

that, a.s., all the jumps of X̂n
i are of size n−1/2, it suffices to prove that, for every a > 0,

P(there exist 0 ≤ σ < θ ≤ u s.t. X̂n
i (σ) ≥ −2a; X̂n

i ≤ −a on [σ, θ]; and X̂n
i (θ) ≤ −3a)→ 0. (42)

By (31), X̂n
i ≥ B̂n

i . Hence on the event indicated in (42), for s ∈ [σ, θ] one has B̃n
i (s) =

√
nB̂n

i (s) ≤√
nX̂n

i (s) ≤ −
√
na. As a result, on this event, by (32),

−a ≥ X̂n
i (θ)− X̂n

i (σ) ≥ Zni (θ)− Zni (σ) +
√
nµia(θ − σ).

Fix b > 0. Note that if θ − σ ≥ b then a necessary condition for the above display to hold is
w̄u(Zni , b) ≥ a. Hence the probability on the l.h.s. of (42) is bounded by

P(w̄u(Zni , b) ≥ a) + P(2|Zni |∗u ≥
√
nµiab).

Since Zni are C-tight, the expression in the above display vanishes upon taking n → ∞ and then
b→ 0. Indeed, this follows for the first and second terms in the above display, by parts (ii) and (i),
respectively, of the characterization (34). The result follows.

Proof of Lemma 3.3. Let g : RI → RI−1 be defined as

g(x) =

{(
f1(θ · x), . . . , fI−1(θ · x)

)
, 1 · x > 0,

0, 1 · x ≤ 0.

Let X̂n ∈ E . By Lemma 3.1, Qn = Qn,∗. By (22), for i < I, |Q̂ni − gi(X̂n)| ≤ n−1/2. Denote

b = maxj(X̂
n
j )−. Fix i < I. Write x for X̂n. Toward bounding gi(x)− fi(θ · x), note that

|gi(x)− fi(θ · x)| = |fi(θ · x)|1{1·x≤0}.

If 1 · x =
∑
x+j −

∑
x−j ≤ 0 and, for all j, x−j ≤ b then

∑
x+j ≤ Ib hence ‖x‖ ≤ 2Ib. Thus

|gi(x)− fi(θ · x)| ≤ sup{‖f(θ · x)‖ : ‖x‖ ≤ 2Ib}.

Recall that f is assumed to be continuous. By its definition, it vanishes at zero. It follows that
there exists a continuous function γ vanishing at the origin, such that γ(b) in an upper bound on
the r.h.s. of the above display. We have thus shown that

|Q̂ni − fi(θ · X̂n)| ≤ n−1/2 + |gi(X̂n)− fi(θ · X̂n)| ≤ n−1/2 + γ(max
j∈I

(X̂n
j )−),

for i < I.

Proof of Lemma 3.4. The proof is based on the equation (35) satisfied by B̂n
i . The solution X

to the integral equation

X(t) = F (t)− µ
∫ t

0
X(s)ds, t ≥ 0, (43)

is given by

X(t) = F (t)− µ
∫ t

0
F (s)e−µ(t−s)ds, (44)
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as can be readily checked. For δ ∈ (0, t) one has X = D + E, where

D(t) = −µ
∫ t−δ

0
F (s)e−µ(t−s)ds, E(t) = F (t)− µ

∫ t

t−δ
F (s)e−µ(t−s)ds.

We have
|D|∗t ≤ |F |∗t e−µδ.

Moreover, denoting b = w̄t(F, δ),

E(t) ≤ F (t)− µ
∫ t

t−δ
(F (t)− b)e−µ(t−s)ds = F (t)e−µδ + b(1− e−µδ),

and in conjunction with an analogous lower bound, we obtain |E|∗t ≤ |F |∗t e−µδ + b. Combining the
bounds on D and E yields the result.

Proof of Lemma 3.5. Denote Zn0 (t) = θ · X̂n(0) + θ ·Zn(t). Let ζn(t) =
∫ t
0 I

n(s)ds and note that

it is nondecreasing. By (30), In = −1 · B̃n. Since Ŵn = θ · X̂n and θi = µ−1i , we have from (32)
that

Ŵn = Zn0 + ζn.

Fix a > 0. Let Y n = (Ŵn − a)+. Then

Y n(t) = (Ŵn − a)− − a+ Zn0 + ζn(t). (45)

Let b = 1
2

a
1·θ . by Lemma 3.2, the probability of the event Ωn = {minj inf [0,u] X̂

n
j ≥ −b} converges

to 1. Let us argue that, on Ωn, Y n(t) > 0 implies In(t) = 0. This is based on work conservation.
Indeed, Y n(t) > 0 implies θ · X̂n(t) > a. Hence maxj X̂

n(t) > c := a
1·θ , and

1 · X̂n(t) ≥ max
j
X̂n
j (t)− Ib ≥ c− b > 0.

Since the policy is work conserving we have by (20) that In = n1/2În = n1/2(1 · X̂n)−. This proves
that the implication, alluded to above, holds on Ωn. As a result,

∫
1{Y n>0}dζ

n = 0 holds on Ωn.
Coupled with (45) and the fact that Y n ≥ 0, this shows that, on Ωn, the relation

Y n = Γ ((Ŵn − a)− − a+ Zn0 )

holds. Since the map Γ satisfies the Lipschitz condition w.r.t. the sup norm, we have on Ωn, for
some constant L,

|Ŵn − Γ (θ · Zn)| ≤ |Ŵn − Y n|+ |Y n − Γ (Zn0 )|+ |Γ (Zn0 )− Γ (θ · Zn)|

≤ (Ŵn − a)− + a+ L{|(Ŵn − a)−|∗u + a}+ L|θ · X̂n(0)|.

Recall that θ ·Zn are C-tight, and consider any subsequential limit Z. Using the bound in the above
display, the continuity of Γ , the convergence (Ŵn)− ⇒ 0, the assumption X̂n(0)⇒ 0, and the fact

that a > 0 is arbitrary, we obtain Ŵn ⇒ Γ (Z), along the subsequence. This shows C-tightness of

Ŵn. The second claim of the lemma follows.
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3.3 Proof of Theorem 2.3

For each k, fk satisfies equation (21) as well as Condition A (with r = 1/k). The proof of Theorem
2.2 presented above establishes, under the sequence of policies (n, fk) with k fixed, the convergence
of (X̂n, Q̂n) to (fk(W ), fk(W )). Since fk converge to f uniformly as k → ∞, choosing k(n) to
increase to infinity sufficiently slowly, gives rise to (f(W ), f(W )) as the limit under (n, fk(n)). The
convergence of the cost to the minimal cost follows as in Theorem 2.2.

3.4 Proof of Theorem 2.1

Consider the stochastic processes Xn, Qn, etc., under an arbitrary, fixed sequence of policies. A
review of the proof of Theorem 2.2 shows that the following elements do not rely on Assumption 2.1
or Condition A, nor do they depend on the particular properties of the policy. Thus, they continue
to hold for the arbitrary policies we have fixed.

- C-tightness of Zn,

- The convergence (Xn
i )− ⇒ 0.

An event Ωn is said to occur with high probability (w.h.p.) if P(Ωn)→ 1 as n→∞. The symbol
o(1) will serve as generic notation for an n-dependent r.v. or stochastic process defined on [0, u],
converging to zero in probability (uniformly on [0, u], in the case of a process).

Let

σn = inf
{
t : max

i∈I

∣∣∣ ∫ t

0
B̂n
i (s)ds

∣∣∣ ≥ εn} ∧ u,
where εn > 0 converge to zero, while εnn

1/2 →∞. If σn < u then by (32) there exists i for which

X̂n
i (σn) = X̂n

i (0) + Zni (σn)± µiεnn1/2.

Since maxj(X̂
n
j )− → 0 in probability, and Zni are tight, the probability that X̂n

i (s) = X̂n
i (0) +

Zni (s)− µiεnn1/2 for some s ∈ [0, u], some i, converges to zero as n→∞. Hence, w.h.p.,

Ŵn(t)1{t∈(σn,u]} ≥ rn := cεnn
1/2, (46)

some constant c > 0, where (u, u] is regarded as the empty set. Similarly to the proof of Lemma
3.5, using (30) and (32),

Ŵn = θ ·Xn(0) + θ · Zn +

∫ ·
0
In(s)ds = o(1) + θ · Zn +

∫ ·
0
In(s)ds.

Since we also have (Ŵn)− = o(1),

(Ŵn)+ = o(1) + θ · Zn +

∫ ·
0
In(s)ds.
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In view of the non-negativity of (Ŵn)+ and the monotonicity of
∫
In we can invoke the well-known

minimality property of the Skorohod map [4], and obtain

(Ŵn)+ ≥ Γ [o(1) + θ · Zn].

As a result,
Ŵn ≥ o(1) + Γ [o(1) + θ · Zn] = o(1) + Γ [θ · Zn].

Combined with (46), this shows that w.h.p.,

Ŵn(t) ≥ o(1) + Γ [θ · Zn]1{t∈[0,σn]} + rn1{t∈(σn,u]}.

Recall from the proof of Theorem 2.2 the notation Ti(t) = µiρit and the representation (41) for
the process T̄ni and the fact that d

dt T̄
n
i are uniformly bounded. By the definition of σn, an :=

|T̄ni −Ti|∗σn → 0 in probability. Hence the process V n
i = Ŝi ◦ T̄ni (28) satisfies |Ŝni ◦ T̄ni − Ŝni ◦Ti|∗σn ≤

bn := w̄c1u(Ŝni , an), for some constant c1. Since Ŝni are C-tight, bn → 0 in probability. Hence by
(29), denoting

Gni (t) = λ̂nt+ Âni (t)− Ŝni ◦ Ti(t)

and
Ln = Γ [θ ·Gn],

we have w.h.p.,
Ŵn(t) ≥ o(1) + Ln1{t∈[0,σn]} + rn1{t∈(σn,u]}.

Note that Ln converges in law to the process W = Γ [Zθ], thus P(sup(σn,u] Ln > rn) → 0. In
particular, w.h.p.,

Ŵn(t) ≥ o(1) + Ln, (47)

and the r.h.s. converges in law to W . This proves the first assertion of item 1 of the theorem.
The second assertion, regarding

∫ u
0 C(X̂n(t))dt, follows immediately by continuity of C and the

definition of C∗.

We turn to the second part of the theorem. Let [a, b] ⊂ [0, u] be given. By (31), θ · Q̂n and Ŵn

differ by θ · B̂n. Hence by the definition of σn,∫ a∨(σn∧b)

a
θ · Q̂n(s)ds ≥

∫ a∨(σn∧b)

a
Ŵn(s)ds− cεn.

Moreover, since B̂n are uniformly bounded, a lower bound of the form (46) holds for θ · Q̂n as well.
Thus, ∫ b

a
θ · Q̂n(s)ds ≥

∫ a∨(σn∧b)

a
Ŵn(s)ds− cεn +

∫ b

a∨(σn∧b)
rnds ≥ o(1) +

∫ b

a
Ln(s)ds,

where we used (47). This proves the first assertion of item 2.
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To prove the second assertion, fix k, and write δ = u/k, ∆j = [(j − 1)δ, jδ), j = 1, 2, . . . , k.
Recall that in this case we assume convexity of C∗. Thus, using Jensen’s inequality,∫ u

0
C(Q̂n(s))ds ≥

∫ u

0
C∗(θ ·Qn(s))ds ≥

k∑
j=1

C∗
(1

δ

∫
∆j

θ · Q̂n(s)ds
)
δ

≥
k∑
j=1

C∗
(1

δ

∫
∆j

Ln(s)ds
)
δ − o(1).

For A > 0, denote mod(A, ·) the modulus of continuity of C∗|[−A,A]. Then∫ u

0
C(Q̂n(s))ds ≥

∫ u

0
C∗(Ln(s))ds− o(1)−mod(Yn, yn)u,

where Yn = |Ln|∗u and yn = w̄u(Ln, δ). Since Ln converge to the process W , any subsequential limit
in distribution of the l.h.s. stochastically dominates

∫ u
0 C

∗(W (s))ds, provided we have, for every
ε > 0,

lim
δ→0

lim sup
n→∞

P(mod(Yn, yn) > ε) = 0.

However, this is clear by C-tightness of Ln. This completes the proof of the theorem.
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