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a b s t r a c t

We study the optimization of dynamic pricing in a queueing model with a finite buffer,
where arrival rates depend on advertised price levels.We apply our study to a pricing policy
in a cloud computing service provider setup.

The main result of this paper is the multi-threshold structure of the optimal policy.
© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The model under study consists of a finite buffer and a single processing unit. Tasks of multiple types arrive into the sys-
tem and are admitted unless the buffer is full. Tasks that are not admitted are lost. Price levels charged per task are advertised
for the various types of tasks. It is assumed that the arrival rates of tasks to the systemdepend on these advertised prices. The
decision maker (DM) dynamically controls the price levels and attempts to maximize an expected discounted total reward.
This type of problem is often referred to in the literature as price-based revenue management (see [1]). Our main result is the
identification of an optimal policy that has a threshold structure. While the formulation of this problem via Markov deci-
sion processes (MDP) is standard, the optimality of a threshold policy for this model does not seem to follow from existing
results. Our motivation for studying this model stems from possible application areas such as computer network managing
systems [2,3] and especially cloud computing services at both consumer and enterprise markets [4,5]. Previous MDP for-
mulations for cloud computing applications can be found in [6,7]. These works optimize the decision making of the cloud
computing customer.

The area of optimal control of queueing models via MDP has been studied extensively. Notable examples are [8–11], and
the monographs [12,13]. Papers such as [9,10] provide an explicit characterization of optimal control as a threshold policy.
The way to establish this property in these papers and many others is through the convexity of the value function. In our
paper this property does not follow from convexity but from a different condition involving second order differences (see
Section 3).

Amongworks that address queueingmodelswith finite buffers let usmention [14] that addresses optimal task admission
in the scheduler-to-router system, [15] that calculates individual and social optimum in a problem of admission into a finite
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buffer, and [16] that addresses the optimization of capital expense of the buffer size. Some recent works on optimal pricing
problems based on queueing models include [17,18].

Our main motivation for the model under consideration comes from pricing in cloud computing. The model described
here conforms with the pay-as-you-go pricing method; see [5] for this term as well as a review of pricing models in this
context.

In Sections 2 and 3 we present the model, and respectively, the main result and its proof. In Section 4 we provide more
motivation for the cloud computing model and compute a possible pricing policy based on the actual price list of Amazon
Web Services (AWS).

2. Model and main result

The main result is stated in this section for a single task type; a generalization to multiple types will be addressed in
Section 3.2. The model considered has K price levels

C1 < C2 < · · · < CK ,

that are subject to the dynamic selection by a DM. These decisions influence the arrival rates. Namely, advertising the price
Ck gives rise to arrival rate λk, where

λ1 > λ2 > · · · > λK .

It is further assumed that the buffer can contain no more than B tasks at any given time.
Let Ek, k ∈ {1, . . . , K}be independent Poissonprocesses of intensitiesλk, respectively. Denote byA the counting processes

for arrivals. Denote by Ak(t) the number of tasks priced at level k that has arrived up to time t . It is assumed that

Ak =

 t

0
Uk(s)dEk(s),

where {Uk, 1 ≤ k ≤ K} is an S-valued process, where

S =


u ∈ {0, 1}K :


uk ≤ 1


.

Advertising a price Ck at time t corresponds to selectingUj(t) = 1 for j = k andUj(t) = 0 for all other j. The optionUk(t) = 0
for all k is also possible, and corresponds to rejection, which by assumption can occur only when the buffer is full. We regard
U as the control process.

The total number of tasks present in the buffer at time t is given by
X(t) = x + A(t) − D(t), (1)

where x ∈ {0, . . . , B} denotes an initial condition, and D is the departure process, counting the number of completed tasks
of all types. The service time distribution is assumed to be exponential of rate µ > 0. The control process U is regarded
admissible if it is adapted to the filtration generated by ({Ek}, X), and is such that the buffer limit X(t) ≤ B is kept at all
times. The class of admissible control processes is denoted by U.

We consider an expected discounted reward given by

J(x,U) = E
 ∞

0
e−γ s

K
k=1

CkdAk(s)


= E
 ∞

0
e−γ s

K
k=1

CkUk(s)dEk(s)

, (2)

for a fixed γ > 0. The value function is defined as

V (x) = sup
U∈U

J(x,U), x ∈ {0, 1, . . . , B}. (3)

Theorem 2.1. There exist constants

0 = b0 ≤ b1 ≤ · · · ≤ bK = B + 1,

such that the following policy is optimal: announce price Ci at time t if and only if bi−1 ≤ X(t) < bi.

3. Proof and extensions

3.1. Proof

Denote δi = (µ + λi + γ )−1 and note that δ1 < δ2 < · · · < δK . Also observe δ1λ1 > δ2λ2 > · · · > δKλK . For i < j,
denote βij = λiδi − λjδj and αij = µδj − µδi. Denote δ̄ = (γ + µ)−1. Observe that αij and βij (i < j) are all positive. Next,
for i < j < k, we have

βij + βjk = βik, αij + αjk = αik. (4)
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Moreover,

αij =
µ


λi − λj


(γ + µ + λi)


γ + µ + λj

 (5)

βij =
λiγ + λiµ − λjγ − λjµ

(γ + µ + λi)

γ + µ + λj

 . (6)

We will use the notation

Ṽij(x) = βijV (x + 1) − αijV (x − 1),

and

Wi(x) = δiµV (x − 1) + δiλi(V (x + 1) + Ci).

The value function uniquely solves the Bellman equation (see e.g. [13, Chapter 8])

V (x) = max
j

{δjµV (x − 1) + δjλj(V (x + 1) + Cj)}, x ∈ {1, 2, . . . , B − 1}, j ∈ {1, . . . , K}, (7)

with the boundary conditions

V (0) = max
j

{δjµV (0) + δjλj(V (1) + Cj)}, j ∈ {1, . . . , K}, (8)

V (B) = δ̄µV (B − 1). (9)

For a function V : {0, 1, . . . , B} → R, consider the property

Ṽij(x) := βijV (x + 1) − αijV (x − 1) is nonincreasing in x ∈ {1, . . . , B − 1}, for each i, j, 1 ≤ i < j ≤ K . (10)

Wewill argue thatV has this property. To this end, consider the operator T , acting in the space of functions from {0, 1, . . . , B}
to R, defined as

TU(x) = max
j

{[δjµU(x − 1) + δjλj(U(x + 1) + Cj)]} x ∈ {1, . . . , B − 1}, (11)

TU(B) = δ̄µU(B − 1),
TU(0) = max

j
{[δjµU(0) + δjλj(U(1) + Cj)]},

for U : {0, 1, . . . , B} → R. Then the Bellman equation reads TV = V . Let S be the set of functions U : {0, 1, . . . , B} → R
that are non-increasing and possess the property (10). The following lemma asserts that T preserves S, and moreover, with
∥U∥ := maxx |U(x)|, acts on it as a strict contraction.

Lemma 3.1. One has TS ⊂ S. Moreover, there exists a constant a ∈ (0, 1) such that

∥TU − TW∥ ≤ a∥U − W∥ for every U,W ∈ S.

Proof. To prove the first assertion, let U ∈ S be given. For x ∈ {2, . . . , B − 1}, TU(x) − TU(x − 1) ≤ 0 by (11), using the
fact that the maximum of two nonincreasing functions is nonincreasing. A verification for x = 1 and x = B gives TU(x) −

TU(x − 1) ≤ 0 as well, and the nonincreasing property of TU follows.
To prove the contraction property, let U,W ∈ S. Consider first x ∈ {1, 2, . . . , B − 1}. We have

TU(x) − TW (x) = max
j

{[δjµU(x − 1) + δjλj(U(x + 1) + Cj)]} − max
i

{[δiµW (x − 1) + δiλi(W (x + 1) + Ci)]}. (12)

Using

|max(a1, a2, . . . , aK ) − max(b1, b2, . . . , bK )| ≤ max(|a1 − b1|, . . . , |aK − bK |)

and denoting ∆ = U − W ,

|TU(x) − TW (x)| ≤ max
k

{|δkµ∆(x − 1) + δkλk∆(x + 1)|}.

Since δkµ + δkλk < 1, this gives

|TU(x) − TW (x)| ≤ a∥∆∥ = a∥U − W∥,

where a < 1. A similar calculation for x = 0 and x = B gives an analogous inequality, and we conclude that ∥TU − TW∥ ≤

a∥U − W∥.
Proving the property (10) of TV amounts to showing that

βijTV (x + 1) − αijTV (x − 1) is nonincreasing in x, for each i, j, 1 ≤ i < j ≤ K . (13)
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We show that

βijWk(x + 1) − αijWl(x − 1) is nonincreasing for 1 ≤ i < j ≤ K , 1 ≤ l ≤ k ≤ K . (14)

Due to the nonincreasing property ofWk(x) − Wl(x), the index k ofWk(x + 1) is always greater than or equal to the index l
ofWl(x − 1) in (14). Thus there is no need to consider all other cases. We use this observation for the proof of the property.
Expand (14) as follows:

βijδkλkV (x + 2) + βijδkµV (x) − αijδlλlV (x) − αijδlµV (x − 2) + C

where C is a constant. Omitting C rewrite this expression as

βijδlλlV (x + 2) + βijδlµV (x) + βij(δkλk − δlλl)V (x + 2) + βij(δkµ − δlµ)V (x) − αijδlλlV (x) − αijδlµV (x − 2)

= λlδl(βijV (x + 2) − αijVx) + δlµṼij(x − 1) − βijβlkV (x + 2) + αlkβijV (x).

Note that by assumption, δlµṼij(x − 1) is nonincreasing. We show that the remaining part of the above display, namely

(βijδlλl − βijβkl)V (x + 2) + (βijαlk − αklδlλl)V (x),

is nondecreasing as well. Using (5) and (6) we obtain
−λiµ + λjµ


λkV (x)

(γ + µ + λk) (γ + µ + λi)

γ + µ + λj

 +


λiγ + λiµ − λjγ − λiµ


λkV (x + 2)

(γ + µ + λk) (γ + µ + λi)

γ + µ + λj

 ,

that further reduces to V (x + 2)βijλkδk − V (x)αijλkδk = λkδkṼij(x + 1). We thus have

βijTV (x + 1) − αijTV (x − 1) = λkδkṼij(x + 1) + δlµṼij(x − 1),

that is the sum of two nonincreasing functions and as such is nonincreasing as well. This completes the proof of the lemma.

Proof of Theorem 2.1. We use the contraction mapping principle (see e.g. [19, Theorem V.18]). The set S, equipped with
the metric ρ(U,W ) = ∥U − W∥ is a complete metric space. The map T : S → S is a strict contraction, as shown in the
above lemma. As a result, T has a unique fixed point. That is, there exists a unique U ∈ S for which TU = U . Recall that V is
the unique solution to the same equation in the space of all functions from {0, 1, . . . , B} to R. As a result, V = U . This shows
V ∈ S, namely, that V is nonincreasing and possesses the property defined in (10). Thus, we deduce that V ∈ S.

Finally, the optimal action at state x can be read from the Bellman equation (7). The action depends on finding index i for
which the inequality

δiµV (x − 1) + δiλi(V (x + 1) + Ci) > δjµV (x − 1) + δjλj(V (x + 1) + Cj)

holds for all j ≠ i. This can be written as

βijV (x + 1) − αijV (x − 1) > C := −Ciδiλi + Cjδjλj,

namely Ṽij(x) > C . The monotonicity property of Ṽij thus gives the threshold property and the result follows.

3.2. System with multiple task types

The result can be extended to cover multiple task types. Consider a system with I task types, where each type, i, arrives
at the system with rate λi,k whenever price ci,k is advertised. It is assumed that λi,k (resp., ci,k) are non-increasing (resp.,
non-decreasing) in k, for each i. Here, k varies over {1, . . . , K}. It is also assumed that tasks of all types are served at the
same rate µ.

Write (j) for a generic multi-index (j1, . . . , jI), where each ji takes values in {1, . . . , K}. The Bellman equation takes the
following form:

V (x) = max
(j)

{[δ(j)µV (x − 1) + δ(j)Λ(j)(V (x + 1) + C(j))]},

where

Λ(j) =

I
i=1

λi,ji , C(j) =
1

Λ(j)

I
i=1

ci,jiλi,ji ,

and δ(j) = (Λ(j) + µ + γ )−1. Label the multi-indices (j) by n ∈ {1, . . . ,N}, where N = K I , in such a way that δ1 ≤ δ2 ≤

· · · ≤ δN (equivalently, δ1λ1 ≥ δ2λ2 ≥ · · · ≥ δNλN .) An extension of Theorem 2.1 to the present setting then states the
following:

There are constants 0 = b0 ≤ b1 ≤ · · · ≤ bN = B + 1, such that it is optimal to announce at time t the price combination
C(j) = (cj1 , . . . , cjI ) if and only if bn−1 ≤ X(t) < bn.

Here n is the label assigned to the multi-index (j), and X represents the total number of tasks present in the system.
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Table 1
Cloud with dynamically advertised prices—threshold examples.

B λi Ci bi

20 3 2 1 2.0 2.1 2.2 3 10 20
30 1.5 1.4 1 2.0 2.1 2.2 2 35 50

100 3.5 3.0 2.0 1.5 2.5 2.6 2.75 2.8 48 55 57 60
200 0.5 0.4 0.2 0.1 1.6 2.0 3.75 7.5 193 199 199 200

4. Example: optimizing cloud provider revenue

We apply the framework presented above to a setting where a cloud service provider optimizes its revenue. If a certain
amount of cloud resources is not leased by subscribed customers, it makes sense for the cloud provider to offer these unused
resources for opportunistic on-demand usage (cloudbursting). In this setup dynamic pricing can significantly increase the
revenue. As the demand for cloudbursting decreases, the cloud provider can apply a price reduction to compete for a larger
share of the customers. In times of high cloudbursting demands the service providermay prefer to select themost profitable
task types. The finite buffer in ourmodel reflects a quality of service requirement. The cloudmust serve accepted taskswithin
certain average delay.

A numerical result of pricing policies based on the MDP approach is presented in Table 1. The prices were taken from
Amazon EC2 [20] spot instances price list. The pricing here is for leasing a single computational resource—the spot instance
per hour, to which the data transfer and storage costs are added up. The spot instances are charged at spot prices. The prices
are regulated and fluctuate periodically depending on the availability and demand of resources. We derive the buffer limit
for a scenario where the delay constraint is 720 h (1 month), and we vary the average task processing time. For example, in
the first row the average task processing rate is 36 h (thus µ = 1/36 tasks/hour), and so B was set to 720/36 = 20 tasks.
We normalized the task processing rate and the arrival rates such that the task processing rate was always set 1. Thus, in
the first line the rates were multiplied by 36.

The structure of the table is as follows. The first three columns are the possible proposed quantities, measured in tasks,
normalized tasks per hour, and price per task. Finally, the last column gives the pricing thresholds.

Note that in the example in the last row, the third price level is never optimal.
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