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Abstract

We consider a multi-class queueing system with multiple homogeneous servers and
customer abandonment. For each customer class i, the holding cost per unit time, the
service rate and the abandonment rate are denoted by ci, µi and θi, respectively. We
prove that under a many-server fluid scaling and overload conditions, a routing policy that
assigns priority to classes according to their index ciµi/θi, is asymptotically optimal for
minimizing the overall long run average holding cost. An additional penalty on customer
abandonment is easily incorporated into this model and leads to a similar index rule.

1 Introduction

The usefulness of the well known cµ rule for service scheduling stems from its simplicity and
its robustness. This scheduling policy and its generalizations have been proved to be optimal
(in a precise [12], [6] or an asymptotic sense [19], [25], [26]) for delay and queue-length costs, in
a variety of settings. Although these settings are quite general, they do not include ones where
customers may abandon (or renege) while waiting to be served. Abandonment phenomena
has been widely discussed in the recent literature, as it is a significant modeling aspect in
applications, and particularly in call centers (for recent developments on these applications
and related models see [1] and [13]). In this paper, we introduce a routing rule for models
which include abandonment, to which we refer as the cµ/θ rule. Like the cµ rule, the cµ/θ rule
is simple on one hand, and performs well on the other hand. In particular, we prove that it
asymptotically minimizes the long run average holding cost under a many-server fluid regime.
A preliminary version of these results was recently reported in [3].

The model considered here consists of I customer classes and a server pool with n homo-
geneous servers. Customers of class i arrive according to a Poisson process with rate λi, for
i ∈ I := {1, . . . , I}. Customers that cannot be served immediately upon arrival are kept in
an infinite-capacity queue dedicated to their class. A customer that is held in queue may lose
her patience and abandon the system. Customer patience is modeled by an exponentially dis-
tributed random variable with mean 1/θi, depending on the customer class i. Once admitted

1



to service, a class-i customer is served with exponentially distributed time duration of mean
1/µi. A stochastic queueing control problem arises by considering a long-run average holding
cost, in which the holding cost per unit time for a class-i customer is a given constant ci, and
the control involves dynamic routing of jobs of different classes to the server pool. We study
this problem in a many-server fluid regime. We note that this regime is meaningful (relative
to our long-term average criterion) only under overload conditions, namely when the incoming
service requirement strictly exceeds the service capacity, as otherwise all queues will be empty
in steady state under any non-idling service scheme. Customer abandonment allows to stabilize
the queue size even in the overloaded case.

The formal scaling limit of the problem leads to a simple linear program (LP), whose
solution is shown to be a lower bound on the many-server limiting cost of the stochastic
queueing problem, under any policy. The main result of this paper is that a simple priority
policy that assigns strict priority to classes according to the order of their indices ciµi/θi is
asymptotically optimal, in the sense that it attains the asymptotic lower bound. We first
establish this result for the preemptive-service case (Section 5), and then extend the proof in
Section 6 to the non-preemptive case, where service to customer who are already in service
cannot be interrupted. We note that it is not a-priory obvious here that the preemptive and
non-preemptive policy should behave similarly, as scaling is taken in such a way that the service
times are not accelerated.

The cost structure described above focuses on penalizing the queue size (via the holding
cost parameters ci), and does not directly account for customer abandonment. It turns out that
penalizing customer abandonments is easily incorporated into our basic model. Specifically,
assume that a penalty γi is incurred whenever a class-i customer abandons the queue. Then
(as we argue in Remark 2.1 below) the modified optimization problem becomes equivalent to
the original one, once the cost coefficient ci is modified to (ci + θiγi). As a consequence, the
modified problem admits an optimal index rule with indices (ci +θiγi)µi/θi. It is worthwhile to
note that when the abandonment rates θi do not depend on i while the abandonment penalties
γi are proportional to the cost parameters ci, then the modified index effectively reduces to
the index ciµi of the standard cµ rule. When abandonments are the major concern, setting
the holding cost parameters ci to zero interestingly leads to the effective index γiµi.

We proceed to survey some related literature. It appears that the cµ rule was first suggested
by Smith [24] and Cox and Smith [12], in a deterministic and, respectively, stochastic setting.
The latter treated a multiclass M/G/1 system, showing optimality of the policy with respect to
holding cost. Many extensions were established since then, including [5, 6, 14, 17, 20, 27]. For
more details see, e.g., the discussion in [25]. A generalized version of the cµ rule was introduced
by Van-Meighem [25] for the case of nonlinear, convex holding costs. The proposed rule was
shown to be asymptotically optimal in diffusion scaling under heavy traffic conditions. This
work was extended by Mandelbaum and Stolyar [19] to more a general network topology.

Approximation results for many-server systems under fluid regime were obtained by Man-
delbaum, Massey and Reiman [18] in a variety of network settings that include time-varying
parameters (this work also treated diffusion approximations). More recent development on fluid
regime approximations include Whitt [28], that treats the so called efficiency-driven regime,
and Whitt [30], that suggests a fluid-scale model for the G/G/N queue with abandonment.
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Perry and Whitt [21] develop fluid approximations for threshold-based control policies de-
signed to respond to unexpected overloads. Kaspi and Ramanan [16], Reed [22], and Kang
and Ramanan [15] obtain general fluid approximation results for G/G/N queues.

Among recent contributions to controlled queueing models in fluid regime, we mention
the works by Bassamboo, Harrison and Zeevi [7, 8], where a two-scale parameter regime is
introduced and a linear program based approach to dynamic routing is developed. In fact,
the linear program that is in the basis of the present paper’s development can be obtained
as a special case of the one identified in the above papers. However, the approach of these
references is not based on explicit solution of the linear program nor does it lead to a fixed
priority rule, two central ingredients of our contribution.

The rest of this paper is organized as follows. In Section 2 we introduce the queueing model
and asymptotic framework, and formally derive a fluid steady state model. In Section 4 the
solution to a linear program associated with the fluid model is shown to be a lower bound
on the limit performance for the queueing model. Section 5 shows that the lower bound is
achieved by the preemptive policy. Section 6 proves an analogous result for the non-preemptive
policy, under appropriate assumptions. Some concluding remarks appear in the final Section
7.

Notation. We write R+ for [0,∞). For x ∈ RI let ‖x‖ =
∑

i∈I |xi|. For f : R+ → R let
|f |∗T = sup0≤t≤T |f(t)|, and for f : R+ → RI , ‖f‖∗T = sup0≤t≤T ‖f(t)‖. We use the convention
that a sum

∑j
i equal zero when j < i. The symbol 1A denotes the indicator function of a

given set A.

2 Model and asymptotic framework

2.1 Queueing model

The model is defined on a probability space (Ω, F,P). Expectation with respect to P is denoted
by E. The queueing system consists of a pool of n servers with identical capabilities that cater
to customers of I classes. We refer to this as the nth system, emphasizing the dependence on
the number of servers. For i ∈ I := {1, . . . , I}, denote by Xn

i (t) the total headcount of class i
customers in the nth system. Denote by Qn

i (t) the queue length of class-i customers, and by
Zn

i (t) the number of servers that serve customers of class-i at time t. Clearly, for every t ≥ 0,
∑

i∈I
Zn

i (t) ≤ n (1)

Xn
i (t)− Zn

i (t) = Qn
i (t) ≥ 0, i ∈ I. (2)

The arrival processes are denoted by An
i and are assumed to be Poisson processes with rates

λn
i , i ∈ I. We use Dn

i (t) and Rn
i (t) to denote the number of class-i service completions and

number of class-i abandonments, by time t, respectively. These processes are assumed to be
given by

Dn
i = D̃n

i

(∫ ·

0
Zn

i (s)ds
)
, Rn

i = R̃n
i

(∫ ·

0
Qn

i (s)ds
)
, (3)
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for some Poisson processes D̃n
i and R̃n

i with rates µn
i > 0 and θn

i > 0, respectively. The 3I
processes An

i , D̃n
i , R̃n

i , and the initial condition Xn(0) = (Xn
1 (0), . . . , Xn

I (0)), refereed to as
the stochastic primitives, are further assumed to be mutually independent (for each n). The
above processes are related via the following equation

Xn
i (t) = Xn

i (0) + An
i (t)−Dn

i (t)−Rn
i (t), i ∈ I, t ≥ 0. (4)

For simplicity, it will be assumed that all customers that are initially present in the system
either start their service at time zero or are queued, and determining how many customers of
each class start to be served at time zero is left for the routing policy. Namely, given Xn(0),
the policy will decide the values of Qn(0) and Zn(0) (subject, of course, to (1) and (2) holding
at t = 0).

It is well-understood that if the routing decisions are made in a causal manner based on the
observed histories of the processes involved, namely Dn, Rn, Xn, Qn, Zn, then the construction
of the departure and abandonment processes via (3) assures that the customers’ service and
patience times are independent, exponential random variables (as a simple consequence of [10,
Theorem 16, p. 41]). A special case is that of Markovian policies, under which (probabilistic)
decisions are made depending on the current state, (Xn, Qn). However, for the treatment of
this paper, it will not be necessary to require any non-anticipating property of the class of
policies we consider (although the exponential structure of service and abandonment will be
lost when the policy does not satisfy a nonanticipating property). It will be simpler to use an
elaborate definition of the term ‘policy’, that will only rely on the equations presented thus far
and the assumptions regarding the primitive processes. More precisely, any process

πn = (Dn, Rn, Xn, Qn, Zn) (5)

will be referred to as a policy for the nth system, provided that equations (1)–(4) hold, and
that the stochastic primitives satisfy our probabilistic assumptions mentioned above. The five
processes on the r.h.s. of (5) are further assumed to posses right-continuous sample paths.
Given n, the collection of all policies πn for the nth system will be denoted by Πn. Note that
policies need not satisfy any work conservation (i.e., non-idling server) condition.

For each i ∈ I, let ci ≥ 0 denote the holding cost per unit time for class-i customers. Thus,
the instantaneous holding cost at time time is given by

c ·Qn(t) =
∑

i∈I
ciQ

n
i (t) .

For a policy πn consider the normalized average holding cost function

Cn,T (πn) =
1

nT
E

[ ∫ T

0
c ·Qn(t)dt

]
, (6)

where Qn and πn are related via (5). Let the corresponding value be defined by

Vn,T = inf
πn∈Πn

Cn,T (πn). (7)

We consider a sequence of queueing systems as above, indexed by the number of servers n ≥ 1.
The parameters are assumed to satisfy the following.
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Figure 1: A model with three customer classes

Assumption 2.1. There exist positive constants λi, µi and θi, i ∈ I, such that, as n →∞,

λn
i

n
→ λi, µn

i → µi, θn
i → θi. (8)

Note that the system may be overloaded in the sense that the workload exceeds the service
capacity. However, since the abandonment rates are non zero stability holds automatically.
The following will be assumed regarding the initial state.

Assumption 2.2. The random variables n−1Xn(0) are uniformly bounded by a constant M .

Remark 2.1. Suppose that, in addition to the holding cost c ·Qn, we incur a penalty of size
γi for each class-i customer that abandons the queue (i.e., reneges) before being admitted to
service. To see how the cost function (6) is affected, observe that the expected reneging rate
of class-i customers at time t is θiE(Qn

i (t), with associated penalty γiθiE(Qn
i (t)). Therefore,

we obtain the modified cost function

Cn,T (πn) =
1

nT
E

[ ∫ T

0

(∑

i

ciQ
n
i (t) +

∑

i

γiθiQ
n
i (t)

)
dt

]

=
1

nT
E

[ ∫ T

0

∑

i

(ci + γiθi)Qn
i (t)dt

]

It is evident that this cost function reduces to the one in (6) once the cost parameters ci are
replaced by the modified values c̄i = ci + γiθi. Thus, all ensuing results hold for the extended
cost model with reneging penalties after replacing each ci by c̄i.

2.2 Scaled processes

We introduce some notation. The fluid scaled processes are defined as

X̄n =
1
n

Xn, Q̄n =
1
n

Qn, Z̄n =
1
n

Zn,
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Ān =
1
n

An, R̄n =
1
n

Rn, D̄n =
1
n

Dn.

Note that by equations (1)–(2), (4), these processes satisfy the following
∑

i∈I
Z̄n

i (t) ≤ 1 (9)

Q̄n
i (t) = X̄n

i (t)− Z̄n
i (t) (10)

X̄n
i (t) = X̄n

i (0) + Ān
i (t)− R̄n

i (t)− D̄n
i (t). (11)

In the remainder of this subsection we provide some approximations for the scaled processes
that will be useful later on in the paper. Given T and δ ∈ (0, 1), define the event En = En

δ,T

by
En = En

A ∩ En
D ∩ En

R, (12)

where
En

A =
{

max
i

sup
t∈[0,T ]

∣∣∣Ān
i (t)− λn

i

n
t
∣∣∣ < δ

}
,

En
D =

{
max

i
sup

t∈[0,T ]

∣∣∣D̃
n
i (nt)
n

− µn
i t

∣∣∣ < δ
}

,

and

En
R =

{
max

i
sup

t∈[0,KT ]

∣∣∣R̃
n
i (nt)
n

− θn
i t

∣∣∣ < δ
}

.

Above, K = K(T ) = 1
2cλT + M + 1, where cλ = supn

λn

n < ∞, and M < ∞ denotes a bound
on n−1‖Xn(0)‖.
Lemma 2.1. Let T > 0 and δ ∈ (0, 1) be given. Fix a sequence of policies πn ∈ Πn, n ∈ N.
Then on the event En, one has, for every n,

∣∣∣D̄n
i (t)− µn

i

∫ t

0
Z̄n

i (s)ds
∣∣∣ ∨

∣∣∣R̄n
i (t)− θn

i

∫ t

0
Q̄n

i (s)ds
∣∣∣ < δ, i ∈ I, t ∈ [0, T ] (13)

and, with K = K(T ) as above,

∫ T

0
Q̄n

i (s)ds ≤ KT, i ∈ I. (14)

Moreover, P(En) → 1 as n →∞.

Proof. Fix i ∈ I. By (3) and the definition of En
D, one has |D̄n

i (t) − µn
i

∫ t
0 Z̄n

i (s)ds| < δ, for
every t such that

∫ t
0 Z̄n

i (s)ds ≤ T . By (9), this property is valid for every t ≤ T , and therefore
the assertion regarding the processes D̄n follows.

Similarly, by (3) and the definition of En
R, one has |R̄n

i (t)− θn
i

∫ t
0 Q̄n

i (s)ds| < δ, for every t

such that
∫ t
0 Q̄n

i (s)ds ≤ KT . Hence to prove the statement regarding R̄n, it suffices to show
that on En we have (14). Now, by (10), (11), and the positivity of D̄n

i , R̄n
i and Z̄n

i , we have
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Q̄n
i (t) ≤ X̄n

i (0) + Ān
i (t). Thus by assumption 2.2 and En

A, we have on En that, for all t ≤ T ,
Q̄n

i (t) ≤ M + λn
i
n t + δ. Integrating from 0 to T we obtain (14), hence follows (13).

Finally, the convergence P(En
A) → 1 as n →∞ is a standard consequence of the fact that,

for each i, Ān
i = n−1An

i , where An
i is a Poisson process of rate λn

i and limn n−1λn
i ∈ (0,∞)

(see [11], chapter 5.6). For a similar reason, P(En
D ∩ En

R) → 1. Consequently, P(En) → 1.

3 The Fluid Model

In this section we consider a steady-state fluid model and corresponding linear program (LP)
that are suggested by the scaled stochastic model of the previous section. We provide the
simple solution of this fluid LP, and then show how it suggests (rather than implies) the cµ/θ
index rule that is the topic of this paper.

Consider quantities x, q and z, that formally represent the long-run average of the scaled
processes for large values of n. These quantities are related by x = q + z, while q and z must
satisfy 




λi = µizi + θiqi

zi, qi ≥ 0

∑
i∈I zi ≤ 1.

(15)

This leads one to consider the problem

minimize c · q over all pairs (q, z) satisfying (15). (16)

Denote by (q∗, z∗) a solution to this LP, let x∗ = q∗ + z∗, and let V ∗ denote the minimal
value. To present the solution, it will be convenient to relabel the classes so that

c1µ1

θ1
≥ · · · ≥ cIµI

θI
. (17)

It follows from the first equation in (15) that
∑

i

ciqi =
∑

i

ci

(λi

θi
− µi

θi
zi

)
.

Thus the LP is equivalent to the problem:

maximize
∑

i

ciµi

θi
zi subject to 0 ≤ zi ≤ λi

µi
,

∑

i

zi ≤ 1. (18)

The solution to the latter is obviously to assign maximum values (namely λi/µi) to zi’s that
correspond to the larger class indices, until the constraint

∑
i zi ≤ 1 is saturated. More

precisely, the following is a solution,

z∗ =
(λ1

µ1
, . . . ,

λi0−1

µi0−1
, 1−

i0−1∑

j=1

λj

µj
, 0, . . . , 0

)
,

q∗ =
(
0, . . . , 0,

λi0 − µi0zi0

θi0

,
λi0+1

θi0+1
, . . . ,

λI

θI

)
,

(19)
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where

i0 = max
{

i ∈ [1, . . . , I + 1] :
i−1∑

j=1

λj

µj
< 1

}
. (20)

In case when i0 = I + 1, the interpretation of (19) is

z∗ =
(λ1

µ1
, . . . ,

λI

µI

)
, q∗ =

(
0, . . . , 0

)
. (21)

Finally, V ∗ = c · q∗. Note that the solution need not be unique, as is the case, for example,
when two of the indices have the same value for ci, µi, θi and λi.

The value of i0 is related to whether the system is overloaded or not. There are three
possibilities:

1. Underloaded system:
∑

i z
∗
i < 1. Here i0 = I + 1, and q∗i = 0 for all i (all queues are

empty at steady state).

2. Critically loaded system:
∑

i z
∗
i = 1. Here i0 = I, but still q∗i = 0 for all i (which can be

attributed to the stabilizing effect of abandonments).

3. Overloaded system:
∑

i z
∗
i > 1. Here 1 ≤ i0 ≤ I, with zi = λi/µi and q∗i = 0 for all

i < i0, while zi = 0 and q∗i > 0 for i > i0.

Clearly the first two cases are degenerate, in the sense that all queues are empty in any
optimal solution. Our main interest will be in overloaded system case, where the service
capacity is insufficient to handle all the service requirements, and non-trivial queues build up
in fluid scale.

Let us see how the optimal fluid solution may be translated back to the original queueing
system. A straightforward approach could be to assign a fixed number of servers to each
service class according to the optimal fluid server share z∗i : that is, assign ni = nz∗i of the total
n servers to class i. This server scheduling scheme suffers from several shortcoming, among
them non-sharing of servers across different service classes, and the need to precisely assess the
arrival rate λi is order to compute zi.

A more flexible approach, which is the one taken in this paper, relies on a priority rule that
assigns strict priority to customers with smaller index i (which corresponds larger ciµi/θi). In
the fluid limit, this would tend to indirectly realize the optimal LP solution, by fully satisfying
the service requirements of the higher service classes (up to i0), while effectively starving the
lower service classes beyond i0.

We turn now to establish that this heuristic argument indeed leads to priority policies that
are optimal in an appropriate asymptotic sense.

4 A lower bound on performance

In this section we state and prove Proposition 4.1, which establishes a lower bound on the
optimal performance. As in the previous section, we assume here and in the following that
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the service classes are numbered in decreasing orders of ciµi/θi, so that (17) holds. Recall the
event En = En

δ,T from (12).

Lemma 4.1. There exist constants c0 and n0 such that for every δ ∈ (0, 1), T ≥ 1, n ≥ n0

and πn ∈ Πn, the following holds on En
δ,T :

‖X̄n(T )‖ ≤ c0.

Proof. Let δ ∈ (0, 1) and T > 0 be given. Denote ξn =
∑

i X̄
n
i . Recall that ‖ξn(0)‖ ≤ M , by

Assumption 2.2. By (11),

ξn(t) = ξn(0) +
∑

i

(Ān
i (t)− D̄n

i (t)− R̄n
i (t)), t ≥ 0.

Denote throughout λ̄n
i = λn

i /n. Using Lemma 2.1, we have on En = En
δ,T

ξn(t) = ηn(t) +
∑

i

∫ t

0
(λ̄n

i − µn
i Z̄n

i (s)− θn
i Q̄n

i (s))ds, t ∈ [0, T ],

where |ηn(t)| ≤ m0 := M + 3I, t ∈ [0, T ], and we used δ < 1. Let θ0 = 1
2 mini∈I θi > 0, and let

n0 be such that θn
i ≥ θ0 for all n ≥ n0, i ∈ I. Let m =

∑
i supn λ̄n

i < ∞. Then for n ≥ n0,
∑

i

(λ̄n
i − µn

i Z̄n
i − θn

i Q̄n
i ) ≤ m− θ0

∑

i

Q̄n
i ≤ m− θ0(ξn − 1),

using (9) and (10) in the last inequality. Hence, with m′ = m+θ0, letting γn denote the unique
solution to

γn(t) = ηn(t) +
∫ t

0
(m′ − θ0γ

n(s))ds, t ∈ [0, T ],

we have
d

dt
(ξn − γn) ≤ −θ0(ξn − γn) and (ξn − γn)(0) = 0.

We conclude that ξn ≤ γn on [0, T ], on the event En. The solution γn is given by

γn(t) = ηn(t)− θ0

∫ t

0
ηn(s)e−θ0(t−s)ds + m′t− θ0

∫ t

0
m′se−θ0(t−s)ds

≤ 2|ηn|∗T + m′θ0 for all t ∈ [0, T ].

Hence γn(t) ≤ 2m0 + m′θ0, t ∈ [0, T ] on En. Consequently, ‖X̄n(t)‖ = ξn(t) admits the same
bound, on the same event.

In the following we assume, without loss of generality, that the constants of the previous
lemma satisfy c0 ≥ M ≥ 1. The following proposition is the main result of this section.

Proposition 4.1. Denote
v = lim inf

T→∞
lim inf
n→∞ Vn,T ,

then
v ≥ V ∗. (22)
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Proof. Let ε > 0 be arbitrary, and fixed. Let c0 be the constant from the above lemma. Fix
T ≥ c0/ε for which

lim inf
n

Vn,T ≤ v + ε.

Fix also a sequence of policies πn ∈ Πn, n ∈ N, under which

lim inf
n

Cn,T (πn) ≤ v + 2ε.

In what follows we shall prove that

lim inf
n

Cn,T (πn) ≥ V ∗ − ρ(ε), (23)

for some function ρ : [0,∞) → [0,∞) that is continuous and vanishing at zero. This, combined
with the previous display and the fact that ε is arbitrary, implies v ≥ V ∗, hence (22).

Let Xn, Dn, Rn, etc. denote the processes corresponding to πn via (5).

Consider the I-dimensional random vectors qn = (qn
1 , . . . , qn

I ), zn = (zn
1 , . . . , zn

I ) defined by

qn =
1
T

∫ T

0
Q̄n(s)ds, zn =

1
T

∫ T

0
Z̄n(s)ds. (24)

By (11), for every i ∈ I,

1
T

(
X̄n

i (T )− X̄n
i (0)

)
=

1
T

Ān
i (T )− 1

T
D̄n

i (T )− 1
T

R̄n
i (T )

= λ̄n
i − θn

i qn
i − µn

i zn
i + pn

1,i + pn
2,i + pn

3,i,

where

pn
1,i =

1
T

Ān
i (T )− λ̄n

i , pn
2,i = − 1

T
D̄n

i (T ) + µn
i zn

i , pn
3,i = − 1

T
R̄n

i (T ) + θn
i qn

i .

Fix δ ∈ (0, 1). Using Lemma 4.1 and the fact T ≥ c0/ε, we have on En = En
δ,T

pn
4,i(T ) =

1
T

(
X̄n

i (T )− X̄n
i (0)

) ≤ c0

T
≤ ε,

and

pn
4,i(T ) ≥ −X̄n

i (0)
T

≥ −M

T
≥ −c0

T
≥ −ε,

by assumption 2.2. By (12) and Lemma 2.1, on the event En, one has

en
i :=

4∑

k=1

|pn
k,i(T )| ≤ 3δ

T
+ ε ≤ 4ε.

As a result, on the event En, the quantities (qn, zn) satisfy




λ̃n
i = θn

i qn
i + µn

i zn
i

zn
i , qn

i ≥ 0

∑
i∈I zn

i ≤ 1,

(25)
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where |λ̃n
i − λ̄n

i | ≤ 4ε.

The proof of the following lemma is elementary, and thus omitted.

Lemma 4.2. The solution V of the LP (16) is continuous in the parameters (λ, µ, θ) over the
set (0,∞)I × (0,∞)I × (0,∞)I .

As a result of (25) and the above lemma, there exists n0 = n0(ε) such that for all n ≥ n0,
we have on the event En

c · qn ≥ V ∗ − ρ(ε),

for some function ρ : [0,∞) → [0,∞) that is continuous and vanishing at zero. Hence

Cn,T (πn) = E[c · qn] ≥ E[1En c · qn],

and
lim inf

n
Cn,T (πn) ≥ (V ∗ − ρ(ε)) lim inf

n
P(En) = V ∗ − ρ(ε),

by Lemma 2.1. This shows (23), and, as argued above, inequality (22) follows.

5 The preemptive cµ/θ policy

We next show that the preemptive cµ/θ priority rule asymptotically achieves the lower bound
V ∗ established in the previous section. Thus, let πn

p denote the scheduling policy that assigns
preemptive priority to service classes with higher ciµi/ci. If there are two or more classes with
the same index, some arbitrary but fixed order is assumed.

Theorem 5.1. Let Assumptions 2.1 and 2.2 hold. Then

lim inf
T→∞

lim inf
n→∞ Vn,T = lim sup

T→∞
lim sup

n→∞
Cn,T (πn

p ) = V ∗. (26)

Throughout this section, the hypotheses of Theorem 5.1 are in force, and the processes Dn,
Rn, Xn, etc., correspond to the policy πn

p . The main tool will be the following.

Lemma 5.1. For every ε > 0, there exists Tε ∈ (0,∞) such that for every T ∈ (Tε,∞),

sup
t∈[Tε,T ]

‖Z̄n(t)− z∗‖ ∨ ‖Q̄n(t)− q∗‖ < ε (27)

holds on the event En
δ,T for all n ≥ n0, where both δ and n0 depend on ε and T .

Proof. A simple analysis of the preemptive priority scheme shows the following relations
between the processes X̄n, Z̄n and Q̄n, namely

Z̄n
i (t) = X̄n

i (t) ∧ [1−
i−1∑

j=1

X̄n
j (t)]+, (28)

11



Q̄n
i (t) = X̄n

i (t) ∧ [
i∑

j=1

X̄n
j (t)− 1]+. (29)

Using this in (11) gives

X̄n
i (t) = X̄n

i (0) + λ̄n
i t− µn

i

∫ t

0
X̄n

i (s) ∧ [1−
i−1∑

j=1

Xn
j (s)]+ds

− θn
i

∫ t

0
X̄n

i (s) ∧ [
i∑

j=1

X̄n
j (s)− 1]+ds + en

i (t), (30)

where

en
i (t) =

(
Ān

i (t)− λ̄n
i t

)−
(

D̄n
i (t)− µn

i

∫ t

0
Z̄n

i (s)ds

)
−

(
R̄n

i (t)− µn
i

∫ t

0
Q̄n

i (s)ds

)
.

Note by Lemma 2.1 that, for given T and δ, we have on En
δ,T

|en
i |∗T ≤ 3δ, i ∈ I. (31)

For x = (xi)i∈I ∈ [0,∞)I let ξ = (ξi)i∈I denote the unique solution to the system of
ordinary differential equations

ξi(t) = xi +λit−µi

∫ t

0
ξi(s)∧ [1−

i−1∑

j=1

ξj(s)]+ds− θi

∫ t

0
ξi(s)∧ [

i∑

j=1

ξj(s)−1]+ds, t ≥ 0, i ∈ I.

(32)
To denote the dependence on the initial condition, write ξ(x, t). An argument by induction in
i, provided in the appendix, shows

lim
t→∞ ξ(x, t) = x∗, (33)

uniformly for x ∈ [0, M ]I . In what follows, write ξn(t) for ξ(X̄n(0), t). One has by (30) and
(32),

‖ξn(t)− X̄n(t)‖ ≤ kn(t) + m

∫ t

0
‖ξn(s)− X̄n(s)‖ds,

where m = 2I maxi µi ∨ θi, and

kn(t) =
(‖λ− λ̄n‖+ ‖µ− µn‖+ K‖θ − θn‖) t + ‖en(t)‖, (34)

whence by Gronwall’s lemma,

‖ξn − X̄n‖∗t ≤ |kn|∗t emt, t ≥ 0. (35)

Let now ε > 0 be given. Using (33) let Tε be such that ‖ξn(t) − x∗‖ < ε/2 for all t ≥ Tε

and n ∈ N. Next fix T ∈ (Tε,∞). We are required to show that (27) holds on En
δ,T for suitable

12



δ and all sufficiently large n. Combining Assumption 2.1, (31), (34) and (35), it follows that δ
can be chosen (depending on T ) so that on En

δ,T , we have ‖ξn − X̄n‖∗T < ε/2, provided that n
is sufficiently large. Therefore on En

δ,T , for n large,

‖X̄n(t)− x∗‖ < ε, t ∈ [Tε, T ]. (36)

Finally, due to (28) and (29), Z̄n and Q̄n are globally Lipshitz as functions of X̄n. Hence (27)
follows from (36).

Proof of Theorem 5.1. In view of Proposition 4.1, it suffices to prove

vp := lim sup
T→∞

lim sup
n→∞

Cn,T (πn
p ) ≤ V ∗. (37)

To this end, note first that, given t, the random variables ‖X̄n‖∗t , n ∈ N are uniformly inte-
grable. Indeed, by (11), using the positivity of X̄n, R̄n and D̄n, we have

‖X̄n‖∗t ≤ M + ‖Ān‖∗t ,

thus the uniform integrability of ‖X̄n‖∗t follows from that of ‖Ān‖∗t as a family of scaled Poisson
processes.

Fix ε > 0. Fix T > Tε, where Tε is as in Lemma 5.1. Let δ and n0 be the corresponding
constants from Lemma 5.1. We have by (6),

Cn,T (πn
p ) ≤ 1

T
E

[
1En

δ,T

∫ T

0
c · Q̄n(t)dt

]
+ E

[
1(En

δ,T )c‖c · Q̄n‖∗T
]
.

By the uniform integrability of ‖X̄n‖∗T , and (9), the random variables ‖Q̄n‖∗T are uniformly
integrable. Moreover,

1
T
E

[
1En

δ,T

∫ T

0
c · Q̄n(t)dt

]
=

1
T
E1En

δ,T

[∫ Tε

0
c · Q̄n(t)dt +

∫ T

Tε

c · Q̄n(t)dt

]

≤ ‖c‖K(Tε)Tε

T
+ c · q∗ + ‖c‖ε,

where we used Lemma 2.1 and Lemma 5.1, and assumed n ≥ n0. Sending n → ∞ and then
T →∞ shows

vp ≤ c · q∗ + ‖c‖ε = V ∗ + ‖c‖ε.
Finally, since ε > 0 is arbitrary, inequality (37) follows.

6 The non-preemptive cµ/θ policy

In this section we analyze the non-preemptive cµ/θ policy, denoted πn
np. Non-preemptive

policies are necessary in applications where service may not be interrupted; however their
analysis is often more involved. In an asymptotic framework, sometimes one can show that the

13



gap between optimal performance under nonpreemptive policies and that under preemptive
policies, vanishes in the limit. This is the case, for example, in the works [2] and [4], which
analyze many-server models in a diffusion regime. See also [23] for comparison of preemptive
and nonpreemptive performance under various asymptotic regimes. The main result of this
section shows that, under suitable assumptions, the performance of πn

np asymptotically achieves
the lower bound V ∗ from Proposition 4.1. Hence in view of the result of Section 5, the optimal
performance under preemptive and nonpreemptive policies is asymptotically the same.

A precise description of the policy πn
np is as follows.

• t = 0. Given the initial condition Xn(0), as many customers as possible are admitted at
time zero, from the classes with highest priority.

• t > 0. Every time a server becomes free and some customers wait to be served, a
customer from the class with the highest priority is admitted to service. Whenever a
customer arrives to find a free server, it is admitted to service. Finally, service to a
customer may not be stopped before it is completed.

The main result of this section is the following.

Theorem 6.1. Let Assumptions 2.1 and 2.2 hold. Assume, in addition, that n−1Xn(0) con-
verge in distribution to x∗. Then

lim inf
T→∞

lim inf
n→∞ Vn,T = lim sup

T→∞
lim sup

n→∞
Cn,T (πn

np) = V ∗. (38)

To present the main estimate on which the proof is based, we need some notation. Fix
vectors v and v′ in (0, 1)I with the following properties: If i0 > 1 then, for all i < i0,

(a) vi < v′i/16, (b) vi < v′i inf
n

µn
i

2θn
i

, (c) v′i < v′i0/i0, (39)

and if i0 ≤ I then, for all i ≥ i0,

(a) v′i0 = v′i < vi/16, (b) v′i < vi inf
n

θn
i

2µn
i

. (40)

For any ε > 0 let εi = εvi and ε′i = εv′i, i = 1, . . . , I, and define Nε to be the following
neighborhood of (q∗, z∗), namely

Nε =
∏

i∈I
(q∗i − εi, q

∗
i + εi)×

∏

i∈I
(z∗i − ε′i, z

∗
i + ε′i).

Define the event Sn
ε ≡ Sn

ε,T by

Sn
ε,T := {(Q̄n(t), Z̄n(t)) ∈ Nε, ∀ t ∈ [0, T ]}.

Proposition 6.1. Let the hypotheses of Theorem 6.1 hold. There exists ε0 > 0 such that for
all ε ∈ (0, ε0) and T > 0, under the policy πn

np, one has limn→∞ P(Sn
ε,T ) = 1.
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Let us first show that Theorem 6.1 is an immediate consequence of Proposition 6.1.

Proof of Theorem 6.1. In view of Proposition 4.1, we only need to show

lim sup
T→∞

lim sup
n→∞

Cn,T (πn
np) ≤ V ∗.

Since under πn
np on Sn

ε,T one has c · Q̄n(t) ≤ c · q∗+ c · vε for all t ∈ [0, T ], the proof is analogous
to that of Theorem 5.1 and we omit the remaining details.

Proof of Proposition 6.1. Throughout, the processes Dn, Rn, Xn, etc., correspond to the
policy πn

np. Fix ε > 0 and T > 0 (the value of ε will later be assumed, without loss of generality,
to be sufficiently small). The main idea of the proof is the following. For n ∈ N let

τn = inf{t ≥ 0 : (Q̄n(t), Z̄n(t)) /∈ Nε} ∧ (T + 1),

and note that, because Nε is an open set and Q̄n, Z̄n have right-continuous paths, Sn
ε can be

expressed as the event {τn > T}. In order to estimate from below P(τn > T ) we prove, in four
steps, the following claims.

1) For every i < i0,
lim

n→∞P(|Q̄n
i |∗τn∧T ≥ εi) = 0. (41)

2) For every i < i0,
lim

n→∞P(|Z̄
n
i − z∗i |∗τn∧T ≥ ε′i) = 0. (42)

3) For i = i0 one has (42) and

lim
n→∞P(|Q̄n

i − q∗i |∗τn∧T ≥ εi) = 0. (43)

4) For every i > i0 one has (43) and (42).

The combination of the four statements shows that, with probability tending to one as
n →∞, (Q̄n(t), Z̄n(t)) ∈ Nε for all t ∈ [0, τn ∧ T ]. By right continuity of the sample paths, on
the event {τn ≤ T} one has (Q̄n(τn), Z̄n(τn)) /∈ Nε. This shows that, with probability tending
to one, τn > T , thus establishing the proposition.

The four steps corresponding to the above four items appear after the following lemma.

Given δ > 0, define Bn
δ := {‖X̄n(0) − x∗‖ < δ} and, slightly modifying the notation from

Section 2, let En
δ := Bn

δ ∩ En
A ∩ En

D ∩ En
R. We fix δ ∈ (0, ε), whose precise value will be

determined later.

The following is an adaptation of Lemma 2.1.

Lemma 6.1. There exists δ0 ∈ (0, 1) such that for all δ ∈ (0, δ0), n ∈ N, on the event Bn
δ one

has
‖Q̄n(0)− q∗‖ ≤ 2Iδ, and ‖Z̄n(0)− z∗‖ ≤ 2Iδ.

Consequently, the conclusions (13) and (14) are valid under En
δ , and P(En

δ ) → 1 as n →∞.
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Proof. The last two claims are immediate consequences of Lemma 2.1 and the assumption
that X̄n(0) converge to x∗ in distribution. It remains to prove the first claim of the lemma.

According to the policy, the classes with smallest indices receive highest priority in the
initial job assignment. Let i1 be the largest number i for which

∑i
j=1 X̄n

j (0) ≤ 1. Then clearly,
for i ≤ i1,

Z̄n
i (0) = X̄n

i (0) ∈ [x∗i − δ, x∗i + δ], Q̄n
i (0) = 0.

Notice that, x∗ = q∗ + z∗. By definition of i0,
∑i0−1

j=1 x∗j < 1. Therefore, for δ small enough,∑i0−1
j=1 (x∗j + δ) < 1, hence i1 ≥ i0 − 1. Using the above display we conclude that

Z̄n
i (0) ∈ [z∗i − δ, z∗i + δ], Q̄n

i (0) = 0 ∈ [q∗i − δ, q∗i + δ], for all i < i0. (44)

If i0 = I + 1 we are done. Otherwise, Z̄n
i0

(0) = min{1 − ∑i0−1
j=1 Z̄n

j (0), X̄n
i0

(0)}, and using
(44) and the fact z∗i0 = 1 −∑i0−1

j=1 z∗j , 1 −∑i0−1
j=1 Z̄n

j (0) ∈ [z∗i0 − (i0 − 1)δ, z∗i0 + (i0 − 1)δ] and
X̄n

i0
(0) ∈ [x∗i0 − δ, x∗i0 + δ]. It follows that

Z̄n
i0(0) ∈ [z∗i0 − (i0 − 1)δ, z∗i0 + (i0 − 1)δ], Q̄n

i0(0) = X̄n
i0(0)− Z̄n

i0(0) ∈ [q∗i0 − i0δ, q
∗
i0 + i0δ].

Finally, since
∑i0

j=1 Z̄n
j (0) ∈ [1−2(i0−1)δ, 1], we have for every i ∈ [i0+1, I], Z̄n

i (0) ≤ 2(i0−1)δ.
Since z∗i = 0 for such i, the claim regarding Z̄n(0) follows. Also, since x∗i = q∗i for such i,
Q̄n

i (0) ∈ [X̄n
i (0)− 2(i0 − 1)δ, X̄n

i (0)] ⊂ [q∗i − (2i0 − 1)δ, q∗i + δ].

We now proceed with the proof of Proposition 6.1.

Step 1: We prove that, in case i0 ≥ 2, (41) holds for i < i0. The case i0 = I + 1 is very
simple and treated separately at the end of this step. For now let us assume 2 ≤ i0 ≤ I.
Denote Q̄n =

∑i0−1
i=1 Q̄n

i and εm = mini=1,...,i0−1 εi. Let Fn
i = {|Q̄n

i |∗τn∧T ≥ εi, τ
n ≤ T} and

Fn = {|Q̄n|∗τn∧T ≥ εm}. We shall argue that there exists δ > 0 such that

lim
n→∞P(E

n
δ ∩ Fn) = 0. (45)

Since Fn
i ⊂ Fn, this will show limn→∞ P(En

δ ∩ Fn
i ) = 0, and since by Lemma 6.1 P(En

δ ) → 1,
(41) will follow for i = 1, . . . , i0 − 1.

We will now analyze the event En
δ ∩Fn, toward proving (45). The idea of the proof is that

the time when the process crosses εm must be preceded by an interval on which it is strictly
positive (see Figure 2). On such an interval the index policy gives priority to at least one of
the classes from {1, . . . , i0− 1} over the others, and thus it is unlikely that the queue in one of
these classes continues to build. Let us then denote

σn = inf{t ≥ 0 : Q̄n(t) ≥ εm} ∧ (T + 1), (46)

and
σn = sup{t ≤ σn : Q̄n(t) ≤ εm/2}. (47)

We assume, without loss of generality, that δ is so small that, under Bn
δ one has Q̄n(0) < εm/4.

Then is it not hard to see that on the event En
δ ∩ Fn one has 0 < σn ≤ σn ≤ τn ≤ T .

Consequently, using (46) and (47), one has on this event

Q̄n(t) ≥ εm/2 for all t ∈ [σn, σn],
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Figure 2: The random times σ̄n and σn

and Q̄n(σn)− Q̄n(σn−) ≥ εm/2. With probability one, the size of the (upward) jump that the
un-normalized queue length process

∑i0−1
i=1 Qn

i might have at time σn is at most one. Assuming
without loss of generality that n > 4/εm, the size of the jump of Q̄n is at most εm/4, and as a
result

Q̄n(σn)− Q̄n(σn) > εm/4. (48)

Recall that the cµ/θ policy assigns to the classes 1, . . . , i0 − 1 priority over the other classes.
Since on the event En

δ ∩ Fn there is a least one customer of class i < i0 at every time within
the interval [σn, σn], every server that becomes free within this interval is assigned a new job
from one of the classes 1, ..., i0 − 1. In addition, the work conserving assumption assures that
at σn and σn all servers are occupied, i.e.

∑I
i=1 Z̄n

i (σ̄n) =
∑I

i=1 Z̄n
i (σn) = 1. As a result, on

En
δ ∩ Fn one has

I∑

i=i0

(D̄i(σ̄n)− D̄i(σn)) =
i0−1∑

i=1

(Z̄i(σ̄n)− Z̄i(σn)). (49)

Denote

X̄n =
i0−1∑

i=1

X̄n
i , Z̄n =

i0−1∑

i=1

Z̄n
i , Ān =

i0−1∑

i=1

Ān
i , R̄n =

i0−1∑

i=1

R̄n
i , D̄n =

i0−1∑

i=1

D̄n
i ,

and

D̄n
I =

I∑

i=1

D̄n
i .

On the event En
δ ∩ Fn, using (10) and (11), we obtain

Q̄n(σn)− Q̄n(σn)
= X̄n(σn)− X̄n(σn)− (Z̄n(σn)− Z̄n(σn))
= Ān(σn)− Ān(σn)− (R̄n(σn)− R̄n(σn))− (D̄n(σn)− D̄n(σn))− (Z̄n(σn)− Z̄n(σn))
= Ān(σn)− Ān(σn)− (R̄n(σn)− R̄n(σn))− (D̄n

I (σn)− D̄n
I (σn)),

where on the last line we used (49).
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In what follows, denote λ̄n
i = λn

i /n. Since the increment of R̄n is nonnegative, using (48)
along with the definition of En

δ and Lemma 6.1, we have on En
δ ∩ Fn

εm

4
≤ Ān(σn)− Ān(σn)− D̄n

I (σn) + D̄n
I (σn)

≤ (σn − σn)
i0−1∑

i=1

λ̄n
i −

∫ σn

σn

I∑

i=1

µn
i Z̄n

i (s)ds + 4Iδ.

By definition of τn, one has Z̄n
i (t) ≥ z∗i − ε′i, for t ∈ [0, τn). Therefore using Assumption 2.1,

given δ′ > 0, for all sufficiently large n, the following holds on En
δ ∩ Fn

εm

4
≤ (σn − σn)

[ i0−1∑

i=1

(λi + δ′)−
I∑

i=1

(µi − δ′)(z∗i − ε′i)
]

+ 4Iδ. (50)

It follows from (19) and the assumption i0 ≤ I that

i0−1∑

i=1

λi <
I∑

i=1

µiz
∗
i .

Thus we may assume without loss of generality that δ′ is sufficiently small so that the expression
in square brackets in (50) is negative. Assuming further, without loss, that 4Iδ < εm/4,
inequality (50) can not hold. We have thus shown the following. There exists a constant
ε0 > 0 such that for every ε ∈ (0, ε0) there exists δ0 = δ0(ε) > 0, such that if δ ∈ (0, δ0) then
En

δ ∩ Fn is empty for all sufficiently large n (the freedom of selecting any δ ∈ (0, δ0), rather
than a particular δ(ε), is not used in the present argument, but it will be important when the
result of this step is used in the following steps). This shows that (45), and consequently (41),
hold for every ε ∈ (0, ε0).

Finally, the case i0 = I + 1 is very easy. By (20)–(21), in this case
∑I

i=1 z∗i < 1 hence
‖Z̄n− z∗‖ < ε, provided ε is sufficiently small. This means that within [0, τn] there are always
free servers, and by work conservation, no customers in queue. Thus on the event {τn ≤ T} it
is impossible that Qn

i (τn) > 0 for any i, and (41) follows.

Step 2: We assume i0 ∈ [2, I + 1] and prove (42), for i < i0.

Fix i < i0. Let Gn
i,+ = {Z̄n

i (τn ∧ T ) − z∗i ≥ ε′i}, and Gn
i,− = {Z̄n

i (τn ∧ T ) − z∗i ≤ −ε′i},
Gn

i = Gn
i,+ ∪Gn

i,−. We will establish (42) by showing that there exists δ such that

lim
n
P(En

δ ∩Gn
i ) = 0. (51)

Consider first the event En
δ ∩ Gn

i,+. We use the symbols σn, σn in a way similar to their
use in step 1. Namely, let ε > 0 be given, and let

σn = inf{t ≥ 0 : Z̄n
i (t)− z∗i ≥ ε′i} ∧ (T + 1), σn = sup{t ≤ σn : Z̄n

i (t)− z∗i ≤ ε′i/2}.
Without loss of generality, δ is assumed to be so small that on En

δ one has |Z̄n
i (0)− z∗i | < ε′i/4.

Then arguing as in step 1, on En
δ ∩Gn

i,+ one has

Z̄n
i (t) ≥ z∗i + ε′i/2 for all t ∈ [σn, σn], (52)
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and, assuming n is sufficiently large,

Z̄n
i (σn)− Z̄n

i (σn) > ε′i/4. (53)

Sum (10) and (11) and isolate Z̄n
i (t) to obtain

Z̄n
i (t) = X̄n

i (0) + Ān
i (t)− D̄n

i (t)− R̄n
i (t)− Q̄n

i (t). (54)

We now use the results of step 1. Note by (39)(a) that εi ≤ ε′i/16. As mentioned in the first
step Fn

i ⊂ Fn. Then by taking δ smaller if necessary, we have that for all sufficiently large n,
En

δ ∩Fn is empty, thus also En
δ ∩Fn

i . By definition of Fn
i , we have on the complement Fn,c

i of
Fn

i that Q̄n
i (t) ≤ ε′i/16 for t ∈ [0, τn ∧ T ]. As a result, on the event En

δ ∩ Fn,c
i ∩Gn

i,+ we have,
using (54) and the fact that R is nondecreasing,

ε′i
8

< Ān
i (σn)− Ān

i (σn)− D̄n
i (σn) + D̄n

i (σn).

Hence using Lemma 6.1, we have on the same event, for all sufficiently large n,

ε′i
8

< (σn − σn)λ̄n
i −

∫ σn

σn

µn
i Z̄n

i (s)ds + 4δ.

Using now (52) and assuming, without loss, that 4δ < ε′i/16, we have on En
δ ∩ Fn,c

i ∩Gn
i,+,

ε′i
16

< (σn − σn)(λ̄n
i − µn

i (z∗i + ε′i/2)).

Since i < i0, we have by (8) and (19) that λ̄n
i − µn

i z∗i → 0 as n → ∞. Since we also have
that µn

i converge to a positive constant, we obtain that the above inequality does not hold,
provided that n is sufficiently large. Thus P(En

δ ∩Gn
i,+) → 0 as n →∞. By (45), we conclude

that δ > 0 can be chosen so that

lim
n
P(En

δ ∩Gn
i,+) = 0. (55)

The analysis of En
δ ∩Gn

i,− is very similar, and therefore we only give a sketch of the argument.
Let

σn = inf{t ≥ 0 : Z̄n
i (t)− z∗i ≤ −ε′i} ∧ (T + 1), σn = sup{t ≤ σn : Z̄n

i (t)− z∗i ≥ −ε′i/2}.
Arguing as before, using in addition the estimate on R̄n

i according to Lemma 6.1, shows that
δ can be chosen so that one has on En

δ ∩ Fn,c
i ∩Gn

i,−

(σn − σn)(λ̄n
i − µn

i (z∗i − ε′i/2)− θn
i εi) ≤ ε′i

16
+ 2εi − ε′i/4 = − ε′i

16
. (56)

Using once more the facts limn(λ̄n
i − µn

i z∗i ) = 0 and limn µn
i > 0, using (39)(b) by which

εi < ε′i
µn

i
2θn

i
, it follows that the above inequality does not hold, provided that n is sufficiently

large. As in the previous argument, this yields

lim
n
P(En

δ ∩Gn
i,−) = 0.
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The above display and (55) establish (51), and, by a further application of Lemma 6.1, (42)
follows.

Step 3: Establishing (42) and (43) for i = i0 is more subtle and requires further splitting of
the events involved. Let

Hn
i,+ = {Q̄n

i (τn ∧ T )− q∗i ≥ εi}, Hn
i,− = {Q̄n

i (τn ∧ T )− q∗i ≤ −εi},
and Hn

i = Hn
i,+ ∪Hn

i,−. Then (43) and (42) are established by showing that there exists some
δ > 0 such that

lim
n
P(En

δ ∩Hn
i0) = 0, lim

n
P(En

δ ∩Gn
i0) = 0, (57)

respectively.

We begin by analyzing the event En
δ ∩Gn

i0,+. As follows from the previous step, the event
En

δ ∩ (∪i0−1
j=1 Gn

j,−) is empty (for every ε ∈ (0, ε0), sufficiently large n). Hence it suffices to
consider the event Jn := En

δ ∩ (∪i0−1
j=1 Gn

j,−)c ∩Gn
i0,+. Note by (39)(c) that ε′i ≤ ε′i0/i0, for every

i = 1, . . . , i0 − 1. On this event, for t ∈ [0, τn ∧ T ]

Z̄n
i0(t) ≤ 1−

i0−1∑

j=1

Z̄n
j (t) ≤ z∗i0 + ε′i0 .

Thus we have
lim
n
P(En

δ ∩Gn
i0,+) = 0. (58)

Next we analyze En
δ ∩Hn

i0,−. Clearly if q∗i0 = 0 this event is empty by non-negativity of the
queuelength process. We thus assume q∗i0 > 0. Similarly to previous steps, define

σn = inf{t ≥ 0 : Q̄n
i0(t)− q∗i0 ≤ −εi0} ∧ (T + 1), σn = sup{t ≤ σn : Q̄n

i0(t)− q∗i0 ≥ −εi0/2}.
Along the lines of the previous steps, if δ is sufficiently small and n is sufficiently large then

Q̄n
i0(t) ≤ q∗i0 − εi0/2 for all t ∈ [σn, σn], and Q̄n

i0(σn)− Q̄n
i0(σn) < −εi0/4. (59)

By (58) we may ignore En
δ ∩ Hn

i0,− ∩ Gn
i0,+, and consider only J̃n := En

δ ∩ Hn
i0,− ∩ (Gn

i0,+)c.
Using Lemma 6.1, on En

δ ∩Hn
i0,−

−εi0

4
> (σn − σn)λ̄n

i0 −
∫ σn

σn

µn
i0Z̄

n
i0(s)ds−

∫ σn

σn

θn
i0Q̄

n
i0(s)ds− 6δ − 2ε′i0 . (60)

Using (40)(a), without loss of generality we may assume 6δ + 2ε′i0 < εi0/8. Using (59) and the
definition of Gn

i0,+,

−εi0

16
> (σn − σn)

(
λ̄n

i0 − µn
i0(z

∗
i0 + ε′i0)− θn

i0(q
∗
i0 − εi0/2)

)
.

By (8) and (19), λ̄n
i0
− µn

i0
z∗i0 − θn

i0
q∗i0 → 0. Since by (40)(b) ε′i0 < εi0 infn θn

i0
/2µn

i0
, for large

enough n the above inequality does not hold. We have thus argued that

lim
n
P(En

δ ∩Hn
i0,−) = 0.
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We analyze Gn
i0,−. Consider first the case q∗i0 > 0. The above argument provides us with the

information that the i0-th queue is not empty till time τn ∧ T , with high probability (namely,
on the event (Hn

i0,−)c). Thus on this event we necessarily have

Z̄n
i0 = 1−

i0−1∑

j=1

Z̄n
j

on [0, τn ∧ T ]. As a result, on En
δ ∩ (Hn

i0
)c ∩ (∪i0−1

j=1 Gn
j,+)c,

Z̄n
i0 ≥ 1−

i0−1∑

j=1

(z∗j + ε′j) ≥ z∗i0 − ε′i0 ,

where we used (39)(c). In view of the information we already have about Hn
i0

and Gn
j,+, j < i0,

this shows
lim
n
P(En

δ ∩Gn
i0,−) = 0.

In case q∗i0 = 0, at times when the i0-th queue is empty, it is possible that Z̄n
i0

< 1 −∑i0−1
j=1 Z̄n

j . During such a time period no abandonments occur, and (56) takes the form

(σn − σn)(λ̄n
i − µn

i (z∗i − ε′i/2)) ≤ − ε′i
16

.

Since the l.h.s. is positive for large enough n, the remainder of the argument is similar to that
provided in step 2, and thus we omit the details.

The analysis of En
δ ∩Hn

i0,+ is very similar to the analysis of En
δ ∩Hn

i0,−. Set

σn = inf{t ≥ 0 : Q̄n
i (t)− q∗i ≥ εi0} ∧ (T + 1), σn = sup{t ≤ σn : Q̄n

i (t)− q∗i ≤ εi0/2}.

Intersecting En
δ ∩Hn

i0,+ with Gn
i0

results in an empty set, whereas on En
δ ∩Hn

+ ∩ (Gn
i0

)c one has

εi0

4
< (σn − σn)

(
λ̄n

i0 − µn
i0(z

∗
i0 − ε′i0)− θn

i0(q
∗
i0 + εi0/2)

)
. (61)

Using the convergence λ̄n
i0
−µn

i0
z∗i0 − θn

i0
q∗i0 → 0, and the choice of ε′i0 the above inequality does

not hold, provided that n is sufficiently large. As previously, this shows

lim
n
P(En

δ ∩Hn
i0,+) = 0.

The claim of this step follows.

Step 4: As a direct consequence of Steps 1–3,

lim
n
P
(

sup
t∈[0,τn∧T ]

∑

i>i0

Z̄n
i (t) > ε

)
= 0. (62)

This shows that (42) holds for i > i0.
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Similarly to step 3, intersecting Hn
i,+ and Hn

i,− with (∪i0
j=1G

n
j )c yields (61) and (60), respec-

tively, where now z∗i = 0. Hence for δ ∈ (0, δ0) and all large n,

lim
n
P(En

δ ∩Hn
i ) = 0, i > i0.

This shows (43) for i > i0, thus completing Step 4. This completes the proof of Proposition
6.1.

7 Conclusion

We have identified a simple fixed priority rule designed to minimize a combination of holding
costs and abandonment penalties in a multi-class many-server queueing system with abandon-
ment. Both the preemptive and non-preemptive versions of this rule were analyzed and shown
to minimize the long-term average cost in an asymptotic sense. The proposed priority rules is
akin to the celebrated cµ rule (which was designed for systems without abandonments), but
still differs in several important respects. Let us briefly elaborate on these similarities and
difference.

First, the cµ/θ rule reduces to the cµ rule when the abandonment parameters (rate and
penalty) are identical for all classes. However, when these parameters differ across classes, the
two indices differ accordingly.

Second, similarly to the cµ rule, the cµ/θ rule does not depend on the arrival rates of the
different customer classes. This gives the resulting policy a considerable measure of robustness
and simplicity of implementation, as arrival rates are often varying and unpredictable.

Unlike the cµ rule, whose exact optimality has been demonstrated for a variety of cost
function including finite horizon and discounted costs, our claim of optimality of the present
cµ/θ rule is restricted to the long-term average cost, under a many-server fluid scaling. In fact,
an example outlined in [3] demonstrates that the cµ/θ need not be asymptotically optimal for
a finite time horizon version of the cost function.

We close this paper by mentioning some directions of interest for future research. As
observed before, our fluid-scale optimality criterion is meaningful only in overload conditions,
since the queue sizes trivialize otherwise. The efficiency of the cµ/θ rule under critical load or
underload conditions is an open issue, which requires more refined tools for its analysis.

Our analysis in this paper was restricted to a model with Poisson arrivals, exponential
service and patience distribution, as well as linear holding costs. It would of course be of
interest to alleviate these assumptions. We conjecture that the cµ/θ rule and its asymptotic
optimality will prove insensitive to the input and service distributions, which both non-linear
holding costs and non-exponential patience distribution may lead to dynamic priority rules (in
the style of [25]). These extensions should be at the focus of our future work.

22



A Appendix

Proof of property (33) of solutions to (32). Recall that ξ is a solution to the equation

dξi

dt
= λi − µi ξi ∧ [1−

i−1∑

j=1

ξj ]+ − θi ξi ∧ [
i∑

j=1

ξj − 1]+, i ∈ I, ξ(0) = x (63)

(where a b ∧ c is understood as a(b ∧ c)). A straightforward analysis of the one-dimensional
equation

dζ

dt
= λ− µ ζ ∧ C1 − θ ζ ∧ (ζ − C2)+, ζ(0) = ζ0, (64)

shows that the solution ζ converges to a limit as t →∞ uniformly for ζ0 ∈ [0,M ], irrespective
of the values of the positive constants λ, µ, θ, C1 and C2. The limit value is obtained by equating
the r.h.s. of (64) to zero, and is easily seen to be continuous with respect to perturbations in
C1 > 0 and C2 > 0. It is a standard fact from the theory of ordinary differential equations
(comparison theorem [9]) that a solution ζ to the one-dimensional equation

dζ

dt
= λ− µ ζ ∧D1 − θ ζ ∧ (ζ −D2)+, ζ(0) = ζ0, (65)

(where D1 and D2 are time dependent) and a solution ζ̃ to an equation of the same form, with
some (D̃1, D̃2) replacing (D1, D2), satisfy ζ ≥ ζ̃ on [0,∞), provided D1 ≤ D̃1 and D2 ≥ D̃2

on [0,∞). As a consequence of this and the continuity property of the limit value alluded to
above, given any ε > 0 one can find δ > 0 and T ≥ 0 such that a solution to (65) is ε-close to
a solution to (64) on [T,∞), provided (D1, D2) is δ-close to (C1, C2) on [0,∞).

The component ξ1 of (63) satisfies (64) with C1 = C2 = 1, and thus converges. Hence for
large values of t, ξ1 is nearly a constant. Consequently on [T,∞), T being large, ξ2 satisfies
an equation of the form (64) where C1 and C2 are nearly constants, and by the foregoing
discussion, on some [T1,∞), it must be ε-close to a limit value of (64) for a suitable choice of
C1 and C2. Since ε is arbitrary this shows ξ2 converges. It is easy to see that this argument
can be iterated for i ∈ {3, . . . , I}.
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