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Abstract

Scheduling control for a single-server queue with I customer classes and reneging is considered,
with linear holding or reneging cost. An asymptotically optimal policy in heavy traffic is identified
where classes are prioritized according to a workload-dependent dynamic index rule. Denote by
ci, µi and θi, i ∈ I := {1, . . . , I} the queue length cost, service rate and reneging rate, for class-i
customers. Then a relabeling of the classes and a partition 0 = w0 < w1 < · · · < wK = ∞,
K ≤ I, are identified such that the policy acts to always assign least priority to the class i when
the rescaled workload is in the interval [wi−1, wi). The relabeling is such that when workload is
withing the lowest [resp., highest] interval [wi−1, wi), the least priority class is the one with smallest
cµ [resp., greatest θ] value. This result stands in sharp contrast to known fluid scale results where
it is asymptotically optimal to prioritize by the fixed cµ/θ index. One of the technical challenges
is the discontinuity of the limiting queue length process under optimality. Specifically, the limit
process is of the form ψ(X̃t), t ≥ 0, where X̃t is a one-dimensional diffusion, ψ : R+ → RI

+ being a
piecewise continuous map with set of discontinuities {wi : i = 1, . . . ,K − 1}.
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1 Introduction

In this paper we address asymptotically optimal (AO) scheduling control for the multiclass single-
server queue with abandonment in heavy traffic. We show that, in sharp contrast to the behavior of
the model in the many-server regime [13], [6], the model is governed by a one-dimensional Brownian
control problem (BCP). Whereas in the model without abandonment the well-known cµ index rule is
AO, the index obtained in this paper depends dynamically on the total workload in the system. We
give a complete characterization of this dynamic index in terms of the underlying Bellman equation,
and prove that it is AO. Under this policy, the queue length process is asymptotic to a process that
lies on a piecewise continuous curve, where discontinuities correspond to the workload levels where the
index changes.
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1



The model considered has a fixed number, I, of classes, where each customer arrives into an infinite
buffer dedicated to its class, and may abandon the queue while waiting to be served. The arrival
and potential service processes form renewal processes, while abandonment occurs according to an
exponential clock. We seek to minimize an infinite horizon discounted cost function associated with
abandonment count, that can also be rephrased in terms of queue length. Let bi, µi and θi, i ∈
I := {1, . . . , I} denote cost per reneging, service rate and reneging rate, for class-i customers. The
corresponding queue length cost of class-i is ci = θibi. Then the policy that is found by solving the BCP,
and is shown to be AO in heavy traffic, can be described as follows. For i ∈ I, let ϕi(y) = θiy − ciµi,
y ∈ R+, and let K be a minimal subset of I for which maxK ϕi(y) = maxI ϕi(y) for all y ∈ R+.
Assume without loss of generality that the classes are relabeled so that K = {1, . . . ,K}, K = |K|, and
ciµi are increasing in i ∈ K. Then automatically, also θi, i ∈ K are increasing. The policy assigns
least priority to the class i ∈ K when the rescaled workload is in [wi−1, wi), for a fixed partition
0 = w0 < w1 < · · · < wK = ∞ that is determined in terms of a suitable Bellman equation. Thus, in
particular, when workload is low, the class that is assigned least priority is the one for which the cµ
value is the smallest. This may be explained by noting that the policy mimics the well-known cµ rule,
that is known to be optimal in the absence of abandonment. Moreover, when workload is high, the
class with greatest θ value is assigned the least priority. Then one can say that the policy chooses to
reduce workload in the system by activating the abandonment at its greatest possible rate.

The problem has been considered under other parametric regimes. In the many-server heavy traffic
asymptotics, known as the Halfin-Whitt regime, an analogous problem has been considered and AO
policies have been obtained in [13] and [6] via the analysis of the Hamilton-Jacobi-Bellman equation.
However, in contrast to the results found in this paper, the AO policy does not seem to have an explicitly
described structure. At the other extreme are the results regarding the many-server fluid limit regime,
[3] and [4] that address an explicit, fixed index, namely the cµ/θ index, and show that it is AO to
prioritize according to it. Notice that the parameters ciµi and θi dictate both this index and the
dynamic index of this paper, but in different ways.

Control of the multiclass queue in presence of abandonment has also been studied in the single-server
fluid regime, in [18], for the case of two classes. The policy that is found there to be optimal varies
dynamically between the cµ/θ and the cµ rules, the transition being determined by a certain switching
curve in the queue length space.

The works that are most closely related to this paper are [17], [1], [19] and [12]. The first three do
not address AO, but solve the limiting BCP associated with their model in heavy traffic. The first two
consider multiclass single-server queue for broader sets of models than that of this paper. Specifically,
[17] studies general (as opposed to exponential) abandonment clock, and obtains a dynamic index rule.
The structure of this rule is explicit but more complicated than the one obtained with exponential
clock, and, in particular, depends on the full abandonment clock distribution. The paper [1] assumes
exponential abandonment, but addresses nonlinear cost. It provides a solution in terms of a dynamic
index that is expressed by a suitable Bellman equation and the underlying cost function. The third
paper, [19], addresses a make-to-order parallel service system with exponential abandonment, long
run average cost, and a system manager that may outsource jobs. The optimal allocation rule and
the decision to outsource jobs are dynamic, determined by the Bellman equation and depend on the
workload level.

A treatment that includes both solving a BCP and establishing AO of the resulting policy is provided
in [12], for a related model. The model, often referred to as an N-system, has two classes of customers,
and two servers that have different capabilities. One of the servers can serve only customers from one
of the classes, while the other can serve both. The AO policy acts with two threshold levels. First,
the dual-skill server is allowed to ‘help’ the single-skill server when the number of customers of the
class that can be served by both exceeds a threshold. An additional threshold is set on the workload of
the dual-skill server, that determines how to prioritize the two classes depending on whether workload
exceeds this threshold. The latter aspect of the threshold policy is precisely the one that is generalized
in this paper to a multiple number of classes, whereas the additional server aspect is not present in our
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model.
The model under consideration deserves, so we feel, a treatment separate from the one provided for

the N -system in [12] for two main reasons. First, our treatment aims at understanding how the structure
of the policy and its AO differ from and extend the case of two classes. Indeed, the structure of the AO
described above is not transparent when only two classes are present. Second, we provide an argument
for AO which relies on different ideas than those presented in [12], and results in a considerably shorter
proof. Moreover, the approach taken in this paper allows us to assume the minimal possible moment
assumptions regarding the service time distributions, namely the existence of finite second moments,
instead of exponential moments as in [12].

Our proof consists of analyzing the BCP (in Section 3) and showing that its value serves both as
an asymptotic lower and upper bound on that of the QCP. The proof of the lower bound (provided
in Section 4) relies to some extent on results of [8]. The central part of our contribution is that of
the upper bound (given in Section 5). Its idea relies on two crucial ingredients. One is a state-space
collapse (SSC) result (Lemma 5.1), which states that within each workload interval [wk−1, wk), where
the index policy is fixed, the multidimensional queue length process lies on a curve determined by the
index. The second (Lemma 5.3) is an argument showing that the time spent by the workload process
near the points of discontinuities, wk, is small, by which it follows that the cost incurred at times when
the queue length is not in a neighborhood of one of the continuous parts of the curve, can be neglected.
The combination of the two yields Theorem 5.1. Along with the results of Section 4, this establishes
AO.

We use the following notation. For x, y ∈ Rk (k a positive integer), x · y and ‖x‖ denote the usual
scalar product and `2 norm, respectively. Vectors are regarded column vectors. The transpose of a
vector or matrix x is denoted by x′. The standard basis of Rk is denoted by {ei, 1 ≤ i ≤ k}. With
R+ = [0,∞), for f : R+ → Rk, we let ‖f‖T = supt∈[0,T ] ‖f(t)‖, and denote by |f |T the total variation
of f over [0, T ]. For a Polish space S, we let CS([0, T ]) and DS([0, T ]) denote the set of continuous and,
respectively, RCLL functions [0, T ]→ S. We endow DS = DS(R+) with the Skorohod J1 topology. We
write Xn ⇒ X for convergence in distribution. We use notation such as X(t) and Xt interchangeably,
for stochastic processes X and t ∈ R+.

For a positive integer k, m ∈ Rk and a symmetric, positive matrix A ∈ Rk×k, an (m,A)-Brownian
motion (BM) is a k-dimensional BM starting from zero, having infinitesimal drift and covariance coef-
ficients m and A, respectively.

The organization of the paper is as follows. The next section introduces the model and main results.
In Section 3 is devoted to the study of the BCP, where most of the proofs are deferred to the appendix.
Sections 4 and 5 address the lower bound and upper bound, respectively.

2 Model and main results

2.1 The queueing control problem and its scaling

In the queueing control problem (QCP) under consideration, customers of I different classes arrive at
the system to receive service from a single server. Customers that cannot be served immediately upon
arrival are queued in buffers with infinite room, one dedicated to each class. The server may serve only
the customers that wait at the head of the line, and is capable of sharing its effort among them, i.e.,
work simultaneously on (at most) I jobs of different classes. Since our goal is to study asymptotics, we
consider a sequence of systems indexed by n ∈ N. All random variables (RVs) and stochastic processes
introduced below will be defined on a probability space (Ω,F , P ). Expectation w.r.t. P is denoted by
E.

The arrivals follow renewal processes, and the service times are i.i.d. More precisely, let I sequences
of i.i.d. positive RVs be given, representing inter-arrival times of the I classes, denoted by {IAi(l), l ∈
N}i∈I , with E[IAi(1)] = 1 and σ2

i,IA = var(IAi(1)) < ∞. Set I = {1, 2, . . . , I}. For i ∈ I, n ∈ N let
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λni > 0 be the reciprocal mean inter-arrival times of class-i customers in the n-th system. Then the
number of arrivals of class-i customers in the n-th system up to time t is given by

Ani (t) = Ai(λ
n
i t), where Ai(t) = sup

{
l ≥ 0 :

l∑
k=1

IAi(k) ≤ t
}
, t ≥ 0.

To set up the model for service, let I sequences of i.i.d. positive RVs {STi(l), l ∈ N}i∈I be given, with
E[STi(1)] = 1 and σ2

i,ST = var(STi(1)) < ∞. For i ∈ I, n ∈ N, let µni > 0 be the reciprocal mean
service time of class-i customers in the n-th system. Then the number of customers of class i that
complete their service by the time the server has devoted to this class t units of time is given by

Sni (t) = Si(µ
n
i t), where Si(t) = sup

{
l ≥ 0 :

l∑
k=1

STi(k) ≤ t
}
, t ≥ 0.

Note that the above is different from the actual number of customers to complete service by time t. To
introduce the latter, define

S =
{
β ∈ RI+ :

∑
i∈I

βi ≤ 1
}

and let {Bnt } be a process taking values in S, where its i-th component Bni (t) represents the fraction
of effort dedicated to class i (recall that processor sharing is allowed). Then

Tni (t) =

∫ t

0

Bni (s)ds (1)

gives the time the server dedicates to class-i customers by time t, and the number of class-i job com-
pletions by t is then

Dn
i (t) = Sni (Tni (t)). (2)

Let Xn
i (t) denote the number of class-i customers present in the system at time t and Qni (t) the

corresponding number in the queue (i.e., not being served). Then

Qni (t) = Xn
i (t)− 1{Bn

i (t)>0}. (3)

Next, to model exponential abandonment, let {R0
i , i ∈ I} be I standard Poisson processes, and

assume that the number of class-i abandonments up to time t is given by

Rni (t) = R0
i

(
θni

∫ t

0

Qni (s)ds
)
, (4)

where θni > 0 is the abandonment rate for class-i customers. We can now write the balance equation as

Xn
i (t) = Xn

i (0) +Ani (t)−Dn
i (t)−Rni (t)

= Xn
i (0) +Ani (t)− Sni (Tni (t))−R0

i

(
θni

∫ t

0

Qni (s)ds
)
. (5)

We will be interested only in service policies that are non-idling. Therefore we shall require that, for
each t, ∑

i

Xn
i (t) > 0 implies

∑
i

Bni (t) = 1. (6)

Since a class-i job can only be processed when there are such jobs in the system, we also require that,
for each t,

Xn
i (t) = 0 implies Bni (t) = 0. (7)
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For each n, the 1 + 3I objects consisting of the initial condition Xn
0 = (Xn

i (0)), the I sequences {IAi},
the I sequences {STi} and the I processes {R0

i } are assumed mutually independent. We refer to this
tuple as the stochastic primitives. The stochastic processes Ai have, by construction, RCLL paths; it
is assumed that so do Si and R0

i .
We now introduce the diffusion scaling and the heavy traffic condition. First, we assume that there

are constants λi, µi, θi ∈ (0,∞) and λ̂i, µ̂i ∈ R such that, as n→∞,

λni
n
→ λi,

µni
n
→ µi, θni → θi,

λ̂ni =
λni − nλi√

n
→ λ̂i, µ̂ni =

µni − nµi√
n

→ µ̂i.

We assume that the system is in heavy traffic in the sense that
∑I
i=1 ρi = 1 where ρi = λi/µi. We

denote the scaled headcount process and the scaled reneging count by

X̂n
i (t) = n−1/2Xn

i (t), R̂ni (t) = n−1/2Rni (t). (8)

It is assumed throughout that the scaled initial condition X̂n
0 = n−1/2Xn

0 converges in L2, as n→∞,
to a deterministic vector x0 ∈ RI+. We regard Bnt as the control of the n-th system. We are interested
only in control processes that are determined via observations from the past events of the system. To
this end we formulate the following.

Definition 2.1. (Admissible control, QCP) Fix n. A process Bn taking values in S, having RCLL
sample paths, is called an admissible control for the n-th system if the following hold. Let the processes
Dn, Qn, Rn, Xn be defined by the primitives (Xn

0 , A
n, Sn, Rn0 ) and the control Bn via equations (2),

(3), (4), (5). Then

i. Bn is adapted to the filtration σ{Ani (s), Dn
i (s), Rni (s), i ∈ I, s ≤ t};

ii. P -a.s., for all t and i, Xn
i (t) ≥ 0, and (6) and (7) hold.

Denote the class of all admissible controls for the n-th system by Bn. Given the primitives and a
control, call the corresponding tuple (Dn, Qn, Rn, Xn) the controlled processes.

We are interested in a cost that accounts for the abandonment count in diffusion scale. Fix α > 0
and b ∈ (0,∞)I and let the cost function for the n-th system be given by

Ĵn(Bn) = E
(∫ ∞

0

e−αtb′dR̂nt

)
, (9)

where R̂n is a scaled version of Rn via (8), and Rn is a component (i.e., the third) of the controlled
process corresponding to Bn. The value of the QCP is defined as

V̂ n = inf
Bn∈Bn

Ĵn(Bn). (10)

Clearly, Ĵn and V̂ n depend on the initial data Xn
0 , but we consider the initial data as part of the

model’s primitives and therefore do not specify this dependence explicitly in the notation.

Remark 2.1. As can be seen in equation (25) on Section 3, the cost can be translated into a linear cost
of the queue length. Thus, the analysis of this paper can be applied to a more general cost structure,
which includes linear queue length costs in addition to linear abandonment costs.
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2.2 Structure of the AO policy

Our goal is to study the asymptotic behavior of the QCP as n → ∞. We do so by (i) linking it to a
BCP that can be fully analyzed, and (ii) constructing an AO control for the QCP. While the details
of the BCP and its solution are lengthy (and provided in Section 3), the structure of the proposed AO
policy is simple, and can be presented with little additional notation. We thus turn to the description
of the policy.

The policy is based on dynamic prioritization. It allows no processor sharing, in the sense that
only one customer is served at each given time; service is non-interruptible, namely once a job starts
being served it is served until completion; and it is non-idling, in the sense that the server operates
(at full capacity) whenever there is at least one customer in the system. (Note that in contrast to
the restrictions above on the proposed policy, Definition 2.1 considers policies that allow for processor
sharing and service interruptions, and so the QCP is concerned with this broader class of policies.) In
order to identify the policy one only needs to specify which class the server admits into service each
time it becomes free (note that any new arrival into an empty system is immediately served).

To this end we will need a notion of priority. Let (i1, i2, . . . , iI) be a permutation of the set of classes
I. Suppose that at time t the server becomes free and there are customers in the system. By saying
that the next customer to be served is picked according to the ordering (i1, . . . , iI) we mean that
one selects the minimal k such that at least one ik-class customer is present (that is, Xik,n

t > 0) and
admits into service the first customer in line from that class.

We denote mi = 1/µi and call m = (mi)i∈I the workload vector. We call

X̃n = m′X̂n (11)

the scaled workload process (as a rule we use ‘ˆ’ and ‘˜’ to denote I-dimensional and, respectively,
1-dimensional diffusion scaled processes). The policy we are interested in prioritizes the classes based
on the current value of X̃n.

Definition 2.2. (cyclic dynamic priority) Let a non-empty subset K of I be given along with a
partition {Lk}k∈K of [0,∞) consisting of intervals Lk of the form [a, b). Here a ∈ [0,∞) and b ∈ (0,∞].
The cyclic dynamic priority policy associated with this partition, denoted by P({Lk}k∈K), is a
non-interruptible, non-idling policy that allows no processor sharing, and acts as follows.

When, at time t, the server becomes available and some of the buffers are non-empty, the current
value of the scaled workload X̃n

t is computed via (11) and the least priority class k is set to be the
unique i for which X̃n

t ∈ Li. The customer to be served is then picked according to the ordering

(k + 1, k + 2, . . . , I, 1, 2, . . . , k).

Example 2.1. In this example we show how priorities are determined given the data K and {Lk}.
Suppose I = {1, 2, 3, 4}, K = {1, 2, 3} and L1 = [0, 1), L2 = [1, 5) and L3 = [5,∞). Then when the
scaled workload is below level 1, priority is assigned according to the ordering (2, 3, 4, 1) (with 2 being
highest and 1 lowest priority). Similarly, when the workload is between 1 and 5 [resp., exceeds 5] priority
is assigned according to (3, 4, 1, 2) [resp., (4, 1, 2, 3)].

To describe the specific choice of partition to be considered, let ϕi : R+ → R denote the affine map

ϕi(y) = θiy − ciµi, y ∈ R+, (12)

for each i ∈ I, where, throughout, ci = θibi. Let F (y) = maxi ϕi(y).
To specify the parameters of the policy, we introduce the following equation that serves as the

Bellman equation corresponding to a stochastic control problem to be introduced in Section 3, namely

− σ̃
2

2

d2v

dx2
− ỹ dv

dx
+ xF

(dv
dx

)
+ αv = 0, 0 < x <∞, (13)
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where

ỹ =
∑
i

mi(λ̂i − ρiµ̂i), σ̃ =
(∑

i

m2
iλi(σ

2
i,IA + σ2

i,ST)
)1/2

. (14)

When considered with the boundary condition dv
dx (0) = 0 and the growth condition |v(x)| ≤ C(1 +x)C ,

x ∈ [0,∞) (some constant C), equation (13) has a unique classical solution, denoted throughout by
v (see Proposition 3.1). Moreover, v is a convex function (ibid.). (The precise form of the Bellman
equation is linked to the underlying dynamics of a certain 1-dimensional controlled process, to be
presented below in Section 3.2. Specifically, the Neumann boundary condition at zero owes to the fact
that it is constrained to lie in R+).

Let K be a minimal subset of I such that maxk∈K ϕk(y) = maxi∈I ϕi(y) for all y, where the
term ‘minimal’ means that every strict subset of K does not have this property. For concreteness, a
construction of such a set appears below in Remark 2.2(a).

Let K = |K|. Assume, without loss of generality, that the classes i ∈ I are labeled in such a way
that K = {1, . . . ,K}, and

c1µ1 ≤ c2µ2 ≤ · · · ≤ cKµK . (15)

Next, for k ∈ K, let L′k be the unique interval [ak, bk) where ϕk maximizes ϕi over all i. It is easy to
see that {L′k} form a partition of R+. Since v is convex and satisfies the boundary condition at zero, it
follows that dv

dx is a nondecreasing function from R+ to itself, starting at zero. As a result, there exists
a partition {Lk} of R+ such that Lk is of the form [wk−1, wk), with 0 = w0 < w1 < · · · < wK = ∞,
and is the inverse image of L′k under dv

dx

dv

dx
(y) ∈ L′k iff y ∈ Lk.

Let the resulting cyclic dynamic priority policy P({Lk}k∈K) be denoted by P∗, and let the control
process Bn obtained under this policy be denoted by Bn,∗. The main result of this paper is that the
policy thus defined is AO.

Example 2.2. Here we show how the functions {ϕi}, i ∈ I determine the intervals {L′k}, k ∈ K.
Consider the functions ϕi, i = 1, 2, 3, 4 defined in Figure 1. Then I = {1, 2, 3, 4}, and we can see that
K = {1, 2, 3}. Moreover, L′1 = [0, 1), L′2 = [1, 3) and L′3 = [3,∞). Note that c1µ1 = 1 < c2µ2 = 3 <
c3µ3 = 9 and θ1 = 1 < θ2 = 3 < θ3 = 5. Class 1 [resp., 2, 3] is assigned least priority when dv

dx (X̃n)
lies in L′1 [resp., L′2, L′3]. Class 4 is never assigned the least priority.

Remark 2.2. (a) A construction of a set K with the aforementioned property is as follows. Fix a
subset I ′ ⊂ I such that

• I ′ has no two distinct members i and j for which the functions ϕi and ϕj are identical, and

• the collection of functions {ϕi, i ∈ I ′} equals {ϕi, i ∈ I}.

Let K consist of all k ∈ I ′ for which ϕk(y) > max{ϕi(y) : i ∈ I ′, i 6= k} for some y.
(b) Although no constraints have been put on the parameters ci, µi and θi, i ∈ I, it is interesting to note
that not only the parameters {ckµk}, k ∈ K are ordered in increasing order (by the requirement (15)),
but so are the parameters {θk}, k ∈ K. (This is not difficult to see, by (12) and the specific choice of the
index set K. Indeed, if ciµi < cjµj for some i, j ∈ K, then the definition of K implies that ϕj(y) > ϕi(y)
for all large y, hence θj > θi). In addition, the definition of the index set K implies that the index c1µ1

is the smallest among all {ciµi}i∈I , and θK is the largest among all {θi}i∈I (as can be seen by taking
y = 0 and y → ∞ in the definition of F (y)). This observation has the following interpretation. When
workload is low (specifically, lies in the lowest interval among the Lk’s), the policy assigns least priority
to the class that has least cµ value. When it is high, it assigns least priority to the class that has greatest
θ value. A possible intuitive explanation of this is as follows. When workload is low, so is the total
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1 2 3 4 5 6

−10

−5

5

10

y = v′(x)

ϕ1(y) = y − 1

ϕ2(y) = 3y − 3

ϕ3(y) = 5y − 9

ϕ4(y) = 5y − 12

max{ϕi(y)}

Figure 1: The functions ϕi and their maximum. The maximizing classes are 1, 2 and 3.

abandonment rate, and the policy mimics the one that is optimal in absence of abandonment, namely
the usual cµ rule, that leaves the least priority to the class with the least cµ value. When workload is
very large, the abandonment rate is significant, and the policy may then utilize abandonment to reduce
the workload by activating the largest possible rate of abandonment.
(c) An interesting question is whether there should be a connection to the cµ/θ rule, that is known
to be AO in a different parametric regime [3, 4, 5]. Specifically, a fixed priority rule that prioritizes
according to the index ciµi/θi, in a system with a finite number of classes, reneging customers and
many servers, is AO at fluid scale. The main differences between the setting of the aforementioned
papers and this paper, apart from the different scaling regimes, are that an ergodic cost is considered in
[3, 4, 5] while here we treat a discounted cost, and the deterministic control problem one obtains under
fluid limits versus the stochasticity governing the limit model (the BCP) that one has in the present
setting. This might lead one to conjecture that focusing on a small discount parameter α, and letting
the Brownian motion diffusion coefficient in the BCP tend to zero (thus making the problem look more
like a deterministic fluid control problem) the optimal solution obtained here converges to the cµ/θ rule.
We leave this question open.

We can now state the main result.

Theorem 2.1. Let v denote the unique classical solution of the Bellman equation (13) with the boundary
condition dv

dx (0) = 0 and the growth condition |v(x)| ≤ C(1 + x)C , x ∈ [0,∞) (for some constant C).

Recall that x0 ∈ RI+ is the limit of the scaled initial conditions X̂n
0 . Then

i. The limit value is determined by the function v. In particular,

lim
n→∞

V̂ n = v(m′x0).

ii. The policy P∗ is AO, that is,
lim
n→∞

Ĵn(Bn,∗) = v(m′x0).

Remark 2.3. The only characteristic of the cyclic dynamic priority policy used in the proof is the way
it selects the least priority class, specifically, when X̃n

t ∈ Lk, class k gets the least priority. We have
restricted our attention to this particular policy for concreteness, but, in fact, Theorem 2.1 is valid for
any dynamic priority policy that respects the above rule, regardless of how it treats the classes of higher
priority. There is therefore some room for flexibility in choosing the policy.
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3 The BCP

In this section we derive the BCP from the model equations by taking formal limits. While this control
problem is obtained heuristically, the rigorous justification of the claim that it governs the asymptotics
of the QCP will be a consequence of the results, established in later sections. The proofs of this section’s
results are standard, but we do provide them in the appendix, for completeness. We first obtain an
I-dimensional BCP, then transform it into a 1-dimensional one that we call a reduced BCP (RBCP),
relate the latter to the Bellman equation (13), and finally show some elementary properties of the
solution to (13).

3.1 Derivation of the BCP

In addition to the vectors m = (mi) = (µ−1
i ) introduced above, we will use the notation

Θ = diag(θ), M = diag(m), q = M−1Θb, yi = λ̂i − ρiµ̂i. (16)

Note that, with this notation, c = Θb. Also, let

Θn = diag(θn), cn = Θnb, yni = λ̂ni − ρiµ̂ni . (17)

Recall the scaled versions of the processes Xn and Rn introduced before. Additional scaled processes
are as follows:

Âni (t) =
Ani (t)− λni t√

n
, Ŝni (t) =

Sni (t)− µni t√
n

, D̂n
i (t) = Ŝni (Tni (t)),

Q̂ni (t) =
Qni (t)√

n
, Ŷ ni (t) =

µni√
n

(
ρit− Tni (t)

)
, (18)

and
Ŵn
i (t) = yni t+ Âni (t)− Ŝni (Tni (t)). (19)

Diving by
√
n in (5) and using the above definitions we obtain, with

e
(1),n
i (t) =

R0
i

(
θni
∫ t

0
Qni (s)ds

)
− θni

∫ t
0
Qni (s)ds

√
n

, (20)

e
(2),n
i (t) =

∫ t

0

(θni X̂
n
i (s)− θiQ̂ni (s))ds, (21)

en = −e(1),n + e(2),n, the equation

X̂n
t = X̂n

0 + Ŵn
t −

∫ t

0

ΘX̂n
s ds+ Ŷ nt + ent . (22)

Note that our assumption
∑I

1 ρi = 1, along with the property
∑
i∈I B

n
i ≤ 1, imply that

Y #,n
t :=

∑
i∈I

(µni )−1Ŷ ni (t) (23)

is a non-negative, non-decreasing process, for each n.
Taking limits in (22), yn tends to y. Moreover, by the central limit theorem for renewal processes,

(Âni (t), Ŝni (t)) converges to a pair of independent BMs with drift zero and diffusion coefficients
√
λiσi,IA

and
√
µiσi,ST, resp. (see details in the proof of Theorem 4.1). The term en vanishes in the limit

(ibid.). As far as X̂n
0 is concerned, we denoted its limit by x0, but in this section we write the initial
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condition for the dynamics as x ∈ RI+. Recall (16) and denote y = (yi). Denote also σ = diag(σi),

σi = λ
1/2
i (σ2

i,IA + σ2
i,ST)1/2. We obtain

Xt = x+Wt −
∫ t

0

ΘXsds+ Yt, (24)

where {Wt} is an I-dimensional (y, σ)-BM. A limiting version of the aforementioned property of Ŷ n is
that m′Y is non-negative and non-decreasing.

We regard Y as control and X as the corresponding controlled process. The precise definition is as
follows.

Definition 3.1. (Admissible control, BCP) An admissible control system with initial condition
x ∈ RI+ is a tuple (Σ̄,Wt, Yt, Xt), where Σ̄ = (Ω̄, F̄ , {F̄t}, P̄ ) is a filtered probability space, {Wt} is an
I-dimensional F̄t-adapted (y, σ)-BM, the processes {Xt} and {Yt} have sample paths in DRI (R+) and
are F̄t-adapted, and the following hold:

i. For all t, s ≥ 0, Wt+s −Wt is independent of F̄t under P̄ ,

ii. Xt defined in (24) satisfies Xt ∈ RI+ for all t P̄ -a.s.,

iii. The process m′Y is non-negative and non-decreasing.

We writeA(x) for the class of admissible controls for the initial condition x. When we write Y ∈ A(x)
it will be understood that this process carries with it a filtered probability space and the processes W
and X. Moreover, with a slight abuse of notation, we write E for the expectation corresponding to this
probability space.

For a limit version of the cost Ĵn defined in (9), use (4) to replace R̂i by θi
∫ ·

0
X̂n
i (t)dt to arrive at

J(x, Y ) = E
(∫ ∞

0

e−αtc′Xtdt
)
. (25)

The BCP is concerned with minimizing J over all admissible controls. The value function for the BCP
is thus given by

V (x) = inf
Y ∈A(x)

J(x, Y ), x ∈ RI+. (26)

3.2 The 1-dimensional problem and the Bellman equation

The problem can be reduced into a control problem with 1-dimensional dynamics by projecting the
controlled process onto the workload vector m, that is a SSC property. Denoting x̃ = m′x, W̃ = m′W
(by which W̃ is a (ỹ, σ̃)-BM, where we recall the notation (ỹ, σ̃) from (14) and note that ỹ = m′y and
σ̃ = (

∑
im

2
iσ

2
i )1/2), X̃ = m′X and Ỹ = m′Y , we have from (24),

X̃t = x̃+ W̃t −
∫ t

0

m′ΘXsds+ Ỹt.

Let
S1 =

{
β ∈ RI+ :

∑
i∈I

βi = 1
}
,

and let U be an S1-valued process given by MX/m′X if m′X > 0 and an arbitrary, fixed, element of
S1 otherwise. Then we have

X = m′XM−1U = X̃M−1U, (27)
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and so we can write an equation involving only X̃ and (U, Ỹ ), namely

X̃t = x̃+ W̃t −
∫ t

0

θ′UsX̃sds+ Ỹt. (28)

The above equation will serve as the dynamics for the reduced problem, with (U, Ỹ ) and X̃ acting as
control and controlled processes, respectively.

Since Xi represents the ith queue length in the limit model, and X̃ = m′X is the total workload,
the process Ui = miXi/m

′X corresponds to the fraction of class-i workload. Thus U describes how
workload is distributed among the various classes. In the prelimit model, the distribution of workload
among classes is affected by the policy and the system dynamics, but there is no way to determine it
directly, and so it is not natural to regard it as a control process. However, it makes perfect sense to
consider this process as control in the limit model under consideration.

Note that the cost can also be written in terms of X̃ and U only, as

J̃(x̃, (U, Ỹ )) = E
(∫ ∞

0

e−αtq′UtX̃tdt
)
. (29)

Definition 3.2. (Admissible control, RBCP) An admissible control system with initial condition
x̃ ∈ R+ is a tuple (Σ̃, W̃ , U, Ỹ , X̃), where Σ̃ = (Ω̃, F̃ , {F̃t}, P̃ ) is a filtered probability space, {W̃t} is a
1-dimensional F̃t-adapted (ỹ, σ̃)-BM, and the processes {Ut}, {Ỹt}, {X̃t} have sample paths in DS1(R+),
DRI (R+) and DR(R+), resp., are F̃t-adapted and the following hold:

i. For all t, s ≥ 0, W̃t+s − W̃t is independent of F̃t under P̃ ,

ii. X̃t defined in (28) satisfies X̃t ≥ 0 for all t P̃ -a.s.,

iii. The process Ỹ is non-negative and non-decreasing.

We write Ã(x̃) for the class of admissible controls for the initial condition x̃. The value function of
the RBCP is defined as

Ṽ (x̃) = inf
(U,Ỹ )∈Ã(x̃)

J̃(x̃, (U, Ỹ )), x̃ ∈ R+. (30)

Remark 3.1. Note that any admissible control system for which∫
[0,∞)

1{X̃t>0}dỸt = 0, (31)

satisfies the bound X̃t ≤ x̃ + 2‖W̃‖t, a fact that will be used in the sequel. To see this, note that if,
for t > 0, X̃t > 0 then, with σ = sup{s < t : X̃s = 0}, we have on {σ = −∞}, X̃t ≤ x̃ + W̃t, and on
{σ ∈ [0, t]}, using (28),

X̃t = X̃t − X̃σ ≤ W̃t − W̃σ + Ỹt − Ỹσ = W̃t − W̃σ ≤ 2‖W̃‖t.

This observation is used in the sequel (specifically, in Lemma 4.2).

It is shown in the appendix (Lemma A.1) that the BCP and RBCP are equivalent in the sense that
V (x) = Ṽ (m′x), x ∈ RI+. Analyzing the BCP via the RBCP has the advantage that the associated
Bellman equation is one-dimensional, namely it is an ODE. The following result links RBCP value
function to that equation.

For x ∈ [0,∞) let i(x) denote the index i ∈ K for which x ∈ Li. The result below is concerned
with the stochastic differential equation (SDE) for a pair of processes (X̃, Ỹ ), where both processes take
values in R+ with Ỹ non-decreasing, taking the form

X̃t = x̃+ W̃t −
∫ t

0

θi(X̃s)X̃sds+ Ỹt,

∫
[0,∞)

1{X̃t>0}dỸt = 0. (32)
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Figure 2: As workload level increases from zero, the target queue length varies along a discontinuous
curve. The axes labeled 1, 2 (and 3) correspond to queue lengths of the same labels, and the curve
is shown in thick line. The discontinuities correspond to workload levels at which the priority index
switches.

Here, W̃ is as in Definition 3.2.
The form of the Bellman equation (13) is well known; see Section IV.5 of [11]. The following

proposition states the existence of a unique C2 solution and its properties.

Proposition 3.1. Consider equation (13) for v ∈ C2(R+) with the boundary condition dv
dx (0) = 0 and

the growth condition |v(x)| ≤ C(1 + x)C , for some constant C. Then
i. There exists a unique solution to this equation, denoted by v.
ii. One has Ṽ = v, where Ṽ is defined in (30).
iii. Weak existence and uniqueness hold for solutions (X̃, Ỹ ) to equation (32). Setting Ut = ei(X̃t)

,

t ≥ 0, (where we recall that {ei} denote the standard basis) gives rise to a solution of the RBCP,
namely

J̃(x̃, (U, Ỹ )) = Ṽ (x̃).

iv. v is a convex function.

This result is proved in the appendix. A solution to the BCP can be obtained from that of the
RBCP, provided above, by appealing to Lemma A.1(ii) in the appendix.

Remark 3.2. The combination of the relation U = ei(X̃) stated in Proposition 3.1(iii) and (27) shows

how the (multidimensional) state process is reconstructed from the (one-dimensional) workload process,
namely X = X̃µ−1

i(X̃)
ei(X̃). Thus X evolves along the piecewise continuous curve (y, ψ(y)), y ∈ R+,

where ψ(y) = yµ−1
i(y)ei(y), y ∈ R+. The points of discontinuities of ψ correspond to levels of workload y

where the priority index i(y) changes. Examples of possible (y, ψ(y)) curves are depicted in Figure 2,
for dimensions 2 and 3.

4 Lower bound

In this section we prove that the function v serves as a lower bound on the limit inferior of the cost
functions, providing a first step towards the proof of Theorem 2.1.

Theorem 4.1. For any sequence of admissible controls Bn ∈ Bn, lim infn→∞ Ĵn(Bn) ≥ V (x0).

The lemmas below will be used in the proof. For any locally integrable function ϕ denote

Iϕ =

∫ ·
0

ϕ(t)dt.
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Recall the definition (9) of Ĵn. For Bn ∈ Bn let

Ĵ (1),n(Bn) = E
(∫ ∞

0

e−αt(cn)′Q̂nt dt
)
, Ĵ (2),n = αE

(∫ ∞
0

e−αt(cn)′IQ̂nt dt
)
. (33)

Lemma 4.1. For n ∈ N and Bn ∈ Bn one has Ĵn(Bn) = Ĵ (1),n(Bn) = Ĵ (2),n(Bn).

Proof. The first identity is a consequence of the martingale property of

R0
i

(
θni

∫ t

0

Qni (s)ds
)
− θni

∫ t

0

Qni (s)ds,

that follows by an argument provided in the appendix of [7]. The second identity is achieved by
integration by parts, and the fact that, for n fixed, e−αtIX̂n

i (t) converge to 0 a.s. as t → ∞. From
equation (5),

Q̂nt ≤ X̂n
t ≤ X̂n

0 +
1√
n
Ant ,

where X̂n
0 converge to a deterministic vector x and Ani (t) is a renewal process with finite expectation

λni and therefore Ani (t)/t → 1/λni as t → ∞. This implies the convergence of e−αtIX̂n
t to 0 a.s. as

required.

The next lemma is concerned with a variation of the definition of the cost for the BCP. It is based on a
definition of admissible control systems that is broader than that given by Definition 3.1. Namely, define
Ā(x) as in Definition 3.1 with the exception that the requirement that {Xt} and {Yt} have sample paths
in DRI (R+) is replaced by the requirement that these RI -valued processes are progressively measurable.
For brevity we write this as Y ∈ Ā(x). Note that A(x) ⊆ Ā(x).

This extended class of controls is introduced for the following reason. Our technique is based on
tightness of the processes IX̂n and IŶ n rather than X̂n and Ŷ n. Limits of these processes are to be
proved to have Lipschitz continuous, hence a.e. differentiable, sample paths. Now, the derivatives of
these processes, that are candidates for the processes X and Y from the BCP, need not be RCLL, and so
the class of controls A(x) is too small for this purpose. Using instead the class Ā(x) is possible thanks
to an argument used in [8] (as mentioned in the proof of Theorem 4.1 below) by which progressively
measurable a.e. derivatives always exist.

Lemma 4.2. Given Y ∈ Ā(x) let

J̄(x, Y ) = αE
(∫ ∞

0

e−αtc′IX(t)dt
)
,

and V̄ (x) = infY ∈Ā(x) J̄(x, Y ). Then V (x) = V̄ (x).

Proof. For any Y ∈ A(x), integration by parts and positivity of c′X give J̄(x, Y ) ≤ J(x, Y ). Along
with the inclusion A(x) ⊆ Ā(x) this gives V̄ (x) ≤ V (x).

To prove the reverse inequality let ε > 0. Consider an admissible control Yε and the corresponding
processes (Xε,Wε) in Ā(x), such that J̄(x, Yε) ≤ V̄ (x) + ε. Let T > 0 and define the tuple (X̄, Ȳ , W̄ )
to equal (Xε, Yε,Wε) on [0, T ). Note by (24) (that is part of Definition 3.1) that the limit m′X̄(T−) is
well-defined. Let (U, Ỹ ) be an arbitrary admissible control for the RBCP, for which (31) holds, starting
from X̃(T ) = m′X̄(T−), and set (X,Y,W ) to be the corresponding admissible control for the BCP
given by the transformation that appears in the second part of Lemma A.1. Define (X̄, Ȳ , W̄ ) on [T,∞)
to equal (X,Y,W ). Then, (X̄, Ȳ , W̄ ) ∈ Ā(x) and by Remark 3.1, m′X̄t ≤ m′x + 2‖m′W‖t, for t ≥ T .
Thus, for some constant c1,

J̄(x, Ȳ )− J̄(x, Yε) = αE
(∫ ∞

T

e−αtc′(IX̄(t)− IXε(t))dt
)
≤ c1E

∫ ∞
T

e−αt(1 + ‖W‖t)dt = κ(T ),
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and κ(T )→ 0 as T →∞. Thus,

J̄(x, Ȳ ) ≤ J̄(x, Yε) + κ(T ) ≤ V̄ (x) + ε+ κ(T ).

To complete the proof it suffices to show that V (x) ≤ J̄(x, Ȳ ). Note, however, that Ȳ ∈ Ā(x) may not be
an element of A(x). We use the reduced BCP to overcome this problem in the following way: Yε ∈ Ā(x)
implies that m′Yε is non-decreasing. Thus, Ỹ = lims↓tm

′Yε(s) has RCLL sample paths and so the same

is true for m′X̃t = m′x + m′Wt −
∫ t

0
m′ΘX̃sds + Ỹt. Denote x̃ = m′x and Ũi(s) = (m′X̃s)

−1miX̃i(s).

Then, (U, Ỹ ) ∈ Ã(x̃) and Lemma A.1 gives V (x) = Ṽ (x̃) ≤ J̃(x̃, (U, Ỹ )) = J̄(x, Yε). Taking ε→ 0 and
T →∞ shows the claim. This completes the proof.

Recall X̃n defined in (11) and define ẽnt = m′ent , W̃n
t = m′Ŵn

t , Hn
t = m′ΘIX̂n and Ỹ nt = m′Ŷ nt .

Then by (22),
X̃n
t = X̃n

0 + W̃n
t −Hn

t + Ỹ nt + ẽnt . (34)

A sequence of processes with sample paths in DRk is said to be C-tight if it is tight and, in addition,
any subsequential limit has, with probability 1, continuous sample paths. A useful characterization of
C-tightness is as follows (see Proposition VI.3.26 of [15]): C-tightness of Xn is equivalent to

C1. The sequence of RVs ‖Xn‖T is tight for every fixed T <∞, and

C2. For every T <∞, ε > 0 and η > 0 there exist N and δ > 0 such that

n ≥ N implies P (wT (Xn, δ) > η) < ε,

where
wT (f, δ) = sup

0≤s<u≤s+δ≤T
‖fu − fs‖.

Lemma 4.3. i. For each T , the sequence ‖Ŵn‖T ∨ ‖X̂n‖T ∨ ‖Ŷ n‖T is tight, and en converge to zero
in probability.
ii. The sequence (X̃n, W̃n, Hn, Ỹ n) is C-tight. Moreover, let (X1,W 1, H1, Y 1) be a subsequential limit.
Then, with Zt := x̃+W 1

t −H1
t ,

X1
t = Zt + sup

s≤t
(−Zs)+, Y 1

t = sup
s≤t

(−Zs)+. (35)

Proof. By the central limit theorem for renewal processes (see [10], Section 17), the processes (Ânt , Ŝ
n
t )

converge in law to a pair of mutually independent I-dimensional BMs with zero drift and diffusion
coefficients diag(

√
λiσi,IA) and diag(

√
µiσi,ST), respectively. Recalling the definition (19) of Ŵn and

the fact that 0 ≤ d
dtT

n
i (t) ≤ 1, it follows that {Ŵn} is a C-tight sequence of processes and thus so is

W̃n.
Let T be fixed. Then, immediately we have tightness of the RVs ‖Ŵn‖T . The proof that ‖X̂n‖T ∨

‖Ŷ n‖T are tight is attained is several steps. The first step relies on (34) and the property that, for
every n, Y #,n (defined in (23)) satisfies∫

1{X̃n>0}dY
#,n = 0 a.s. (36)

Indeed, by (1), (18), (23) and the fact
∑
i ρi = 1, we have d

dtY
#,n = n−1/2(1 −

∑
iB

n
i ), and therefore

(36) follows from (6) (that is valid due to Definition 2.1(2)).
Let e(3),n = Ỹ n − Y #,n and e#,n = ẽn + e(3),n. Then (34) gives

X̃n
t = X̃n

0 + W̃n
t −Hn

t + Y #,n
t + e#,n

t . (37)
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Now, equation (37) along with the facts that X̃n is non-negative, Y #,n is non-negative and non-
decreasing, and (36) holds, implies that (X̃n, Y #,n) solves the 1-dimensional Skorohod problem for the
data Zn := X̃n

0 + W̃n −Hn + e#,n. In particular,

X̃n
t = Znt + sup

s≤t

(
− Zns

)+
, Y #,n

t = sup
s≤t

(
− Zns

)+
, for all t ≥ 0. (38)

As a result, |X̃n
t | ≤ 2‖Zn‖t. Since mi are positive constants and X̂n

i ≥ 0, it follows that, for some
constants c1, c2 (all constants c1, c2, etc. introduced below are independent of n and t),

Mn
t := ‖X̂n‖t ≤ c1‖X̃n‖t ≤ c2(‖X̃n

0 ‖+ ‖W̃n‖t + ‖e#,n‖t) + c2

∫ t

0

Mn
s ds. (39)

In the next step we analyze the error terms e(i),n for i = 1, 2, 3. First, by (3), ‖Q̂n‖t ≤ Mn
t .

Moreover, by (20),
‖e(1),n‖t ≤ ‖R̄n0 ‖c3tMn

t
, (40)

where c3 is an upper bound on ‖θn‖, and

R̄n0 (t) := n−1/2(R0(n1/2t)− n1/2t).

Recalling that R0
i is a standard Poisson process, it follows from the law of iterated logarithm that for

every ε > 0 there exists a random, finite constant κ = κ(ε, i, ω), such that |R0
i (t) − t| ≤ κ + εt for all

t ∈ R+, w.p.1. Hence, for each fixed ε > 0, as n→∞,

P{there exists t ∈ [0,∞) such that |R̄n0 (t)| > ε(1 + t)} → 0.

Thus with ε > 0 fixed, there exists a sequence of events Ωn with P (Ωn) → 1, such that, on Ωn, one
has for all t, ‖e(1),n‖t ≤ ε(1 + c3tM

n
t ). We choose ε so small that ε < 1 and c2εc3T < 1/2. We get by

(39), for all t ≤ T , on Ωn,

1

2
Mn
t ≤ c2(1 + ‖X̃n

0 ‖+ ‖W̃n‖t + ‖e(2),n‖t + ‖e(3),n‖t) + c2

∫ t

0

Mn
s ds. (41)

Next, by (3) and (21), |e(2),n
t | ≤ tMn

t ‖θn − θ‖+ ‖θ‖n−1/2t. By (23) and the definition of e(3),n,

|e(3),n
t | ≤ max

i

|µni − µi|
µni µi

‖Ŷ nt ‖ =: εn‖Ŷ nt ‖.

Using (22), there exists a constant c4 (that depends on T ) such that for t ≤ T ,

‖Ŷ nt ‖ ≤ c4(‖X̂n‖t + ‖Ŵn‖t + ‖en‖t). (42)

Going back to (41), assuming n is so large that the bound we have just obtained for e(2),n gives, for

t ≤ T , |e(2),n
t | ≤Mn

t /(4c2) + 1, we have

1

4
Mn
t ≤ c2[2 + ‖X̃n

0 ‖+ ‖W̃n‖t + εnc4(Mn
t + ‖Ŵn‖t + ‖en‖t)] + c2

∫ t

0

Mn
s ds.

Using once again the bounds used before on ‖e(1),n‖t and ‖e(2),n‖t (note that en depends on e(1),n and
e(2),n but not on e(3),n) and noting that εn → 0, we finally obtain for all large n, all t ≤ T , on Ωn,

Mn
t ≤ c5(1 + ‖X̃n

0 ‖+ ‖Ŵn‖t) + c5

∫ t

0

Mn
s ds,
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which, by Gronwall’s lemma gives Mn
T ≤ c5(1 + ‖X̃n

0 ‖+ ‖Ŵn‖T )ec5T on the same event. The tightness

of the initial conditions and of ‖Ŵn‖T now gives that of Mn
T .

The last step is to use (42) and the bounds on ‖e(1),n‖t and ‖e(2),n‖t to conclude that for large n,
on Ωn, for t ≤ T one has

‖Ŷ n‖T ≤ c4(Mn
T + ‖Ŵn‖T + 1 + c6M

n
T ),

by which ‖Ŷ n‖T are tight. The first assertion of part (i) of the lemma is now proved.
Using the bound (40), the tightness on Mn

T and the functional LLN by which ‖R̄n0 ‖t ⇒ 0 for any
fixed t, gives ‖e(1),n‖T ⇒ 0. The bound on e(2),n and the tightness of Mn

T also give ‖e(2),n‖T ⇒ 0.

Similarly, the bound on e(3),n and the tightness of ‖Ŷ n‖T give ‖e(3),n‖T ⇒ 0. This completes the proof
of part (i).

For part (ii), note that, since Mn
T are tight (for T fixed, as before), Hn are automatically C-tight.

Having established the convergence of ‖e#,n‖T , it follows that Zn are also C-tight. The transformation
(38) from Zn to Y #,n preserves the modulus of continuity, and we conclude that Y #,n and, in turn,
X̃n are also C-tight. The convergence of the error term e(3),n to zero shows that the same is true for
Ỹ n. Finally, using the relation (38), the continuity (in the uniform topology) of the Skorohod map, and
again the fact e(3),n → 0, gives (35).

Proof of Theorem 4.1. With Lemmas 4.1, 4.2 and 4.3 at hand, the proof of the result is almost
identical to that of Theorem 3.1 of [8]. In the proof, Lemma 4.3(i) is used to show C-tightness of the
sequence (IQ̂n, IŶ n, Ŵn). Then, given any subsequential limit, which is denoted by (IX, IY,W ), the
components IX, IY can be shown to have Lipschitz continuous sample paths with a.e. derivatives that
are progressively measurable. Denote the latter by X,Y . As a consequence, Y ∈ Ā(x), and Lemmas
4.1, 4.2, together with Fatou’s Lemma, gives

lim inf
n→∞

Ĵn(Bn) = lim inf
n→∞

Ĵ (2),n(Bn) ≥ J̄(x, Y ) ≥ inf
Y ∈Ā(x)

J̄(x, Y ) = V̄ (x) = V (x).

5 Upper bound

In this section we prove an upper bound on the limit of the cost functions. Theorem 2.1 is a direct
conclusion from Theorem 5.1 below, Theorem 4.1 and Lemma A.1.

Recall that P∗ denotes the dynamic priority P({Lk}k∈K) and the corresponding control process is
denoted by Bn,∗.

Theorem 5.1. One has
lim sup
n→∞

Ĵn(Bn,∗) ≤ V (x0).

A crucial ingredient of the proof is to show that the multi-dimensional normalized queue length
process follows closely the curve dictated by the BCP solution (such as in Figure 2), a result often
referred to as SSC. Traditionally, this term has been used in the case of a continuous limiting curve.
For example, under fixed priority, the curve lies on the axis corresponding to the class of least priority.
In this paper the limit curve has discontinuities, but apart from that the phenomenon is similar.

We now explain the main ideas of the proof. It relies on the C-tightness of the normalized workload
processes X̃n, already established in Section 4, Lemma 4.3. In addition to the scaling parameter n we

introduce a parameter ε > 0. The latter is used to define intervals in workload space, Lεk and L
ε/2
k (k

being the index for the class having least priority), and in turn a sequence of random times σkj and τkj ,

j = 1, 2, 3, . . . constructed in such a way that during each time interval Ikj := [σkj , τ
k
j ], the workload is

within L
ε/2
k . Figure 3 below shows how these intervals are constructed in terms of passage times of the

levels wk ± ε and wk ± ε/2 (the exact details appear in the sequel). This way the priority rule remains
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fixed within each Ikj , with k having least priority. Transitions from one such interval to another require
the normalized workload process to travel at least ε/2 distance. Significantly, the order of limits is to
take n → ∞ first and then ε → 0. By this one achieves the following. For each fixed ε, given any
finite time T , the number of time intervals Ikj that intersect [0, T ] (in other words, #{j : σkj ≤ T})
does not grow to infinity with n → ∞. Instead, this sequence of random variables, indexed by n, (for
fixed ε) is tight, as proved in part (ii) of Lemma 5.1. This is true thanks to the C-tightness alluded
to above: a process that is uniformly close to a continuous process cannot cross an ε/2-wide strip too
many times in a finite time interval. The significance of having these as tight random variables is that

it makes it sufficient to analyze one excursion, to L
ε/2
k , (such as the jth excursion occurring during

the time interval Ikj ) and establish a SSC result as we do in Lemma 5.1(i). Deducing from this the
result regarding the complete set of excursions (performed in Lemma 5.1(ii)) is automatic thanks to the
tightness of the number of these excursions.

Next, several moment estimates are obtained in Lemma 5.2.
An estimate on the time spent ε-close to the discontinuity set is then established in Lemma 5.3. The

convergence of the normalized workload process allows one to reduce the task of estimating that time
into a similar question in terms of the limit process. The latter is analyzed by means of Ito’s formula
applied to a carefully chosen test function. Then this argument is developed, along with an argument
of uniqueness of solutions to the underlying SDE, in the remaining part of the proof of Lemma 5.3 to
showing the convergence of the prelimit (pre-expectation) cost to that of the RBCP.

These elements are finally combined in the proof of Theorem 5.1.

We now turn to the rigorous construction. Throughout, the superscript ‘*’ is removed from the
notation of all processes.

Recall the intervals Lk, k ∈ K. Denote the boundary points by w0, w1, . . . , wK−1, wK where w0 = 0
and wK =∞, i.e. Lk = [wk−1, wk) for k = 1, . . . ,K. The priority ordering depends on the interval Lk
to which X̃n belongs. For 0 < ε < mink=1,...,K−1(wk − wk−1)/3 we define new intervals

Lε1 = [0, w1− ε), Lε2 = (w1 + ε, w2− ε), . . . , LεK−1 = (wK−2 + ε, wK−1− ε), LεK = (wK−1 + ε,∞).

Denote the union of the intervals Lεk by Lε and its complement in R+ by Mε.
For each k ∈ K, define inductively a sequence of times τk0 < σk1 < τk1 < σk2 < · · · as τk0 = ε1 > 0

(where ε1 is a constant) and, for j = 1, 2, . . .,

σkj = inf{t > τkj−1 : X̃n
t ∈ Lεk},

τkj = inf{t > σkj : X̃n
t /∈ Lε/2k },

representing the entrance time into Lεk and exit time from L
ε/2
k on the j-th visit after time ε1. This

construction is illustrated in Figure 3. Clearly, these random times depend on n, ε1 and ε, but this is
not indicated in the notation, in order to keep it simple. Define also, for j = 1, 2, . . .,

νkj = inf{t ∈ [0, σkj ] : X̃n
s ∈ Lk and X̃n

s > 0 for all s ∈ [t, σkj ]}.

Note that on each interval [νkj , τ
k
j ] the priority is fixed, where class k receives the least priority.

Lemma 5.1. i. Fix k ∈ K, j ∈ N, and T > 0. Then, as n→∞,

max
i:i 6=k

max
t∈Ikj ∩[ε1,T ]

X̂n
i (t)→ 0 in probability.

ii. Fix k ∈ K and T > 0. Then

∆n
k := sup

t∈[ε1,T ]

1{X̃n
t ∈Lε

k}
‖X̂n(t)− µkX̃n

t ek‖ → 0, in probability.
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Figure 3: Workload as a function of time and corresponding random times. Solid [resp., dashed, dotted]
lines show the levels wk [resp., wk ± ε/2, wk ± ε] for k = 1, 2. Time intervals [σ1

j , τ
1
j ] [resp., [σ2

j , τ
2
j ]] are

shown in thick dashed [resp., solid] lines. These time intervals begin on entering the set Lεk and end on

exiting L
ε/2
k . Throughout such an interval, the priority remains fixed.

Proof. i. We simplify the notation by writing σ, τ , ν for σkj , τkj and νkj . In the first step we show that,
as n→∞,

max
i:i 6=k

X̂n
i (σ)1{σ≤T} → 0 in probability. (43)

This is achieved by analyzing the time interval [ν, σ]. Denote

Gn(t) =
∑
i:i 6=k

n

µni
X̂n
i (t).

It follows from the definition of the policy that, during any time interval [a, b] on which (i) Gn > 0
(specifically, customers from classes other than k are present throughout the interval), and (ii) X̃n ∈ Lk,
the server must dedicate its full capacity to processing jobs from classes other than k. Thus∑

i:i6=k

Tni [a, b] = b− a. (44)

For such an interval, a calculation based on (19)–(23) and (44) gives the following balance equation for
Gn:

Gn[a, b] =
∑
i:i 6=k

n

µni

(
Ŵn
i [a, b]−

∫ b

a

θiX̂
n
i (s)ds+ Ŷ ni [a, b] + eni [a, b]

)
= Ln[a, b]− n1/2ρk(b− a), (45)

where

Ln(t) =
∑
i:i6=k

n

µni

(
Ŵn
i (t)−

∫ t

0

θiX̂
n
i (s)ds+ eni (t)

)
.
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Note that Ln are C-tight, as follows by the C-tightness of Ŵn, the uniform (on compacts) convergence
of en, and the boundedness in probability of X̂n (all shown in Lemma 4.3).

To prove (43), it suffices to show that, for any δ > 0 (that we keep fixed in what follows),

P (Gn(σ) > δ, σ ≤ T )→ 0. (46)

Consider the event
Ωn = {Gn(t) > δ/2 for all t ∈ [ν, σ]}.

We address (46) by considering separately the event Ωn and its complement. First, note that on the
event Ωn, during the time interval [ν, σ] there are always some customers in the system from classes
other than k. In particular, (45) is valid with ν for a and σ for b, and so on the event {Gn(σ) > δ}∩Ωn
one has

Ln[ν, σ]− n1/2ρk(σ − ν) = Gn(σ)−Gn(ν) ≥ −Gn(ν),

hence fixing a sequence rn > 0, rn → 0, n1/2rn →∞, one has

P ({Gn(σ) > δ} ∩Ωn ∩ {σ ≤ T}) ≤ P (σ − ν ≤ rn, σ ≤ T ) + P (n1/2rnρk ≤ 2‖Ln‖T + ‖Gn‖T ).

Since ‖Ln‖T and ‖Gn‖T are tight RVs, the last term converges to zero.
To show that P (σ−ν ≤ rn, σ ≤ T )→ 0, note that by construction σ ≥ ε1 > 0, and moreover, either

ν = 0 or |X̃n[ν, σ]| ≥ ε/2 must hold. Since ε1 is fixed and rn → 0,

P (σ − ν ≤ rn, σ ≤ T ) ≤ P (wT (rn, X̃
n) ≥ ε/2)→ 0,

as follows from the C-tightness of X̃n (proved in Lemma 4.3).
Next, on the event Ωcn, there exists a time η ∈ [ν, σ) such that Gn(η) ≤ δ/2. We may assume

without loss of generality that Gn(t) > 0 for all t ∈ [η, σ]. As a result, (45) is valid with η for a and σ
for b. Thus

P ({Gn(σ) > δ} ∩Ωcn, σ ≤ T ) ≤ P (Ln[η, σ]− n1/2ρk(σ − η) ≥ δ/2, σ ≤ T ).

Splitting according to whether σ − η > rn or ≤ rn shows that the above probability is bounded by

P (2‖Ln‖T ≥ n1/2rnρk) + P (wT (rn, L
n) ≥ δ/2).

Both probabilities in the above display converge to zero as n → ∞ by the C-tightness of Ln and the
properties rn → 0 and n1/2rn →∞. This completes the proof of (46).

On our second step we prove part (i). Due to (43), it suffices to prove that, for any fixed δ > 0,

P (σ ≤ T,Gn(σ) ≤ δ, sup
[σ,τ∧T ]

Gn ≥ 2δ)→ 0. (47)

On the event indicated in (47) there must exist a random time σ1 ≤ τ1 := τ ∧T such that σ ≤ σ1 ≤ τ1,
Gn(σ1) ≤ δ, and Gn > 0 on [σ1, τ1]. Now, since the new interval [σ1, τ1] is a subset of [σ, τ ], we have
X̃n ∈ Lk on this interval, and so (45) is again valid, with σ1 for a and τ1 for b. Hence the probability
in (47) is bounded by

P (Ln[σ1, τ1]− n1/2ρk(τ1 − σ1) ≥ δ).

The above is further bounded by

P (2‖Ln‖T ≥ n1/2ρkrn) + P (wT (rn, L
n) ≥ δ),

where both probabilities converge to zero by C-tightness of Ln. This completes the proof of part (i).
ii. If t ∈ [ε1, T ] and X̃n

t ∈ Lεk then, by the definition of σkj and τkj , one has t ∈ [σkj , τ
k
j ∧ T ] for some

j for which σkj ≤ T . Denoting

Znk = #{j : σkj ≤ T},
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we thus have, for i 6= k,

sup
t∈[ε1,T ]

1{X̃n
t ∈Lε

k}
X̂n
i (t) ≤ max

j≤Zn
k

max
i:i 6=k

max
t∈Ikj ∩[ε1,T ]

X̂n
i (t).

Moreover, by (11), X̃n = m′X̂n, and so |X̂n
k (t)− µkX̃n

t | ≤ c1 maxi:i 6=k X̂
n
i (t), for some constant c1. It

follows that, for some constant c2,

∆n
k ≤ c2 max

j≤Zn
k

max
i:i 6=k

max
t∈Ikj ∩[ε1,T ]

X̂n
i (t).

Hence to deduce the result from part (i) of the lemma it suffices to show that {Znk }n∈N is a tight

sequence of RVs. To this end, note that, by the definition of σkj and τkj , |X̃n[σkj , τ
k
j ]| ≥ ε/2 for every j.

Hence
P (Znk ≥ K + 1) ≤ P (wT (K−1T, X̃n) ≥ ε/2).

Since X̃n are C-tight, the limit superior of the RHS of the above display can be made arbitrarily small
by selecting K large. Hence Znk are tight, and the result follows.

Lemma 5.2. i. For every T ≥ 0 there exists a constant a1 such that E‖X̂n‖2T ≤ a1.

ii. For every T ≥ 0 there exists a constant a2 such that E|Hn|T + E|Y #,n|T ≤ a2.

iii. For every ε > 0 there exist constants a3 and n0 such that, for all n ≥ n0,

E‖X̂n‖t ≤ a3e
εt, t ≥ 0.

Proof. In this proof, the symbols c, c1, c2 denote positive constants that do not depend on n or t. We
will use equations (36), (37), as well as the bounds c1‖X̃n‖t ≤ ‖X̂n‖t ≤ c2‖X̃n‖t. First, let us argue
along the lines of Remark 3.1, that

|X̃n
t | ≤ |X̃n(0)|+ 2‖W̃n‖t + 2‖e#,n‖t. (48)

Recall that X̃n is non-negative and Hn is non-negative and non-decreasing. Given t > 0, if X̃n
s > 0 for

all s ≤ t then, by (36), Y #,n
t = 0, and thus (48) holds. Otherwise, let σ = sup{s ∈ [0, t] : X̃n

s = 0}.
Then X̃n

σ− = 0, and by (36), Y #,n
t = Y #,n

σ− . Hence by (37),

X̃n
t = X̃n

t − X̃n
σ− ≤ W̃n

t − W̃n
σ− + e#,n

t − e#,n
σ− ,

and (48) follows.
The L2 convergence assumption on X̂n

0 implies E‖X̃n
0 ‖2 ≤ c. Also, from equation (19) and the fact

that Tni (t) ≤ t and yni converge, we have ‖Ŵn‖t ≤ c(t+‖Ân‖t+‖Ŝn‖t). It is well known that the scaled

renewal processes satisfy E‖Ân‖2t + E‖Ŝn‖2t ≤ c(1 + t), thanks to the second moment assumption; see
eg. equation (172) in [9]. As a result,

E‖W̃n‖t ≤ cE‖Ŵn‖2t ≤ c(1 + t2). (49)

We thus have by (48)
E‖X̃n‖2t ≤ c(1 + t2) + cE‖e#,n‖2t . (50)

Let us then analyze the error term e#,n. Recall that

e#,n
t = m′(−e(1),n + e(2),n) + e

(3),n
t ,
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where e(1),n and e(2),n are given by (20) and (21), and

e
(3),n
t = m′Ŷ nt − (mn)′Ŷ nt .

Recall from the proof of Lemma 4.1 that {e(1),n
i (t)}t is a martingale, for each n and i. By the Burkholder-

Davis-Gundy inequality,

E‖e(1),n
i ‖2t ≤ cE[e

(1),n
i , e

(1),n
i ]t,

where [M,M ]t denotes the quadric variation of a process M . Since e
(1),n
i is piecewise smooth and the

size of each of its jumps is n−1/2, [e
(1),n
i , e

(1),n
i ]t is given by n−1 times the number of its jumps by time

t. The latter is given by R0
i (n

1/2θni
∫ t

0
Q̂ni (s)ds). Thus

E‖e(1),n
i ‖2t ≤ cn−1ER0

i (n
1/2θni

∫ t

0

Q̂ni (s)ds) = cn−1n1/2θni E

∫ t

0

Q̂ni (s)ds, (51)

where the last identity again follows the martingale property. Hence, using (3),

E‖e(1),n‖2t ≤ cn−1/2

∫ t

0

E‖Q̂n(s)‖ds ≤ cn−1/2

∫ t

0

E‖X̂n(s)‖ds. (52)

Next, by (3),
‖e(2),n‖t ≤ cn−1/2t. (53)

As for the term e(3),n, it is shown in the proof of Lemma 4.3 that |e(3),n
t | ≤ εn‖Ŷ n‖t where εn → 0 is a

deterministic sequence. By (22) and the positivity of X̂n
i (0),

‖Ŷ nt ‖ ≤ ‖X̂n
t ‖+ ‖Ŵn

t ‖+ ‖e(1),n
t ‖+ ‖e(2),n

t ‖+ c

∫ t

0

‖X̂n
s ‖ds.

As a result,

‖Ŷ n‖t ≤ ‖X̂n‖t + ‖Ŵn‖t + ‖e(1),n‖t + ‖e(2),n‖t + c

∫ t

0

‖X̂n
s ‖ds, (54)

where we used the monotonicity in t of the last term. Using Jensen’s inequality,

‖e(3),n‖2t ≤ cε2
n(‖X̂n‖2t + ‖Ŵn‖2t + ‖e(1),n‖2t + ‖e(2),n‖2t ) + cε2

nt

∫ t

0

‖X̂n‖2sds. (55)

Combine (50), (52), (53) and (55) to obtain

Mn
t := E‖X̂n‖2t ≤ c(1 + t2) + cn−1/2

∫ t

0

E‖X̂n(s)‖ds+ cn−1/2t+ cε2
nM

n
t + cε2

nt

∫ t

0

Mn
s ds. (56)

For the second term on the RHS use Jensen’s inequality and
√
y ≤ 1 + y, y ≥ 0, to bound the integrand

E‖X̂n(s)‖ by 1 +Mn
s . The fourth term on the RHS is bounded by 1

2M
n
t for all sufficiently large n. As

a result,

Mn
t ≤ c(1 + t2) + cn−1/2

∫ t

0

(1 +Mn
s )ds+ cn−1/2t+ cε2

nt

∫ t

0

Mn
s ds.

Thus

Mn
t ≤ c(1 + t2) + c(n−1/2 + ε2

nt)

∫ t

0

Mn
s ds.

Using Gronwall’s lemma gives

Mn
t ≤ c(1 + t2)ecn

−1/2t+cε2nt
2

≤ c(1 + t2)ec(1+t2),
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establishing part (i) of the lemma.
To prove part (iii) we use the bounds on the error terms without taking squares. Let Nn

t = E‖X̂n‖t.
Then by (48) and (49),

Nn
t ≤ c(1 + t) + 2E‖e#,n‖t.

Now,

E‖e(1),n‖t ≤
√
E‖e(1),n‖2t ≤ 1 + E‖e(1),n‖2t ≤ 1 + cn−1/2

∫ t

0

Nn
s ds,

by (52). By (54),

E‖e(3),n‖t ≤ εn
(
Nn
t + c(1 + t) + E‖e(1),n‖t + E‖e(2),n‖t + c

∫ t

0

Nn
s ds

)
.

Thus, for n such that εn <
1
2 ,

Nn
t ≤ c(1 + t) + c(n−1/2 + εn)

∫ t

0

Nn
s ds.

Hence by Gronwall’s lemma, Nn
t ≤ c(1 + t)ec(n

−1/2+εn)t. This proves part (iii).
As for part (ii), the claim follows from part (i): First,

|Hn|T ≤ c
∫ T

0

‖X̂n
s ‖ds,

hence a bound on its expectation follows from the bound we have on ‖X̂n‖T . Next, recall from (23)

that Y #,n is non-negative and non-decreasing. Hence |Y #,n|T = Y #,n
T . According to (37), it suffices

to show that E(|X̃n
T | + |W̃n

T | + |Hn
T | + |e

(1),n
T | + |e(2),n

T | + |e(3),n
T |) ≤ c, where c does not depend on n.

These estimates all follow directly from the proof of part (i). Thus follows (ii).

Recall the notation X̃n, W̃n, Hn, Ỹ n and ẽn and the relation (34) that they satisfy. We will next
take limits in this equation and argue that the limits form a solution to the SDE with reflection (32).
Recall that weak existence and uniqueness hold for equation (32), and let (X̃, Ỹ , W̃ ) be a solution.

Denote Ht =
∫ t

0
θi(X̃s)X̃sds, by which

X̃t = x̃+ W̃t −Ht + Ỹt ≥ 0,

∫
1{X̃>0}dỸ = 0.

Denote

Kn
t =

∫ t

0

e−αs(cn)′Q̂ns ds. (57)

We are concerned with the convergence of Kn because by Lemma 4.1, Ĵn(Bn,∗) = EKn
∞.

Lemma 5.3. Fix T <∞. Then

lim sup
n

E

∫ T

0

1{X̃n
t ∈Mε}dt ≤ cε, (58)

where c does not depend on ε. Moreover,

(X̃n, W̃n, Hn, Ỹ n)⇒ (X̃, W̃ ,H, Ỹ ), Kn
T ⇒

∫ T

0

e−αtqi(X̃t)
X̃tdt. (59)
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Proof of Lemma 5.3. Recall from Lemma 4.3 that we have W̃n ⇒ W̃ , and that the sequence
(X̃n, W̃n, Hn, Ỹ n) is C-tight. Fix a convergent subsequence and denote by (X1,W 1, H1, Y 1) its weak
limit. Proving the first part of (59) amounts to showing that (X1,W 1, H1, Y 1) and (X̃, W̃ ,H, Ỹ ) are
equal in law; note that W 1 and W̃ are equal in law.

The main estimate towards showing (59) is (58), which we prove first. By Lemma 4.3,

X1
t = x̃+W 1

t −H1
t + Y 1

t , Y 1
t = sup

s≤t
(−x̃−W 1

s +H1
s )+. (60)

Recall from the proof of Lemma 4.3 that ‖e(3),n‖T ⇒ 0, where e(3),n = Ỹ n − Y #,n. Hence Y 1 is also a
weak limit of Y #,n. Hence, by Fatou’s lemma, the uniform bound on E|Hn|T and E|Y #,n|T obtained
in Lemma 5.2 implies that the variation of H1 and Y 1 over [0, T ] satisfies

E(|H1|T + |Y 1|T ) ≤ c. (61)

Let g = gε : R+ → [0, 1] be a continuous function, that equals 1 on Mε and vanishes on the set
{x : dist(x,Mε) > ε}. Denote G =

∫ ·
0
g(x)dx and Ĝ =

∫ ·
0
G(x)dx. Note that G(x) ≤ cε and Ĝ(x) ≤ cεx

for all x. Applying Ito’s formula to Ĝ(X1
T ),

Ĝ(X1
T ) = Ĝ(x̃) +

∫ T

0

G(X1
t )(dW 1

t − dH1
t + dY 1

t ) + c

∫ T

0

g(X1
t )dt.

Hence

E

∫ T

0

g(X1
t )dt ≤ cε+ cεE|X1

T |+ cε(T + E|H1|T + |Y 1|T ).

Using (61) gives

E

∫ T

0

g(X1
t )dt ≤ cε. (62)

Since X̃n ⇒ X1 and g(x) ≥ 1Mε(x) for all x ∈ R+, we have (58) valid along the subsequence. Since,
moreover, the constants do not depend on the chosen subsequence, (58) follows.

Now we show (X1, H1, Y 1) = (X,Y,H). We have

Xt = x+Wt +

∫ t

0

b(Xs)ds+ Yt ≥ 0,

∫
1{X>0}dY = 0.

Also, it has a unique strong solution. Rewrite (34) as

X̃n
t = m′X̂n

t = X̃n
0 + W̃n

t −
∫ t

0

m′ΘX̂n
s ds+ Ỹ nt + ẽnt ,

and recall by Lemma 4.3 that ẽn ⇒ 0. Write the above as

X̃n
t = X̃n

0 + W̃n
t −

∫ ε1

0

m′ΘX̂n
s ds−

∫ t∨ε1

ε1

(1− gε(X̃n
s ))m′ΘX̂n

s ds

−
∫ t∨ε1

ε1

gε(X̃n
s )m′ΘX̂n

s ds+ Ỹ nt + ẽnt (63)

= X̃n
0 + W̃n

t −
∫ ε1

0

m′ΘX̂n
s ds−

∫ t∨ε1

ε1

(1− gε(X̃n
s ))θi(X̃n

s )X̃
n
s ds

−
∫ t∨ε1

ε1

gε(X̃n
s )m′ΘX̂n

s ds+ Ỹ nt + ênt ,

23



where, using the convergence ∆n ⇒ 0 from Lemma 5.1, one has ên ⇒ 0. Thus

X̃n
t = X̃n

0 + W̃n
t −

∫ t

0

(1− gε(X̃n
s ))θi(X̃n

s )X̃
n
s ds+ Ỹ nt + ênt + ηn(t, ε, ε1), (64)

where

sup
t∈[0,T ]

|ηn(t, ε, ε1)| ≤ cε1‖X̂n‖T + c‖X̂n‖T
∫ T

0

gε(X̃n
t )dt. (65)

We now take weak limits in (64), along the chosen subsequence. Note that the set of discontinuities of
y 7→ i(y) is given by {wk}, and that gε vanishes on a neighborhood of this set. As a result, we have
uniform continuity of the coefficient y → (1 − gε(y))θi(y)y, (for each ε > 0). Since all terms in (64)
except the last one converge uniformly on [0, T ], the last one must also converge. We denote its limit
η(t, ε, ε1). We have

X1
t = x̃+W 1

t −
∫ t

0

(1− gε(X1
s ))θi(X1

s )X
1
sds+ Y 1

t + η(t, ε, ε1),

where, using the fact gε ≤ 1M3ε with (58) and (65), we have for δ > 0,

lim sup
ε→0

lim sup
ε1→0

P (‖η(·, ε, ε1)‖T > δ) = 0.

Thus

X1
t = x̃+W 1

t −
∫ t

0

θi(X1
s )X

1
sds+ Y 1

t + η(t, ε, ε1) + η̃(t, ε),

where |η̃(t, ε)| ≤ c‖X1‖T
∫ T

0
gε(X1

s )ds and so by (62),

lim sup
ε→0

P (‖η̃(·, ε)‖T > δ) = 0.

It follows that

X1
t = x̃+W 1

t −
∫ t

0

θi(X1
s )X

1
sds+ Y 1

t .

We also have X1 ≥ 0, and by (60),
∫
X1dY 1 = 0. Using weak uniqueness of solutions to the SDE,

stated in Proposition 3.1(iii), and the fact that W 1 and W̃ are equal in law gives the claimed equality
in law of (X1,W 1, H1, Y 1) and (X̃, W̃ ,H, Ỹ ). This proves the first part of (59).

The convergence of Kn
T stated in (59) is proved by writing, similar to (63),

Kn
T =

∫ T

0

e−αt(cn)′Q̂nt dt

=

∫ T

0

e−αtc′X̂n
t dt+ e(4),n

=

∫ T

0

e−αt(1− gε(X̃n
t ))c′X̂n

t dt+

∫ T

0

e−αtgε(X̃n
t )c′X̂n

t dt,

and repeating the argument provided above, taking n→∞ then ε→ 0.

Proof of Theorem 5.1. Recall that, by Lemma 4.1, Ĵn(Bn,∗) = EKn
∞. It follows from Lemma 5.2(iii)

that lim supnE
∫∞

0
e−αt‖X̂n

t ‖dt <∞. Hence, given ε > 0, there exists T <∞ such that

lim sup
n

E

∫ ∞
T

e−αt‖X̂n
t ‖dt < ε.
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Fix such T . Then lim supn→∞EKn
∞ ≤ lim supn→∞EKn

T + cε, where c does not depend on ε. Lemma

5.2(i) implies E
∫ T

0
‖X̂n

t ‖2dt ≤ c, where c does not depend on n. Hence follows the uniform integrability
of Kn

T , which, along with the weak convergence stated in (59) gives

lim sup
n→∞

Ĵn(Bn,∗) ≤ E
∫ T

0

e−αtqi(X̃t)
X̃tdt+ cε ≤ E

∫ ∞
0

e−αtqi(X̃t)
X̃tdt+ cε.

By (29) and Proposition 3.1(iii), the RHS above equals Ṽ (x̃) + cε. Since ε is arbitrary, it follows that
lim supn→∞ Ĵn(Bn,∗) ≤ Ṽ (x̃) = V (x), where the last identity is provided in Lemma A.1(iii).

A Appendix

A.1 Elementary properties of the BCP and RBCP

In Lemma A.1 we prove the equivalence between the BCP and RBCP. This result is needed because the
lower bound is given in terms of the BCP value function V , whereas the upper bound is linked to the
RBCP value function, Ṽ . Then, in Lemma A.2 we prove properties such as monotonicity and convexity
of the RBCP value function.

Lemma A.1. i. Given an admissible control Yt for the I-dimensional BCP (Definition 3.1) defined
on a filtered probability space (Ω̄, F̄ , {F̄t}, P̄ ) with initial condition x, let x̃ = m′x and define
X̃t = m′Xt, Ỹt = m′Yt and Ui(s) = (m′Xs)

−1miXi(s) on the same probability space. Then
(U, Ỹ ) ∈ Ã(x̃) and J̃(x̃, (U, Ỹ )) = J(x, Y ).

ii. Given an admissible control (U, Ỹ ) for the RBCP (Definition 3.2) defined on a filtered probability
space (Ω̃, F̃ , {F̃t}, P̃ ) with initial condition x̃, let Wt be any F̃t adapted I-dimensional BM such
that m′Wt = W̃t, and x ∈ RI+ be any vector such that m′x = x̃. Define Xt = X̃tM

−1Ut and

Yi(t) = Xi(t) − xi − Wi(t) + θi
∫ t

0
Xi(s)ds for all i ∈ I on the same probability space. Then,

Yt = (Y 1
t , . . . , Y

I
t ) ∈ A(x) and J(x, Y ) = J̃(x̃, (U, Ỹ )).

iii. V (x) = Ṽ (x̃).

Proof. i. By its definition, {W̃t} is a 1-dimensional F̃t-BM with the stated parameters. The processes
{Ut}, {Ỹt}, {X̃t} have sample paths in DS1(R+), DRI (R+) and DR(R+), resp., and are F̃t-adapted.
Also, since Y is admissible one has X ≥ 0 P̄ -a.s., and m′X ≥ 0 P̄ -a.s. The nonnegativity and
monotonicity of Ỹ follows from the fact that Y satisfies Definition 3.1. Thus (U, Ỹ ) ∈ Ã(x̃). Regarding
the cost functions, notice that Xt = X̃tM

−1Ut. This equation, along with the definition of X̃ implies∑
ciθiXi(t) =

∑
ciθiµiUi(t)X̃(t) and thus J̃(x̃, (U, Ỹ )) = J(x, Y ).

ii. By definition and the assumption (U, Ỹ ) ∈ Ã(x̃), one has Yt ∈ A(x). The relation Xt = X̃tM
−1Ut

also implies J(x, Y ) = J̃(x̃, (U, Ỹ )).
iii. This is an immediate consequence of parts 1 and 2.

Lemma A.2. The value function Ṽ is non-decreasing, convex on R+, and its right-derivative at zero
is well defined and equal to 0.

Proof. Monotonicity follows easily from the structure of the dynamics and cost (28), (29). Indeed,
given 0 ≤ x1 < x2 and an ε-optimal control system for x2, denoted (Σ̃, W̃ , U, Ỹ , X̃), one constructs on
the probability space Σ̃ a new collection of processes by adding to Ỹ the constant x2 − x1. Namely,
let Y ∗ = Ỹ + x2 − x1. Then (Σ̃, W̃ , U, Y ∗, X̃) is a control system for x1. Moreover, the two costs
agree. Therefore, upon optimizing over control systems for x1 and taking the limit ε→ 0, one obtains
Ṽ (x1) ≤ Ṽ (x2).

For convexity of Ṽ , the argument uses two transformations of the RBCP. One is simply to go from
the RBCP to the original BCP (using the equivalence stated in Lemma A.1). In particular, since Ṽ
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and V are related via Ṽ (m′x) = V (x), x ∈ RI+, is suffices to prove the convexity of V . Second, there
is an equivalence between the weak and the strong formulation of the BCP, where the former is the
formulation that we work with in this paper, namely Definition 3.1. The latter is concerned with a
fixed probability space, endowed with an I-dimensional BM. In the context of the current problem this
equivalence is justified by the methods of [2].

Given x1, x2 ∈ RI+, consider two corresponding ε-optimal controls Y1, Y2, (defined on a common
probability space, supporting the BM W ). Let X1 and X2 denote the corresponding controlled processes
defined via (24). Given p ∈ [0, 1] and q = 1 − p, it is clear that Y := pY1 + qY2, X := pX1 + qX2

define a control and a corresponding controlled process for the initial condition x = px1 + qx2. By (25),
J(x, Y ) = pJ(x1, Y1) + qJ(x2, Y2), and so, upon optimizing over controls for x and taking the limit
ε→ 0, the convexity of V follows.

As for the final assertion, that is a standard result, we only provide a sketch. Fix h > 0. We already
have that Ṽ (0) ≤ Ṽ (h). Given an ε-optimal control (U, Ỹ ) for the RBCP with initial condition 0, let
X̃ be the corresponding controlled process given by (28), namely

X̃t = W̃t −
∫ t

0

θ′UsX̃sds+ Ỹt, t ≥ 0.

Let X∗ denote the solution to (28) with initial condition h and Ỹ = 0, namely

X∗t = h+ W̃t −
∫ t

0

θ′UsX
∗
s ds, t ≥ 0.

Let τ = inf{t ≥ 0 : X̃t ≥ X∗t }. Let (Û , Ŷ , X̂) = (U, 0, X∗) on [0, τ) and (Û , Ŷ , X̂) = (U, Ỹ − Ỹτ , X̃) on
[τ,∞). This gives rise to a control for the initial condition h. The difference between the costs, by (29),
is given by E

∫ τ
0
e−αtq′U(X∗t − X̃t)dt. Standard estimates on BM, by which E(τ) is of order h2, yield

that Ṽ (h)− Ṽ (0) ≤ ch2 for all small h. The result follows.

A.2 The Bellman equation

The viscosity-sense solvability of Bellman equations of the form considered in this paper is well known
(see Chapter V of [11]). See Section IV.5 of [11], equations (5.8) and (3.2) for the Bellman equation and
the form of the Hamiltonian H, respectively. However, classical, (i.e., C2) solutions do not in general
exist for such equations. In this paragraph we prove Proposition 3.1, addressing classical solutions and
solution to the RBCP. The reader is referred to [12] for a different approach.

Proof of Proposition 3.1. The argument is based on existence of C2 solutions satisfying Dirichlet
boundary conditions, as well as on a verification theorem, by which the solution of a Bellman equation
equals the value of a control problem. We use such a verification three times in the proof, in slightly
different settings. However, rather than providing the details of these verification theorems, that are
standard, we refer the reader to Chapter IV of [11] for several such results in similar context.

Step 1. Fix p > 0. We show that a C2 solution to the Bellman equation (13) exists on [0, p], with
dv
dx (0) = 0 and v(p) = Ṽ (p). We address this by formulating an exit time control problem on [0, p],
for which existence of C2 solutions for the corresponding Bellman equation is known. For an initial
condition x ∈ [0, p], consider the process

Zt = x+ W̃t −
∫ t

0

b(Us, Zs)ds, (66)

where W̃t is as in Definition 3.2 (i.e., a 1-dimensional (ỹ, σ̃)-BM), and for u ∈ S1 and x ∈ R, b(u, x) =
θ′ux, and U is a control process taking values in S1. Denote τ = inf{t ≥ 0|Zt = p or Zt = 0}. Consider
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the value function

H(x) = inf
U
J(x, U) = inf

U
E
(∫ τ

0

e−αtq′UtZtdt+ e−ατ Ṽ (Zτ )
)
, 0 ≤ x ≤ p. (67)

Note that H(x) = Ṽ (x) for x = 0 and x = p. The Bellman equation associated with the problem is
precisely (13) (considered for 0 < x < p). By Theorem 5.1 of [14], there exists a C2(0, p) ∩ C[0, p]
function, that we will denote by hp, that satisfies (13) with the boundary conditions h(0) = Ṽ (0),
h(p) = Ṽ (p). A verification theorem (for example, as in Theorem IV.5.1 of [11]) shows that hp(x) =
H(x) for x ∈ [0, p]. Next, the dynamic programming principle [11] gives that H = Ṽ on [0, p]. Hence
by the last assertion of Lemma A.2, the right-derivative of hp at zero is well defined and equal to zero.
Thus hp is a classical solution to (13) on (0, p) with boundary conditions dh

dx (0) = 0 and h(p) = Ṽ (p).

Step 2. Take p→∞. Taking into account that p is arbitrary, it follows that Ṽ is a classical solution
to (13) with the boundary condition dv

dx (0) = 0.
For uniqueness of solutions to (13) we need to consider the equation with the additional boundary

condition at infinity, as asserted. To this end, one first shows that Ṽ satisfies such a condition. Indeed,
it follows from Remark 3.1 that Ṽ (x) ≤ cE

∫∞
0
e−αt(x+ ‖W̃‖t)dt for c = 2‖q‖. Since W̃t is a BM with

constant drift, the constant E
∫∞

0
e−αt‖W̃‖tdt is finite, and so Ṽ (x) ≤ c(1 + x) for c that does not

depend on x ∈ R+.
A verification-type argument for the control problem on R+ will now show that any classical solution,

satisfying the two boundary conditions stated, equals the value function Ṽ . This completes the proof
of parts (i) and (ii).

As for part (iii), weak existence and uniqueness of solutions to the SDE (32) without the reflection
term Ỹ are well known (see Propositions 5.3.6 and 5.3.10 of [16]). The proof via Girsanov’s theorem
can be modified in a straightforward way, appealing to the continuity of the 1-dimensional Skorohod
map, to obtain an analogous result for the SDE with reflection.

The assertion regarding the optimality of the control system defined via (32) and setting Ut = ei(X̃t)

is based, once again, on a standard verification-type argument.
Finally, the convexity of v (equivalently, Ṽ ) has been shown in Lemma A.2.
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