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Abstract

This paper studies a control problem for the multiclass G/G/1 queue for a risk-sensitive cost
of the form n−1 logE exp

∑

i
ciX

n

i
(T ), where ci > 0 and T > 0 are constants, Xn

i
denotes the

class-i queue length process, and the number of arrivals and service completions per unit time
are of order n. The main result is the asymptotic optimality, as n → ∞, of a priority policy,
provided that ci are sufficiently large. Such a result has been known only in the Markovian
(M/M/1) case. The index which determines the priority is explicitly computed in the case of
Gamma distributed inter-arrival and service times.

AMS subject classifications: 60F10, 60K25, 49N70, 93E20

Keywords: Multi-class G/G/1, risk-sensitive control, large deviations

1 Introduction

We consider the multiclass single server queue, where the arrival and potential service processes
are of renewal type. Denote by Xn

i the queue length process of class-i customers in an initially
empty system, where the number of arrivals and service completions per unit time scale like n.
We seek how to schedule jobs so as to asymptotically minimize the risk-sensitive cost (RSC)
n−1 logE exp

∑

i ciX
n
i (T ), as n → ∞, where ci > 0 and T > 0 are constants. Such a cost em-

phasizes large values of queue length, and so it is of interest when avoiding events such as large
buffer overflow or large waiting times is important. This problem has been studied in [2] in the
Markovian (M/M/1) setting where it was shown that for ci sufficiently large, prioritizing service
to the classes according to a fixed index is asymptotically optimal (AO). This index is given by
(1− e−ci)µi in case when the service rates are given by µin, and µi > 0 are constants. For a broad
family of RSC (including the one mentioned above with general constants ci) it is known by the
results of [1] in the Markovian setting, that an AO policy can be identified in terms of a differential
game. However, explicit solutions of the differential game are not available in general. The main
result of this paper is the extension of the result of [2] to the non-Markovian setting. Namely, we
prove that a certain fixed priority policy is AO, assuming ci are large enough. The index which
determines the priority is expressed in terms of the local large deviation (LD) rate functions of
the underlying renewal processes alluded to above. In the special case of Gamma distribution,
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this index is computed explicitly, and is given by θ−1
i (1 − e−ci/κi), where the class-i service time

is distributed according to Gamma(κi, θi). The exponential case alluded to above is recovered by
setting κi = 1.

Whereas the analysis in the aforementioned works was based on differential games as well as
PDE techniques (where the latter refers to [1]), the approach in this paper is to directly estimate
the RSC by means of Varadhan’s lemma, using LD properties of renewal processes known from the
work of Puhalskii and Whitt [6]. Such a direct approach is made possible by identifying an upper
and a lower bound on the RSC that asymptotically match one another.

Closely related to this paper is the work by Stolyar and Ramanan [7]. While [7] does not
address a RSC, it considers the same model (in a non-Markovian setting) in relation to a LD type
cost. The policy studied there, called the largest weighted delay first (LWDF) scheduling, prioritizes
the classes dynamically by always choosing the customer that has the largest delay, with possible
weights for different classes. This policy was shown to asymptotically minimize the decay rate of
excessive wait probabilities in stationarity. Thus [7] analyzes a system in steady state (and, in fact,
assumes stability conditions), whereas this paper looks at an initially empty queue and provides
a finite horizon analysis. With regard to the information required for the scheduling policies to
operate, LWDF and the fixed priority policy identified in this paper are on two opposite extremes.
LWDF operates without knowing the statistical properties of the stochastic primitives, but requires
knowledge of the state of the system at every decision time. The index which determines the
priority policy studied in this paper depends on the service time distributions, but does not require
knowing the state of the system (besides, of course, which of the buffers are empty at the moment
of decision). Thus LWDF is robust to perturbations in the underlying distributions, whereas a
fixed priority policy is, in some applications, easier to implement. More importantly, because the
priority policy’s index depends on the distributions, it also gives significant information on them.
Namely, it identifies the class which behaves as the bottleneck with regard to the cost of interest, in
the sense that the highest priority class is the one where building up large queues contributes most
to the cost. By specifying the index, the result thus indicates which statistical properties govern
the bottleneck.

This paper is organized as follows. In Section 2 we introduce the model and the main result,
and state an open problem. Section 3 gives an explicit computation of the index in the case of
Gamma distribution. The proof of the main result is presented in Section 4, where Subsections 4.1
and, respectively, 4.2 provide matching upper and lower bounds.

2 Model and main result

The multiclass G/G/1 model considered has a single server and I ≥ 2 buffers with infinite room,
where each buffer is dedicated to a class of customers. Customers that arrive into the system are
queued in the corresponding buffers. Within each class, service is provided in the order of arrival,
where the server may only serve the customer at the head of each line. Processor sharing is allowed,
and so the server is capable of serving up to I customers (of distinct classes) simultaneously. It is
assumed that the system starts empty. Arrivals occur according to independent renewal processes,
and service times are independent and identically distributed for each class. Let parameters λi >
0, i ∈ I := {1, 2, . . . , I} be given, representing the reciprocal mean inter-arrival times of class-i
customers. Let {IAi(l) : l ∈ N}i∈I be independent sequences of strictly positive i.i.d. random
variables with mean E[IAi(1)] = 1/λi, i ∈ I. With

∑0
1 = 0, the number of arrivals of class-i
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customers up to time t is given by

Ai(t) = sup
{

l ≥ 0 :

l
∑

k=1

IAi(k) ≤ t
}

, t ≥ 0.

Similarly, let parameters µi > 0, i ∈ I be given, representing reciprocal mean service times. Let
independent sequences {ST i(l) : l ∈ N}i∈I of strictly positive i.i.d. random variables (independent
of the sequences {IAi}) with mean E[ST i(1)] = 1/µi. The time required to complete the service of
the l-th class-i customer is given by ST i(l), and the potential service time processes are defined as

Si(t) = sup
{

l ≥ 0 :
l

∑

k=1

ST i(k) ≤ t
}

, t ≥ 0.

Let A = (Ai)i∈I and S = (Si)i∈I .
For i ∈ I, letXi represent the number of class-i customers in the system, and writeX = (Xi)i∈I .

Let B be a process taking values in U := {u ∈ R
I
+ :

∑

i∈I ui ≤ 1}, representing the fraction of
effort devoted by the server to the various customer classes. The number of service completions of
class-i jobs during the time interval [0, t] is then given by

Di(t) := Si(Ti(t)), (1)

where

Ti(t) =

∫ t

0
Bi(s)ds. (2)

We thus have
Xi(t) = Ai(t)−Di(t) = Ai(t)− Si(Ti(t)), t ≥ 0. (3)

Note that, by construction, the arrival and potential service processes have RCLL paths, and
accordingly, so do D and X. It is also assumed that B has RCLL paths.

The process B is regarded a control, that is determined based on observations from the past
(and present) events in the system. A precise definition is as follows. The process B is said to be
an admissible control if

• It is adapted to the filtration

σ{Ai(s), Si(Ti(s)), i ∈ I, s ≤ t},

where Ti are given by (2);

• For i ∈ I and t ≥ 0, one has

Xi(t) = 0 implies Bi(t) = 0, (4)

where Xi are given by (3).

Denote the class of all admissible control processes B by B. Note that this class depends on the
processes A and S, but we consider these processes to be fixed.

Denote by ℓ̂i(x) = logE[exIAi(1)] and k̂i(x) = logE[exST i(1)] the cumulant generating functions
for the interarrival and service time distributions. Our main assumptions on these distributions are
as follows.
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Assumption 2.1. i. For every γ ∈ R, lim supt→∞ t−1 logE[eγAi(t)] < ∞, i ∈ I.
ii. ℓ̂i(x) < ∞ and k̂i(x) < ∞ for some x > 0 and all i ∈ I.

Remark 2.1. A sufficient condition for Assumption 2.1(i) is the existence of a constant c > 0
such that P(IAi(1) < α) ≤ cα for all α ≥ 0.

Denote x∗i = sup{x : ℓ̂i(x) < ∞} and x#i = sup{x : k̂i(x) < ∞}, and note that x∗i > 0 and

x#i > 0. Let

ℓi(y) = sup
x<x∗

i

(x− yℓ̂i(x)), ki(y) = sup
x<x#

i

(x− yk̂i(x)). (5)

Throughout, let T ∈ (0,∞) be fixed. Let AC denote the class of absolutely continuous functions
mapping [0, T ] → R, AC0 = {a ∈ AC : a(0) = 0}, and

Li(a) =



















∫ T

0
ℓi(ȧ)dt, if a ∈ AC0,

+∞, otherwise,

Ki(s) =



















∫ T

0
ki(ṡ)dt, if s ∈ AC0,

+∞, otherwise.

(6)

Let rescaled versions of the arrival and service processes be defined by

An(t) =
1

n
A(nt), Sn(t) =

1

n
S(nt), t ∈ [0, T ].

Then it is known by [6] (Theorem 6.1) that, for each i, the processes An
i [resp., Sn

i ] satisfy the
Large Deviations Principle (LDP) in D = D([0, T ] : R) with the J1 topology, with the good rate
function Li [resp., Ki] (see [4] for the terminology; in particular, the term ‘good’ refers to having
compact sublevel sets).

We have already introduced rescaled versions of the processes A and S, and we now let

Xn(t) =
1

n
X(nt), T n(t) =

1

n
T (nt), t ∈ [0, T ]. (7)

By (3),
Xn

i (t) = An
i (t)− Sn

i (T
n
i (t)). (8)

Fix c ∈ (0,∞)I . For each n ∈ N consider the RS cost and the corresponding value, given by

Jn(B) =
1

n
logE

[

enc·X
n(T )

]

, B ∈ B, V n = inf
B∈B

Jn(B). (9)

We are interested in the asymptotics

V = lim sup
n

V n, V = lim inf
n

V n.

Our main result is the asymptotic optimality of a fixed priority policy. By this we mean that we
fix an ordering and apply preemptive-resume prioritization according to

B1 = 1{X1>0}, Bi = 1{
∑i−1

j=1 Xj=0,Xi>0}, i ≥ 2. (10)

This relation defines uniquely the processes B,X, since (1), (2), (3) and (10) have a unique solution
(which can be argued by induction on the jump times), which moreover satisfies the definition of
an admissible control. We will denote the control process thus defined by B∗.

For i ∈ I denote C∗
i = supz≥0(ciz − ℓi(z)) and C#

i = infz≥0(ciz + ki(z)).
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Theorem 2.1. Let Assumption 2.1 hold. Assume also that C∗
i > C#

i for every i. Let the classes

be labeled in such a way that C#
1 ≥ C#

2 ≥ · · · ≥ C#
I . Consider the priority policy introduced above,

and the corresponding admissible control B∗ of (10). Then

lim
n

Jn(B∗) = V = V = V := T
[

∑

i

C∗
i − C#

1

]

.

Remark 2.2. Notice that, when the distributions of IAi(1) and ST i(1) all have unbounded support,
one has C∗ > C# whenever the constants ci are large enough. Indeed, the functions ℓ̂i and k̂i are
then superlinear in this case, and therefore ℓi and ki are finite, by which

C∗ − C# = sup
z≥0,ẑ≥0

(c(z − ẑ)− ℓ(z)− k(ẑ)) ≥ c(z1 − z2)− ℓ(z1)− k(z2),

for some fixed z1 > z2. Obviously, this argument is still valid when ℓi and ki are only finite on a
common interval.

The condition C∗
i > C#

i , i ∈ I plays an important role in the proof of the result, as elaborated
in Remark 4.3 below. It is natural to ask whether this condition can be relaxed. We leave this as
an open question (this question has been resolved in the Markovian case; see Section 3).

Problem 2.1. Does there exist an AO policy of fixed priority type for general ci? If so, can the
index be computed?

3 Gamma distributed service time

In this section we evaluate the priority index for Gamma distributed service times, extending the
case of exponential service times known from [2]. Modeling-wise, the significance of this distribution
is that it includes as a special case the Erlang distribution, which corresponds to the service time of
a job that takes a fixed number of steps to complete, where each step is exponentially distributed.

Thus, let the i-class service time be distributed according to Gamma(κi, θi), by which the
density function is given by Γ (κi)

−1θ−κi

i xκi−1e−x/θi , x > 0. In what follows, we drop the subscript
i for simplicity.

The log moment generating function can be computed to give

k̂(x) = logEexST = −κ log (1− θx) x < x∗ :=
1

θ
,

k̂(x) = ∞, x ≥ x∗. Calculating k by the formula k(z) = supx<x∗{x− zk̂(x)} gives, for z ≥ 0,

k(z) =
1

θ
− κz + κz log(θκz). (11)

To calculate the index C# = infz≥0(cz + k(z)), note that k(z), z ≥ 0, is differentiable and its
derivative is invertible. Namely, k′(z) = κ log(κzθ), and

k′−1(z) =
1

κθ
ez/κ, z ∈ R.
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Therefore, the minimizing z in the expression for C# is the solution of c + k′(z) = 0, given by
k′−1(−c). Thus

C# = ck′−1(−c) + k(k′−1(−c))

= c
1

κθ
e−c/κ + k

( 1

κθ
e−c/κ

)

= c
1

κθ
e−c/κ +

1

θ
− κ

1

κθ
e−c/κ + κ

1

κθ
e−c/κ log

(

θκ
1

κθ
e−c/κ

)

= c
1

κθ
e−c/κ +

1

θ
−

1

θ
e−c/κ −

1

θ
e−c/κ c

κ

=
1

θ

(

1− e−
c
κ

)

. (12)

As a special case, take κ = 1 and recover the case of an exponential with parameter µ = 1/θ,
namely µ(1 − e−c) (see [2]). One may contrast this index with the well known cµ index, that is
known to be optimal for risk neutral queue length cost with weights ci, where the mean service
times are given by µ−1

i . In (12), both c and the parameters of the distribution enter nonlinearly.
The optimality obtained in [2] of the index µ(1 − e−c) in the Markovian case has been proved

there under the assumption c > log(µ/λ). As shown below, in this case, this assumption coincides

with the assumption C∗
i > C#

i , i ∈ I. Recently, Anup Biswas [3] has settled Problem 2.1 above in
the Markovian case, by showing that the result is valid for any set of parameters ci, thus extending
the validity of the main result of [2] beyond the assumption c > log(µ/λ).

To further discuss the main result, let us assume that the interarrivals are also modeled as
Gamma distributed, and let κi,a and θi,a denote their parameters. Also, in what follows, write
κi,s and θi,s for the Gamma distribution parameters of the service times. Note by Remark 2.1,
that Assumption 2.1(i) holds provided κi,a ≥ 1, and by the above calculation, so does Assumption

2.1(ii). By Remark 2.2, the condition C∗
i > C#

i , i ∈ I, holds whenever ci are sufficiently large. In
what follows, we give a more concrete sufficient condition for this.

Since C∗ = supz≥0(cz − ℓ(z)) (where we again omit the dependence on i), and ℓ(z) is given in
a form similar to (11), the maximizing z is the solution of c = ℓ′(z), namely z = ℓ′−1(c). Hence

C∗ = cℓ′−1(c)− ℓ(ℓ′−1(c)) =
1

θ

(

e
c
κ − 1

)

.

We can write the condition C∗ > C# as

1

θa

(

e
c
κa − 1

)

>
1

θs

(

1− e−
c
κs

)

. (13)

Since the right hand side is bounded from above by 1/θs, the condition

c > κa log(1 + θa/θs)

is sufficient.
As a special case, consider exponential interarrival and service times, with κa = κs = 1, 1/θa =

λ, 1/θs = µ. Then the condition (13) takes the form λ
(

ec − 1
)

> µ
(

1− e−c
)

, that can be written
as c > log(µ/λ).
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4 Proof of main result

In the first part of the proof we provide an upper bound on the cost attained under the priority
policy, showing

lim sup
n

Jn(B∗) ≤ V. (14)

Next we show that
V ≥ V. (15)

Together, (14) and (15) imply

V ≤ V ≤ lim inf
n

Jn(B∗) ≤ lim sup
n

Jn(B∗) ≤ V,

as well as
V ≤ V ≤ V ≤ lim sup

n
Jn(B∗) ≤ V,

by which Theorem 2.1 follows.

4.1 An upper bound under the fixed priority policy

We provide an upper bound on the cost attained under the priority policy, by showing (14). To
this end, fix η > 0 and define the mapping X : D2 → R by

X(a, s) = sup
α,β,γ,δ

[

a(β)− a(β − α)− s(δ) + s(δ − γ)− η(α − γ)+
]

, (a, s) ∈ D
2,

where the supremum is performed over variables α, β, γ, δ which satisfy

0 ≤ α ≤ β ≤ T, 0 ≤ γ ≤ δ ≤ T. (16)

The term involving η in the definition of X plays the role of a soft version of the hard constraint
α ≤ γ, when the parameter η is large. Defining X this way gives rise to a continuous map, as we
argue at a later stage of the proof.

Let us argue that
Xn

1 (T ) ≤ X(An
1 , S

n
1 ) + n−1. (17)

Denote r = rn = sup{u ∈ [0, T ] : Xn
1 (u) = 0}. If Xn

1 (T ) = 0 then (17) holds by the nonnegativity
of X(·, ·). Otherwise, by right-continuity of the sample paths, and since the jumps of the arrival
processes are all of size 1, we have Xn

1 (r) = n−1. The policy under consideration gives preemptive
priority to class 1, by which T1(t) =

∫ t
0 1{X1(u)>0}du hence T n

1 (t) =
∫ t
0 1{Xn

1 (u)>0}du. Hence by (8),

Xn
1 (T ) = Xn

1 (r) +An
1 (T )−An

1 (r)− Sn
1 (T

n
1 (T )) + Sn

1 (T
n
1 (r)).

Using Xn
1 (r) = n−1 and T n

1 (T )− T n
1 (r) = T − r, denoting r̂ = T n

1 (r), we have

Xn
1 (T ) = n−1 +An

1 (T )−An
1 (r)− Sn

1 (r̂ + T − r) + Sn
1 (r̂).

The bound (17) follows by taking α = γ = T − r, β = T , δ = r̂ + T − r.
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For i ≥ 2, use the bound Xn
i (T ) ≤ An

i (T ), which follows from (8). This and (17) give

E

[

enc·X
n(T )

]

≤ E

[

enc1[X(An
1 ,S

n
1 )+n−1]+

∑
i≥2 nciA

n
i (T )

]

≤ E

[

enc1[X(An
1 ,S

n
1 )+n−1]

]

×
∏

i≥2

E

[

enciA
n
i (T )

]

.

Next we apply Varadhan’s lemma (Theorem 4.3.1 of [4]) for each of the terms in the above ex-
pression. For the first term, note by Theorem 4.14 of [5], that the independence of the processes
An

1 and Sn
1 for each n, and the fact that each of the corresponding sequences satisfies the LDP

in D with a good rate function, imply that the sequence (An
1 , S

n
1 ) satisfies the LDP on D

2 in the
product topology, with the good rate function formed by the sum. Below, we prove that X is
continuous in the product topology. For the integrability condition of Varadhan’s lemma, use the
bound X(An

1 , S
n
1 ) ≤ An

1 (T ) and note that, in view of Assumption 2.1(i), there exists γ0 > 1 such
that

lim sup
n

1

n
logE[eγ0nciA

n
i (T )] < ∞, i ∈ I.

Thus, denoting I1(a1, s1) = L1(a1) +K1(s1),

lim sup
n

Jn(B∗) = lim sup
n

1

n
logE

[

enc·X
n(T )

]

≤ lim sup
n

1

n
logE

[

enc1X(An
1 ,S

n
1 )
]

+
∑

i≥2

lim sup
n

1

n
logE

[

enciA
n
i (T )

]

= sup
(a,s)∈AC2

0

[c1X(a, s)− I1(a, s)] +
∑

i≥2

sup
a∈AC0

[cia(T )− Li(a)].

Writing a(T ) as the integral of its derivative and using the integral expression (6) for Li shows that
the second term above is given by T

∑

i≥2C
∗
i . As for the first term, write

sup
a,s

[c1X(a, s)− I1(a, s)] = sup
a,s

sup
α,β,γ,δ

[

∫ β

β−α
c1ȧ(t)dt−

∫ δ

δ−γ
c1ṡ(t)dt

−

∫ T

0
(ℓ1(ȧ(t)) + k1(ṡ(t)))dt − η(α− γ)+

]

,

where the supremum over α, β, γ, δ is as in (16). Interchanging the order of the suprema, fix
α, β, γ, δ, and note that the expression is maximized by selecting ȧ(t) = λ1 for t outside the interval
[β − α, β] (by which ℓ1(ȧ(t)) = 0), and ṡ(t) = µ1 outside [δ − γ, δ] (so k1(ṡ(t)) = 0). Moreover, the

maximum over ȧ(t) of c1ȧ(t)− ℓ1(ȧ(t)) is given by C∗
1 , whereas that of −c1ṡ(t)− k1(ṡ(t)) by −C#

1 .
Hence

sup
a,s

[c1X(a, s)− I1(a, s)] = sup
α,γ∈[0,T ]

{αC∗
1 − γC#

1 − η(α − γ)+}.

Now, αC∗
1 − γC#

1 = α(C∗
1 −C#

1 ) + (α− γ)C#
1 , and by assumption, C∗

1 > C#
1 . Hence

sup
a,s

[c1X(a, s)− I1(a, s)] ≤ T (C∗
1 − C#

1 ) + sup
α,γ∈[0,T ]

{(α− γ)C#
1 − η(α− γ)+}. (18)
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Assume, without loss of generality, that η > C#
1 . Then the last term above is equal to zero. We

obtain
lim sup

n
Jn(B∗) ≤ T (C∗

1 − C#
1 ) + T

∑

i≥2

C∗
i ,

which proves (14).
It remains to prove the continuity of X in D

2 with the product topology. Let d denote the
metric

d(x, y) = inf
λ∈Λ

(‖ λ ‖◦ +‖x− y ◦ λ‖), x, y ∈ D,

where Λ denotes the class of strictly increasing, continuous mappings of [0, T ] onto itself,

‖ λ ‖◦= sup
s 6=t

∣

∣

∣
log

λ(t)− λ(s)

t− s

∣

∣

∣
,

and ‖x‖ = supt |x(t)|. The required continuity will be established once we show that, for any ε > 0
there exists ρ > 0 such that

d(a1, a2) ∨ d(s1, s2) ≤ ρ

implies
|X(a1, s1)−X(a2, s2)| ≤ ε. (19)

To this end, let ε > 0 be given. Let ρ > 0 be so small that 8ρ+ 8ηT (e2ρ − 1) ≤ ε. Let a1, a2, s1, s2
be such that d(a1, a2) ∨ d(s1, s2) ≤ ρ. Fix λa such that ‖λa‖

◦ + ‖a1 − a2 ◦ λa‖ < 2ρ, and λs such
that a similar statement holds for s1, s2. We have

X(a1, s1)−X(a2, s2) = sup
α,β,γ,δ

[

a1(β)− a1(β − α)− s1(δ) + s1(δ − γ)− η(α− γ)+
]

− sup
ᾱ,β̄,γ̄,δ̄

[

a2(β̄)− a2(β̄ − ᾱ)− s2(δ̄) + s2(δ̄ − γ̄)− η(ᾱ− γ̄)+
]

,

where the supremum is over (α, β, γ, δ) and (ᾱ, β̄, γ̄, δ̄) satisfying (16). Given (α, β, γ, δ), select
(ᾱ, β̄, γ̄, δ̄) such that

β̄ = λa(β), β̄ − ᾱ = λa(β − α), δ̄ = λs(δ), δ̄ − γ̄ = λs(δ − γ). (20)

Note that 0 < ᾱ ≤ β̄ ≤ T and 0 < γ̄ ≤ δ̄ ≤ T . Therefore

X(a1, s1)−X(a2, s2) ≤ sup
α,β,γ,δ

Y (α, β, γ, δ), (21)

where

Y (α, β, γ, δ) = a1(β) − a2(λa(β)) + a2(λa(β − α))− a1(β − α)

+ s2(λs(δ)) − s1(δ) + s1(δ − γ)− s2(λs(δ − γ))

− η(α− γ)+ + η(ᾱ− γ̄)+.

Note that

Y (α, β, γ, δ) ≤ 8ρ− η(α− γ)+ + η(ᾱ− γ̄)+

≤ 8ρ+ η|α− ᾱ|+ η|γ − γ̄|.
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Now, the bound ‖λa‖ ≤ 2ρ implies that for every t ∈ [0, T ], |t− λa(t)| ≤ ρ̂ := T (e2ρ − 1). A similar
statement holds for λs. Hence by (20), |α− ᾱ| ≤ 4ρ̂ and |γ − γ̄| ≤ 4ρ̂. Thus

X(a1, s1)−X(a2, s2) ≤ 8ρ+ 8ηρ̂ ≤ ε.

Interchanging the roles of (a1, s1) and (a2, s2) gives a similar bound, and (19) follows.

4.2 A lower bound on the risk-sensitive value

We now show (15), by considering a sequence of general admissible controls, providing a lower
bound on their performance. Recall the model equations

Xn
i (t) = An

i (t)− Sn
i (T

n
i (t)), T n

i (t) =

∫ t

0
Bi

n(s)ds, (22)

where Bn takes values in U, and, for every t,

Xn
i (t) ≥ 0, Xn

i (t) = 0 implies Bn
i (t) = 0. (23)

We introduce a model that is similar, but does not adhere to constraints of the form (23). Namely,
we consider

Y n
i (t) = An

i (t)− Sn
i (P

n
i (t)), Pn

i (t) =

∫ t

0
Qn

i (s)ds, (24)

where Qn is U-valued. Note, in particular, that Y n
i is not constrained to remain nonnegative.

Denote the collection of all processes taking values in U by Q. Since for a given n and Bn ∈ B
there exists a U-valued process Qn (specifically, Qn = Bn) such that Y n = Xn, clearly

V n = inf
Bn∈B

Jn(Bn) = inf
Bn∈B

1

n
logE

[

enc·X
n(T )

]

≥ inf
Qn∈Q

1

n
logE

[

enc·Y
n(T )

]

.

Noting that Y n
i (T ) = An

i (T )− Sn
i (P

n
i (T )), we can write

V n ≥ V n
∗ := inf

u∈U

1

n
logE

[

en
∑

i ci(A
n
i (T )−Sn

i (uiT ))
]

, (25)

where u = (ui)i∈I and U denotes the set of all U-valued random variables. We proceed by deriving
a lower bound on the right hand side of (25).

For each n, let un be a U-valued random variable for which

V n
∗ +

1

n
≥

1

n
logRn where Rn = E

[

en
∑

i ci(A
n
i (T )−Sn

i (u
n
i T ))

]

.

Then

V ≥ lim inf
n

1

n
logRn.

Fix ε > 0. Denote by B(v, r) ⊂ R
I the open ball of radius r > 0 around v ∈ R

I . Fix a finite
collection of balls Bk := B(vk, ε), k ∈ Kε := {1, . . . ,Kε}, with vk = (vk,i)i∈I ∈ U, such that
∪kBk ⊃ U. Then for every n and k we have

Rn ≥ E

[

1{un∈Bk}e
n
∑

i ci(A
n
i (T )−Sn

i (tk,i))
]

, (26)
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where tk,i = ((vk,i+ ε)T )∧T . Moreover, if kn denotes a variable k which maximizes the right hand
side of (26) then

Rn ≥
1

Kε
E

[

en
∑

i ci(A
n
i (T )−Sn

i (tkn,i))
]

.

As a result,

Rn ≥ min
k∈Kε

1

Kε
E

[

en
∑

i ci(A
n
i (T )−Sn

i (tk,i))
]

.

Hence

V ≥ min
k∈Kε

lim inf
n

1

n
logE

[

en
∑

i ci(A
n
i (T )−Sn

i (tk,i))
]

.

Using the independence of the 2I processes An
i , S

n
i , and Varadhan’s lemma,

V ≥ min
k∈Kε

sup
(a,s)∈AC2I

0

∑

i

{ci[ai(T )− si(tk,i)]− Li(ai)−Ki(si)}

≥ inf
u∈U

sup
(a,s)∈AC2I

0

∑

i

{ci[ai(T )− si((ui + ε)T ∧ T )]− Li(ai)−Ki(si)}. (27)

Fix u ∈ U and i. The problem of maximizing ciai(T ) −
∫ T
0 ℓi(ȧi(t))dt over ai ∈ AC0 is solved by

writing this expression as
∫ T
0 (ciȧi(t) − ℓi(ȧi(t)))dt and maximizing the integrand. A calculation

shows that the maximum is given by TC∗
i . Maximizing −cisi((ui + ε)T ∧ T )−

∫ T
0 ki(ṡi(t))dt over

si ∈ AC0 is attained by letting ṡi(t) = µi for t ∈ [(ui + ε)T ∧ T, T ], and a calculation shows that

the maximum is then given by −{(ui + ε)T ∧ T}C#
i . Thus by (27),

V ≥ inf
u∈U

∑

i

[TC∗
i − {(ui + ε)T ∧ T}C#

i ]

≥ inf
u∈U

∑

i

[TC∗
i − uiTC

#
i ]− c0ε, (28)

where c0 = T
∑

i C
#
i . Taking ε → 0, and using C#

1 ≥ C#
i for all i, by which the infimum is attained

with u1 = 1, gives (15).

Remark 4.3. The assumption C∗
i > C#

i , i ∈ I is used in two places in the proof of the result.
First, in Section 4.1, it is used in the argument leading to (18). Then, in Section 4.2, it is used
to argue that the minimization of the expression in (28) is attained by setting u1 = 1. The fact
that u1 = 1 is selected indicates that a policy that asymptotically achieves the lower bound must
act to provide (nearly) all effort to class 1. The priority policy studied in the upper bound also
gives highest priority to class 1. Thus we can interpret the role that the aforementioned assumption
plays as follows. It dictates that the contribution of the cost associated with one dominating class
to the overall cost is large compared to the other classes, to the degree that an AO policy must
devote all effort to this class. An attempt to go beyond this case must deal with more general target
distribution of effort. However, the techniques we have demonstrated in this paper break down, as
the resulting upper and lower bounds that they give rise to no longer match each other.
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