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queue length information, without knowing the state of other queues. A game theoretic formulation is proposed and analyzed,
that takes advantage of a phenomenon unique to heavy traffic regimes, namely, Reiman’s snaphshot principle, by which
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random variable, which depends on the customer’s decision, accounting for waiting time in the queue and penalty for leaving.
The notion of an equilibrium is only meaningful in an asymptotic framework, which is taken here to be the Halfin-Whitt
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1. Introduction. Equilibrium behavior of strategic customers in queueing systems has been the subject of
great interest since the work of Naor [16] (see the book by Hassin and Haviv [13] for a survey), and has been
a particularly active research area in recent years. As far as heavy traffic analysis is concerned, not a great deal
of attention has been drawn to game theoretic aspects such as the asymptotic study of Nash equilibria, unlike,
for example, control theoretic treatment, to which much work has been devoted. In this paper we propose and
analyse a game theoretic formulation of strategic customers in a multiclass queueing system that takes advantage of
phenomena specific to heavy traffic regimes. The formulation is based on associating with each customer a payoff
that reflects the customer’s actual waiting time rather than its expectation. The notion of equilibrium addressed,
namely, an �-Nash equilibrium with high probability (w.h.p.), becomes meaningful only as scaling limits are taken.
An additional aspect that is unique to this setting regards the relatively small level of information required for the
players. In game theoretic analysis of queueing models, it is usually the case that when partial information of the
system’s state is available to the player, the unobservable states are assumed to be in stationarity. In the setting of
this paper, customers are aware of the queue length of their own class (as well as the system parameters, specifically
the rate of arrival, or at least a first order approximation thereof) but not those of other classes. However, stationarity
assumptions are not required. Moreover, while this paper assumes that the system operates under a scheduling
policy of one out of two specific types (see below), it should be noted that the scheduling policy is not known to
the customers when they make their decisions.

Motivating applications include the following. Consider a call center where customers call to get various kinds
of services Aksin et al. [1]. There are several classes of customers associated with service requirements of different
types. Customers that call are notified how many customers of their class are waiting in line, and naturally, they
are not aware of the scheduling policy. They then decide whether to stay in line or leave based on this piece of
information. Another motivation comes from on-demand usage of resources in cloud computing. The cloud service
provider offers computational resources to different classes of customers, at possibly different rates. Delay is often
a significant factor taken into account side by side with the cost of usage, and usage decisions are made by the
customers based on this information. For more on the latter application see Atar et al. [6] and references therein;
this application has also been the main motivation for a control problem formulation in heavy traffic in Atar and
Shifrin [5].

The model considered consists of a fixed number of customer classes, that differ in their service rates, and n
identical, exponential servers that work in parallel. Upon arrival of a class-i customer, the ith queue length is
revealed and, based on this information, he decides whether to join or leave. Accordingly, the customer’s payoff is
given by hi4WT5 or ri, respectively, where hi2 �+ →�+ is a given function, WT is the time the particular customer
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will wait in line before being admitted into service, and ri ∈ 401�5 is a cost for not receiving service (both hi

and ri depend on the class, i). Because WT is a random variable the value of which is not known at the time of
decision, the payoff is in fact a random function of the customer’s decision, as well as other customers’ decisions.
Establishing an equilibrium based on random payoffs is made possible thanks to the consideration of the game in
an asymptotic regime.

The asymptotic setting considered is the Halfin-Whitt (HW) heavy traffic regime (Halfin and Whitt [12]), in
which the number of servers, n, grows without bound, and the arrival processes accelerate accordingly so as to
keep the system critically loaded. The customers considered are those that arrive during a fixed, finite time interval.
Thus the number of participating players also grows without bound.

The specific feature due to which a random payoff formulation is tractable in this regime (and potentially in
other heavy traffic regimes), is Reiman’s snapshot principle (RSP) (Reiman [17]), which, when specialized to the
present setting, states that the waiting time a customer will experience is asymptotically equal to the queue length
at the time of arrival divided by the overall rate at which customers from the class are served (see Section 5 for
a precise statement). While this principle has been proved in a number of settings, it does not always hold (as
explained in Remark 2.4). In particular, its validity depends on the scheduling policy. Our equilibrium results, that
are based on this principle, can therefore only be obtained under some assumptions on the scheduling. We address
this aspect by considering two families of scheduling policies under which, as we show, RSP holds: fixed priority
(FP), where a server that becomes available will always pick the customer at the head of the line of the buffer with
least index among nonempty buffers, and serve the longest queue (SLQ), where the buffer with longest queue is
picked. Our main result shows that if all customers adopt a strategy that uses RSP as a prediction for the waiting
time, an �-Nash equilibrium w.h.p. is obtained.

On the way to proving the main result we prove new diffusion limit results for the above two policies, for systems
in which customers join only when the queue length of the corresponding buffer is below a threshold, an element
that can otherwise be described by finite buffers. A nonstandard aspect of the diffusion scale analysis required
toward proving the main result is that one must take into account different behaviours of customers, so as to allow
for scenarios where one of the customers deviates from the strategy that is to be shown to lead to an equilibrium.
In particular, properties on which the proof is based, such as the C-tightness of some of the processes involved, are
proved to hold uniformly over such scenarios.

Other works where a game theoretic equilibrium is considered in conjunction with heavy traffic analysis of a
queueing model are Allon and Gurvich [2], Gopalakrishnan et al. [9], and Zhan and Ward [18]. The latter two works
do not address a Nash equilibrium w.h.p., but rather provide an asymptotic analysis subsequently to establishing
the prelimit equilibrium, and the notion of equilibrium is based on deterministic, steady state payoffs, and complete
state information. Both works study servers that act strategically. Specifically, in Gopalakrishnan et al. [9], servers
choose their service rate in order to optimize a trade-off between an effort cost and value of idleness. The focus of
Gopalakrishnan et al. [9] is on the study of the implications of such strategic behaviour on staffing and routing, as
the size of the system becomes large. In Zhan and Ward [18], servers are paid based on their service speed as well as
service quality, and each choose their own service speed in order to maximize expected utility. The work of Allon
and Gurvich [2] addresses a notion of an �-Nash equilibrium for prelimit models and studies their convergence in
fluid and diffusion scales to equilibria characterized by certain fluid and diffusion games, respectively. The notion
addressed in Allon and Gurvich [2] is different from ours, where the main difference lies in the fact that the game
is formulated at steady state, and thus dynamics of the stochastic processes involved do not show up. An additional
significant difference is that the number of players in the game considered in Allon and Gurvich [2] is fixed.

As far as our convergence results and RSP are concerned, the closest work is by Gurvich and Whitt [11], where
a parallel server system, with multiple classes as well as multiple server pools, is considered in the HW regime,
under the fixed queue and idleness ratio policy. This policy aims at keeping queue lengths as well as idleness levels
at the different server pools at predetermined fixed ratios. When specialized to the case of a single server pool,
and equal queue length ratios, this setting is similar to one of the two settings studied in this paper, namely, SLQ.
There are, however, two important differences in terms of the technical treatment. First, as already mentioned, the
estimates required to deduce the main result must be uniform over scenarios. A second difference is that finite
buffers are not covered by Gurvich and Whitt [11]. Although it may seem that this aspect requires only simple
adaptations to cover convergence results, this is not the case. In fact, diffusion limits do not always exist under our
assumptions, as is the case under SLQ if the buffers are of equal size (this issue is developed further in Atar and
Saha [4]). Hence, considerations beyond the infinite buffer model are necessarily significant here.

As an additional small sample of recent work on strategic behaviour in queueing systems, we mention Guo
and Hassin [10], that analyse the response of customers to shutting down service when the queue is empty, and
resuming when the queue length exceeds a threshold; and Manou et al. [15], that studies a natural model for the
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behaviour of customers in a transportation station. In both cases, Nash equilibria are determined under various
assumptions on the level of information.

We use the following notation. For a1b∈�, the maximum (resp., minimum) is denoted by a∨b (resp., a∧b), and
a+ = a∨0, a− = 4−a5∨0. For x1 y ∈�k (k a positive integer), x · y and �x� denote the usual scalar product and `2

norm, respectively. Write 8ei9, i = 11 : : : 1 k for the standard basis in �k and 1 for
∑k

i=1 ei. Denote �+ = 601�5.
For f 2 �+ →�k, �f �T = supt∈601T 7 �f 4t5�, and, for � > 0,

wT 4f 1 �5= sup
0≤s<u≤s+�≤T

�fu − fs�0

For a Polish space S, let �S4601 T 75 and �S4601 T 75 denote the set of continuous and, respectively, càdlàg functions
601 T 7 → S. Write �S and �S for the case where 601 T 7 is replaced by �+. Endow �S with the Skorohod J1

topology. Write Xn ⇒ X for convergence in distribution. A sequence of processes Xn with sample paths in �S

is said to be C-tight if it is tight and every subsequential limit has, with probability 1, sample paths in �S.
For a sequence of processes �n, n ∈ �, with sample paths in ��k , C-tightness is characterized (see Jacod and
Shiryaev [14, VI.3.26]) by the following:

C1. The sequence of random variables ��n�T is tight for every fixed T <�.
C2. For every T <�, �> 0, and � > 0 there exist n0 and � > 0 such that

n≥ n0 implies �4wT 4�
n1 �5 > �5 < �0

For a positive integer k, m ∈ �k and a symmetric, positive matrix A ∈ �k×k, an 4m1A5-Brownian motion (BM)
is a k-dimensional BM starting from zero, having drift m and infinitesimal covariance matrix A.

This paper is organized as follows. The model and the equilibrium result appear in Section 2. Sections 3 and 4
analyse the behavior of the system under FP and SLQ, respectively, and along the way also obtain diffusion limit
results, that may be interesting by their own right. Section 5 addresses RSP in these two settings and proves the
main result.

2. Model and main result. We start by introducing the probabilistic model and the HW scaling. Then we
provide the game theoretic setting and state the main result.

A sequence of queueing models is considered, indexed by n ∈�. The nth system has N buffers and n identical
servers. Customers from N distinct classes arrive at the system and, upon arrival, each customer is informed about
the queue length at the buffer that corresponds to its own customer class, and, based on this information only,
makes a decision whether to join or leave the system. If a customer of class i decides to join, he goes directly for
service on the event that any of the servers is available, and otherwise he is queued in buffer i. As far as the service
policy is concerned, we consider FP and SLQ (that is, however, unknown to the customers). In the first case, the
servers serve according to the rule given by 1 > 2 > · · · > N . Thus, when a server becomes available, it admits
into service a customer in the buffer with highest priority (that is, least index) among all buffers that are nonempty
at that instant. Under SLQ, the buffer that currently has the most customers receives highest priority (where ties
are broken arbitrarily). At each buffer, the customers are always taken from the head of the line. We assume the
nonidling condition, that is, that no server will idle as long as any customers are in the queue.

Let 4ì1F1�5 be a probability space, on which all the random variables (r.v.s) introduced below are to be
defined. The arrivals in each class occur according to independent renewal processes. Let parameters �n

i > 0,
i ∈ 81121 : : : 1N 9, be given, representing the mean interarrival times of class-i customers in the nth system. Let
8IAi4l52 l ∈�9i be independent sequences of strictly positive i.i.d. r.v.s with mean 1 and variance C2

IAi
. Let

En
i 4t5= sup

{

l ≥ 02
l
∑

k=1

IAi4k5

�n
i

≤ t

}

1 t ≥ 00 (1)

Then En
i counts the number of class-i arrivals up to time t. The parameters �n

i satisfy

�n
i = n�i +

√
n�̂i + o4

√
n51 (2)

where �i > 0 and �̂i ∈ � are fixed. The service times of class-i customers are assumed to be exponential with
mean �i. The potential service processes, denoted by 8Si9i=1121 : : : 1N , are thus assumed to comprise a collection
of N mutually independent Poisson process, with rates �i, i= 1121 : : : 1N , respectively. They are assumed to have
right-continuous sample paths. While the arrival rates are accelerated with n, the individual service rates are not.
However, the capacity of the service pool grows due to the increase of the number of servers, n. The resulting
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traffic intensity is thus asymptotically given by
∑

i �i, where �i = �i/�i. We will assume the following critical load
condition:

∑

i

�i = 10 (3)

The initial conditions,

Qn405= 4Qn
14051Q

n
24051 : : : 1Q

n
N 40551 ë n405= 4ë n

1 4051ë
n
2 4051 : : : 1ë

n
N 40551

are �N
+

-valued r.v.s representing the number of customers initially in the buffers and in service, respectively. It
is assumed that the initial configuration satisfies 1 · Qn405 > 0 implies 1 · ë n405 = n, reflecting the nonidling
condition.

For each n, the three objects
8En

i 9i1 8Si9i1 4Qn4051ë n4055 (4)

are assumed to be mutually independent. The triplet (4) will be referred to as the stochastic primitives of the model.
All r.v.s introduced below, describing the system dynamics, will be given as functions of the stochastic primitives
and of the collection of decisions taken by the strategic customers.

Thus, before describing the system dynamics, we introduce the notation for the decision variables. The customers
initially in the system do not participate in the game formulation, and therefore in what follows, unless otherwise
stated, the term customer will refer to those customers that arrive after time zero. A customer will be identified by
a pair 4i1 j5, where i ∈ 81121 : : : 1N 9 is its class, and j ∈ � is its serial number in order of arrival. The collection
of decision variables � = 8�ij 2 i ∈ 81121 : : : 1N 91 j ∈ �9, where �ij ∈ 80119, specifies the decision of each of the
customers. Having �ij = 1 (resp., 0) specifies that the jth class-i customer to arrive decides to join (resp., leave) the
system. Let

J n
i 4t5=

En
i 4t5
∑

j=1

�ij1 Rn
i 4t5=

En
i 4t5
∑

j=1

41 − �ij5 (5)

denote counting processes for joining and reneging customers. Let Qn
i 4t5 be the number of class-i customers

waiting at the ith buffer at time t, and let Bn
i 4t5 be the number of class-i customers routed to the service pool by

that time. Then we have
Qn

i 4t5=Qn
i 405+En

i 4t5−Bn
i 4t5−Rn

i 4t50 (6)

Let ë n
i 4t5 denote the number of class-i customers in service at time t. Then

ë n
i 4t5=ë n

i 405+Bn
i 4t5−Dn

i 4t51 (7)

where the departure process Dn
i counts the number of completed services of class-i jobs since time 0 (including

initial customers). It is assumed that the departure process is given, in terms of the potential service process, by

Dn
i 4t5= Si

(

∫ t

0
ë n

i 4u5du

)

0 (8)

The nonidling condition is expressed by requiring

for every t1 1 ·Qn4t5 > 0 implies 1 ·ë n4t5= n0 (9)

Under the FP policy we have

∫

601�5

i−1
∑

k=1

Qn
k4t5dB

n
i 4t5= 01 i = 2131 : : : 1N 0 (10)

And under SLQ, a server that becomes available at time t chooses class i0, where i0 ∈ arg maxiQ
n
i (where ties are

broken in an arbitrary, but concrete way), namely,
∫

601�5
é8Qn

i 4t−5<maxk Q
n
k 4t−59 dB

n
i 4t5= 01 i = 1121 : : : 1N 0 (11)

The collection of Equations (5)–(9) and either (10) or (11), along with the primitives and the decision variables �,
uniquely define the processes Qn, Xn, ë n, Bn, and Dn under each of the two policies. Note that these processes are
right-continuous by construction.
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Now let
JTn

i 4t5= inf8s ≥ t2 J n
i 4s5 > J n

i 4t−591 (12)

(where, by convention, JTn
i 40−5 = 0), represent the time of arrival of the first class-i customer to join the system

at or after time t. Let also

RTn
i 4t5= inf

{

s > t2 Bn
i 4s5≥ Bn

i 4JTn
i 4t55+Qn

i 4JTn
i 4t55

}

0 (13)

Then RTn
i 4t5 gives the time when the customer joining at JTn

i 4t5 enters service. The time that particular customer
waits in the queue is then given by

WTn
i 4t5= RTn

i 4t5− JTn
i 4t50 (14)

Note that, as a consequence,

Qn
i 4JTn

i 4t55= Bn
i 4JTn

i 4t5+ WTn
i 4t55−Bn

i 4JTn
i 4t550 (15)

(JT, RT, WT, as well as AT defined below, are mnemonics for joining time, routing time, waiting time, and arrival
time.) We shall also need notation of arrival time and waiting time of the jth class-i customer. These are obtained
as follows:

ATn
ij = invEn

i 4j5= inf8t ≥ 02 En
i 4t5≥ j91

WTn
ij = WTn

i 4ATn
ij50

Note that while WTn
ij is well defined for all 4i1 j5, it only gives the waiting time for those customers 4i1 j5 that have

actually joined the system; this concept is indeed meaningless for the reneging customers. Scaled versions of the
main stochastic processes introduced above are defined as follows:

ë̄ n
i 4t5=

ë n
i 4t5

n
1

Q̂n
i 4t5=

Qn
i 4t5
√
n

1 B̂ n
i 4t5=

B n
i 4t5− n�it

√
n

1

R̂n
i 4t5=

Rn
i 4t5
√
n

1 Ŝ n
i 4t5=

Si4nt5− n�it
√
n

1

D̂n
i 4t5= Ŝ n

i

(

∫ t

0
ë̄ n

i 4u5du

)

1 Ê n
i 4t5=

E n
i 4t5−�n

i t
√
n

1 ë̂ n
i 4t5=

ë n
i 4t5−�in

√
n

0

(16)

Also define,
̂WT

n

i 4t5=
√
nWTn

i 4t51 ̂WT
n

ij =
√
nWTn

ij 0 (17)

It is assumed that the scaled initial condition converges in distribution:

4Q̂n4051 ë̂ n4055⇒ 401ë40551 (18)

where ë405 is an �N -valued r.v. with
∑

iëi405≤ 0.
This completes the description of the stochastic processes of interest. We denote the collection of processes, that

we will sometimes refer to as dynamics, by

Sn
=Sn6�7= 4J n1Rn1Qn1Bn1ë n1Dn1 JTn1RTn1WTn51

where we emphasize the dependence of these processes on the decision variables �. We will use similar notation
to emphasize the dependence of each of the components of Sn on �, as, for example, Qn6�7.

Now we come to the game theoretic setting. It is described for fixed n. In the game, the dynamics described
above will serve as the game’s state. The game is played by the customers to arrive up to time T̄ , where T̄ ∈ 401�5
is fixed throughout. A decision is made by each customer once the queue length of the corresponding class at the
time of arrival is revealed to it. Thus for our purpose, a strategy is a mapping �2 �+ → 80119. We denote the set of
all such mappings by è. A strategy profile is an element of è̄ 2=è81121 : : : 1N 9×�. Let a strategy profile � = 8�ij9 ∈ è̄
be given. We say that the game is played with the strategy profile � if one has

{

Sn =Sn6ãn71 (specifically, Qn =Qn6ãn7)1

ãn
i 4j5= �ij4Q

n
i 4ATn

ij−551 i ∈ 81121 : : : 1N 91 j ∈�0
(19)
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Thus Sn is the dynamics resulting from having each customer 4i1 j5 adopt the strategy �ij , and ãn
i 4j5 is a r.v.

representing the action taken by customer 4i1 j5 in that situation. An argument by induction on the times of arrival
shows that the system of Equations (19) has a unique solution, and thus Sn and ãn are well-defined r.v.s. We will
also need a notation for the dynamics Sn, thus determined by (19), as a function of the strategy profile � . We write
it as Sn4�5.

We formulate the payoff for customer 4i1 j5 by accounting for a cost associated with not receiving service (in
case of reneging) and a function of the waiting time (in case of joining). To this end, we are given constants ri > 0,
i ∈ 81121 : : : 1N 9 and functions hi2 �+ → �+, assumed to be continuous, strictly increasing, and to vanish at
zero. For a strategy profile � = 8�ij9, denote � ij = 8�k1 l2 4k1 l5 6= 4i1 j59. The payoff for customer 4i1 j5, when the
strategy profile � is played, is given by

C n
ij 4�ij1�

ij5=











ri1 ãn
i 4j5= 01 ATn

ij ≤ T̄ 1

hi4̂WTn
ij51 ãn

i 4j5= 11 ATn
ij ≤ T̄ 1

01 ATn
ij > T̄ 0

(20)

Thus, according to the payoff definition, the game neglects all customers arriving after time T̄ . Note that if we
let hn

i 4x5 = hi4
√
nx5, x ≥ 0, then the expression hi4̂WTn

ij5 from (20) can be written in terms of the unnormalized
waiting time as hn

i 4WTn
ij5. Thus, for example, when hi are linear, and given by hi4x5 = cix, x ≥ 0, our setting

corresponds to assuming that a class-i customer incurs a holding cost of ci
√
n per unit time.

For fixed n and � > 0, and an event ì̃ ∈ F, a strategy profile � = 8�ij9 is said to be an �-Nash equilibrium on
the event ì̃ if

∀4i1 j51 ∀� ∈è1 Cn
ij4�ij1�

ij5≤Cn
ij4�1�

ij5+ � (21)

holds on ì̃. A sequence of strategy profiles 8�n9n∈� is said to be an �-Nash equilibrium w.h.p., if there exist
events ì̃n, n ∈�, such that, for every n, �n is an �-Nash equilibrium on ì̂n, and �4ì̃n5→ 1 as n→ �.

For each n and 4i1 j5, consider the strategy

�n
ij4q5=







11 if hi

(

q
√
n�i

)

≤ ri1

01 otherwise,
q ∈�+0 (22)

Theorem 2.1. For any �> 0, under each of the two scheduling policies defined above, the sequence of strategy
profiles 8�n9 defined in (22) is an �-Nash equilibrium w.h.p.

Remark 2.2 (Relation to Naor’s Result). The decision threshold expressed by (22) is closely related to
that from Naor’s celebrated result (Naor [16]; see also Hassin and Haviv [13], Section 2.1), that addresses an
expected delay cost, and a nonasymptotic regime. One can, in fact, recover Naor’s threshold from (22). To this end,
consider Theorem 2.1 in the case of a single class (N = 1), and assume that h4x5 = cx, x ≥ 0. This assumption
corresponds to a cost cn 2= c

√
n per unit time incurred by a customer who decides to join. By (22), using the

heavy traffic condition �=�, the customer joins if and only if c4Qn4t5/4
√
n�55≤ r , namely, Qn4t5≤ 4rn�5/cn.

Since �n is asymptotic to n�, the above threshold is asymptotic to r�n/cn, which gives Naor’s threshold (cf. with
Hassin and Haviv [13, Equation (2.1)]).

Remark 2.3 (Information on Which Decisions Are Based). The decision rule (22) involves the ratio
q/4

√
n�i5. If we translate (22) to a decision based on the cost functions hn

i , which correspond to the actual (unnor-
malized) waiting times, we see that the ratio q/4n�i5 is required to be computed in order to make the decision.
In particular, customers need access to the current state of the system, namely, the queue length, and the system
parameters, specifically n�i. In practical applications, this means that the system manager should provide informa-
tion on the rate of arrival. Since the rate of arrival, �n

i , is only needed up to a first order approximation, n�i, it seems
natural to achieve such an approximation by counting recent arrivals over an interval of time, in applications where
such a procedure is feasible. The interval should be sufficiently long for the law of large numbers to yield effective
estimates. An interesting open question that arises from this discussion is whether one could obtain results similar
to ours when system parameters such as �i and �i are not available to the decision makers.

Remark 2.4 (RSP Does Not Always Hold). One of the main issues we address is the validity of RSP under
the scheduling policies considered. To prove the main result, this principle needs to hold in a strong form, namely,
that, w.h.p., every customer arriving, and joining, in the given time interval 601 T̄ 7, experiences a delay given, with
high precision, by the ratio between queue length and arrival rate. It should be noted that this property is not valid
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for arbitrary scheduling. For example, consider a scheduling that prioritizes class 1 over class 2 up to a certain
fixed time, t0, and then switches to the a priority of 2 over 1. The standard prediction is that the diffusion scale
waiting time for a class-i customer is approximately given by ̂WT ≈�−1

i Q̂i = 4�i�i5
−1Q̂i, where Q̂i is the diffusion

scale queue length at the arrival time. Now, consider a class-2 customer present in the buffer at time t0. Such a
customer will be sent to service approximately 4�1�1 + �2�25

−1q̂ units of time after t0, where q̂ = n−1/2q, and q
is its position in line at t0, because when 2 has priority, every server in the pool to become available will pick
a customer from buffer 2. Hence, w.h.p., most customers that are in buffer 2 at time t0, that are, in fact, O4

√
n5

in number, will experience a delay significantly different than that predicted by RSP. This number increases even
further under a policy that switches priority many times during the time interval in question. While these policies
may not be particularly interesting by their own right, this discussion shows that there is content in the assertion
that the principle does hold for the policies of interest.

Remark 2.5 (Individual Decisions May Have Long Term Effect). The analysis must take into account
the possible behaviour of customers that do not follow the proposed rule. At the technical level, the estimates that
lead to existence of diffusion limits are dealt with for different behaviours of customers. It may seem that it is
enough to consider the behavior of the system when all customers follow the proposed rule, and then argue that
the behaviour of a single customer will have a negligible effect. It should be noted, however, that the decision of
one customer may significantly affect the waiting time of other customers. As a simple example for that, consider
a two-class system under FP, where, at a certain time, a high-priority customer arrives to find an empty buffer of
its own class. If he decides to leave, and for a little while there are no new arrivals, then the first-in-line customer
at the low-priority class will get served as soon as a server becomes available. If he joins, it is possible that a
large number of high-priority customers will join soon after, so that the waiting time of the low-priority customer
referred to above will delay considerably. Hence a single player’s decision may have a significant effect on other
players.

The proof of Theorem 2.1 is based on analysis at the diffusion scale. On the way to proving it, we obtain diffusion
limit results for the two policies under consideration, namely, Proposition 3.3 for FP, and Proposition 4.3 for SLQ.

3. Fixed priority. This section is devoted to a convergence result in the case where the servers implement
the FP scheduling. It provides the main estimates that determine the limiting behaviour of the fluid and diffusion
scaled processes, that are later used to prove RSP.

Throughout, �n = 8�n
ij9 denotes the strategy profile (22). Given 4i1 j5, denote by �̄n

ij ∈ è the strategy �̄n
ij =

1 − �n
ij , that acts precisely as the negation of �n

ij . We begin by noting that in order to show that �n is an �-Nash
equilibrium w.h.p., it suffices to consider (21) with � = �̄n

ij only. Indeed, given 4i1 j5 and � ∈è, define A= 8q ∈�+:
�4q5 6= �n

ij4q59. Then we have

Cn
ij4�1�

n1 ij5=

{

Cn
ij4�̄

n
ij 1�

n1 ij51 if Qn
i 4ATn

ij−5 ∈A1

Cn
ij4�

n
ij 1�

n1 ij51 if Qn
i 4ATn

ij−5 ∈Ac1

and so the validity of (21) for � = �̄n
ij and � = �n

ij (the latter being trivial) implies the validity of this inequality for
� ∈è.

We will use the term scenario for the collection of processes obtained under any one of the strategy profiles
4�̄n

ij 1�
n1 ij5. More precisely, let us fix n. Recall that, for � ∈ è̄, Sn4�5 denotes the dynamics obtained when a

strategy profile � is played. Let
3= 84i1 j52 i ∈ 81121 : : : 1N 91 j ∈�90

For s = 4i1 j5 ∈ 3, the scenario s is defined to be Sn4�̄n
ij 1�

n1 ij5, namely, the dynamics corresponding to player
4i1 j5 playing �̄n

ij and all other players 4k1 l5 playing �n
kl. In addition, scenario 0, that we will also call the reference

scenario, is defined as Sn4�n5. Scenarios are thus indexed by the set 30 2= 3∪ 809. As we have just argued, the
main result will follow once we show that there exist events ì̃n such that, for every n, on ì̃n,

∀4i1 j5 Cn
ij4�

n
ij 1�

n1 ij5≤Cn
ij4�̄

n
ij 1�

n1 ij5+ �1 (23)

and �4ì̃n5→ 1 as n→ �. We thus work in what follows with scenarios. To address all scenarios simultaneously,
the dependence of the processes on the scenario has to be reflected in the notation. For each of the processes
introduced above, except for the stochastic primitives and their scaled versions, an additional superscript s will
indicate that the process is considered under scenario s ∈30. Thus, for example, Qn1 s =Qn4�̄n

ij 1�
n1 ij5 if s = 4i1 j5,

and Qn1 s =Qn4�n5 if s = 0.
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Throughout what follows, we adopt the convention that e n1 s4t5 (or sometimes e n1 s
i 4t5), t ∈ 601 T 7, denotes a

generic family of processes, indexed by n ∈ � and s ∈ 30, that can change from one appearance to another, and
has the property

sup
s

�e n1 s
�T → 01 in probability, as n→ �. (24)

The balance Equations (6)–(8) have the following form when translated to the diffusion scale, namely,

Q̂n1 s
i 4t5= Q̂n

i 405+ Ê n
i 4t5− B̂ n1 s

i 4t5− R̂n1 s
i 4t5+ n−1/24�n

i − n�i5t1 (25)

ë̂ n1 s
i 4t5= ë̂ n

i 405+ B̂ n1 s
i 4t5− Ŝ n

i

(

∫ t

0
ë̄ n1 s

i 4u5du

)

−�i

∫ t

0
ë̂ n1 s

i 4u5du0 (26)

Let X n1 s
i =Qn1 s

i +ë n1 s
i represent the total number of class-i customers in the system, and let its scaled version be

defined by

X̂ n1 s
i 4t5=

X n1 s
i 4t5−�in

√
n

= Q̂n1 s
i 4t5+ ë̂ n1 s

i 4t50 (27)

Then by the assumptions on the initial conditions we have

X̂n405→ë405=2 X00

Our first estimate addresses the scaled queue lengths of the high-priority classes.

Lemma 3.1. For i = 1121 : : : 1N − 1 and for any T <� we have

sup
s

�Q̂n1 s
i �T → 01 in probability.

Proof. From the functional central limit theorem we have,

4Ên1 Ŝn5⇒ 4W11W251 (28)

where W1 and W2 are independent N -dimensional BMs, with W1 a 401A15-BM and W2 a 401A25-BM, A1 =

diag4�iC
2
IAi
5, and A2 = diag4�i5 (see Billingsley [7, Section 17]). In particular, the sequence 4Ên1 Ŝn5 is C-tight.

Fix � > 0. Define the event

ìn
=

{N−1
∑

i=1

Q̂n
i 405≤

�

4
and ë̄ n

i 405≥ �i −
�i

4
1 for all i ∈ 81121 : : : 1N − 19

}

1

where �i = �/4�i4N − 155. Then by the assumption (18) on the initial conditions we have �4ìn5→ 1. For s ∈30

define

� n1 s
1 = inf

{

t ≥ 02
N−1
∑

i=1

Q̂n1 s
i 4t5≥ � or ë̄ n1 s

i 4t5≤ �i − �i1 for some i ∈ 81121 : : : 1N − 19
}

0

Let An1 s = 8� n1 s
1 ≤ T 9. Now let

An1 s
1 =

{

� ∈An1 s2
N−1
∑

i=1

Q̂n1 s
i 4� n1 s

1 5≥ �

}

∩ìn1

An1 s1 i
2 =

{

� ∈An1 s2
N−1
∑

k=1

Q̂n1 s
k 4� n1 s

1 5 < � and ë̄ n1 s
i 4� n1 s

1 5≤ �i − �i

}

∩ìn1 i ≤N − 10

For � ∈An1 s
1 there exists � n1 s

1 = � n1 s
1 4�5 such that

N−1
∑

i=1

Q̂n1 s
i 4� n1 s

1 5≤
�

2
1 and on I n1 s

1 2= 6� n1 s
1 1 � n1 s

1 71
N−1
∑

i=1

Q̂n1 s
i > 00 (29)

Throughout, for 0 ≤ t1 ≤ t2 <�, I = 6t11 t27 and f 2 �+ →�, we use the notation

f 6t11 t27= f 6I7= f 4t25− f 4t150
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By (6) and the fact that Rn
i is nondecreasing, we have on An1 s

1

�
√
n

2
≤

N−1
∑

i=1

Qn1 s
i 6I n1 s

1 7≤
N−1
∑

i=1

En
i 6I

n1 s
1 7−

N−1
∑

i=1

B n1 s
i 6I n1 s

1 70 (30)

By (29) and (9), 1 ·ë n1 s4t5 = n for t = � n1 s
1 and t = � n1 s

1 . Thus by (7), 1 · B n1 s6I n1 s
1 7 = 1 ·D n1 s6I n1 s

1 7. Moreover,
since by (29) the high-priority buffers are nonempty on the time interval of interest, the priority rule expressed
by (10) dictates that the process B n1 s

N does not increase on that interval. As a result, the last term in (30) equals
1 ·D n1 s6I n1 s

1 7, and

�

2
≤

N−1
∑

i=1

Ên
i 6I

n1 s
1 7+

N−1
∑

i=1

�n
i 4�

n1 s
1 −� n1 s

1 5
√
n

−

N
∑

i=1

D̂ n1 s6I n1 s
1 7− n−1/2

N
∑

i=1

�i

∫ � n1 s
1

�n1 s
1

ë n1 s
i 4u5du0

On the time interval under consideration we have for i < N that ë n1 s
i ≥ n�i, where �i = �i − �i. Thus, denoting

�min = mini�i > 0,

N
∑

i=1

�ië
n1 s
i =

N−1
∑

i=1

�i4n�i +ë n1 s
i − n�i5+�Në

n1 s
N

≥ n

(N−1
∑

i=1

�i − �

)

+�min

N−1
∑

i=1

4ë n1 s
i − n�i5+�minë

n1 s
N

= n

(N−1
∑

i=1

�i − �+�min�N +�min

N−1
∑

i=1

�i

)

1

where the last equality uses the fact that
∑N

i=1 ë
n1 s
i = n that is true thanks to the nonidling condition (9) and the

fact that, by (29), the queues are not all empty. Therefore for � small enough there exists a �> 0, such that

N
∑

i=1

�i

∫ � n1 s
1

�n1 s
1

ë n1 s
i 4u5du≥ n

(N−1
∑

i=1

�i + �

)

4� n1 s
1 −� n1 s

1 50

Hence we have

�

2
≤

N−1
∑

i=1

Ên
i 6I

n1 s
1 7−

N
∑

i=1

D̂ n1 s6I n1 s
1 7

+

N−1
∑

i=1

4�n
i − n�i54�

n1 s
1 −� n1 s

1 5
√
n

−
√
n�4� n1 s

1 −� n1 s
1 50

Let rn > 0 be a sequence such that rn → 0 and
√
nrn → �. If � n1 s

1 −� n1 s
1 ≤ rn then

�

2
≤

N−1
∑

i=1

wT 4Ê
n
i 1 rn5+

N
∑

i=1

wT 4Ŝ
n
i 1 rn5+Krn1

where K is a constant and, throughout, for f 2 �+ →�k (k a positive integer),

wT 4f 1a5= sup
{

�f 4t5− f 4s5�2 s1 t ∈ 601 T 71 �t − s� ≤ a
}

1 a > 00

On the other hand, if � n1 s
1 −� n1 s

1 > rn then

�

2
≤ 2

N−1
∑

i=1

�Ên
i �T +KT + 2

N−1
∑

i=1

�Ŝn
i �T −

√
n�rn0

Hence by (28) and the resulting C-tightness of Ên
i and Ŝn

i , we have

�
(

⋃

s

An1 s
1

)

→ 01 as n→ �0 (31)

Next, on An1 s1 i
2 , for i ≤N − 1 fixed, again there exists a time � n1 s

2 = � n1 s
2 4�5 such that

ë̄ n1 s
i 4� n1 s

2 5≥ �i −
�i

2
and on I n1 s

2 2= 6� n1 s
2 1 � n1 s

1 71 ë̄ n1 s
i ≤ �i0
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Thus X n1 s
i 6I n1 s

2 7≤
√
n�− n�i/2, or

E n
i 6I

n1 s
2 7−D n1 s

i 6I n1 s
2 7−Rn1s s

i 6I n1 s
2 7≤

√
n�−

n�i

2
1

and therefore

Ê n
i 6I

n1 s
2 7− D̂ n1 s

i 6I n1 s
2 7+

4�n
i − n�i54�

n1 s
1 −� n1 s

1 5
√
n

≤ �−

√
n�i

2
+

1
√
n
1

whence

−2�Ên
i �T − �Ŝn

i �T −KT ≤ �−

√
n�i

2
+

1
√
n
0

Therefore by the tightness of �Ên
i �T and �Ŝn

i �T , n ∈� (for T fixed), we have

�
(

⋃

s

An1 s1 i
2

)

→ 01 as n→ �1 i ≤N − 10 (32)

Putting together the estimates (31) and (32), we obtain �4
⋂

s4A
n1 s5c5 → 1. Since � > 0 is arbitrary, the result

follows. �

Define
�i = �ih

−1
i 4ri51 (33)

and note that these constants are positive. By (22), under the reference scenario, class-i customers always renege
when the scaled queue length Q̂n

i is in the interval 4�i1 �i + 1/
√
n7 and therefore the scaled queue length never

exceeds that bound. Under any other scenario, there is at most one customer that does not follow the rule (22), and
so we have

Q̂n1 s
i 4t5≤ �i + 2n−1/21 t ≥ 01 n ∈�1 s ∈301 i = 11 : : : 1N 0 (34)

Conversely, a class-i reneging will never take place when hi4Q̂
n1 s
i /�i5 < ri, except, possibly, by a single customer.

Lemma 3.2. (i) For i = 1121 : : : 1N − 1,

sup
s

R̂n1 s
i 4T 5→ 01 in probability, as n→ �0 (35)

(ii) For i = 11 : : : 1N ,
sup
s

�ë̄ n1 s
i −�i�T → 01 in probability, as n→ �0 (36)

Proof. (i) By the discussion preceding the Lemma, Rn1 s
i 4T 5 ≤ 1 on the event that �Q̂n1 s

i �T < �i. Hence (35)
follows from Lemma 3.1.

(ii) We begin by proving the result for the high-priority classes. Thus, fix i ≤N − 1. We have by (6),

Q̄n1 s
i 4t5 = Q̄n

i 405+ Ēn
i 4t5− B̄ n1 s

i 4t5− R̄n1 s
i 4t5

= Q̄n
i 405+ 4Ēn

i 4t5−�it5− 4B̄ n1 s
i 4t5−�it5− R̄n1 s

i 4t50

By the functional law of large numbers, sup0≤t≤T �Ēn
i 4t5−�it�→0 in probability. Hence the estimates of Lemma 3.1

give (recall the convention (24))
B̄ n1 s
i 4t5= �it + e n1 s

t 0 (37)

Next, by (7) and (8), using the identity �i = �i/�i,

ë̄ n1 s
i 4t5−�i = ë̄ n

i 405−�i + 4B̄ n1 s
i 4t5−�it5−

1
n

[

Si

(

∫ t

0
në̄ n1 s

i 4u5du

)

−�i

∫ t

0
në̄ n1 s

i 4u5du

]

−�i

∫ t

0
4ë̄ n1 s

i 4u5−�i5du0

Using the fact ë̄ n1 s
i ≤ 1 we have, for t ∈ 601 T 7,

�ë̄ n1 s
i 4t5−�i� ≤ �ë̄ n

i 405−�i� +�n
T + n−1/2

�Ŝn
i �T +�i

∫ T

0
sup
s

sup
0≤r≤u

�ë̄ n1 s
i 4r5−�i�du0
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It follows from (18) that �ë̄ n405 − �� → 0 and from the law of large numbers for the Poisson process, that
n−1/2�Ŝn

i �T → 0, in probability. Using these facts along with (37), the result (36), for i ≤ N − 1, follows upon
applying Gronwall’s lemma.

Next we consider the class N . Because
∑

�i = 1 and
∑

ë̄ n1 s
i ≤ 1, we have from the validity of (36) for i≤N −1,

sup
s

sup
0≤t≤T

4ë̄ n1 s
N 4t5−�N 5

+
→ 0

in probability as n → �. Using this and the assumption on the initial conditions, the probability of ìn
1 2=

8�n <�/169∩ 8�ë̄ n
N 405−�N �<�/29 converges to 1, where �n = sups

∑

i≤N−1 �ë̄ n1 s
i −��T . Now let

ìn1 s
=

{

�2 inf
0≤t≤T

ë̄ n1 s
N 4t5≤ �N − �

}

0

Then for � ∈ìn1 s ∩ 8�ë̄ n
N 405−�N �<�/29, there exist times 0 ≤ � n1 s

3 4�5≤ � n1 s
3 4�5≤ T such that

ë̄ n1 s
N 4� n1 s

3 5>�N −
�

2
1 ë̄ n1 s

N 4� n1 s
3 5≤�N −�1 and ë̄ n1 s

N 4t5≤�N −
�

8
1 for all t ∈ I n1 s 2= 6� n1 s

3 1 � n1 s
3 70

Also, on the event ìn1 s ∩ 8�n <�/169,

N−1
∑

i=1

ë̄ n1 s
i 4t5≤

N−1
∑

i=1

�i +
�

16
1 for all t ∈ I n1 s0

Thus on I n1 s we have
∑N

i=1 ë̄
n1 s
i 4t5≤ 1 − �/16 < 1, which implies by the nonidling assumption that, on this time

interval, we have
∑N

n=1 Q
n1 s
i 4t5 = 0. As a result, on this time interval there is no reneging under the reference

scenario, and there is at most one reneging under any other scenario. Recalling that X n1 s = Qn1 s + ë n1 s , and
using (6) and (7), we obtain, for a given scenario s, on the event ìn

1 ∩ìn1 s ,

−
n�

2
≥ X n1 s

N 6I n1 s7≥En
N 6I

n1 s7−D n1 s
N 6I n1 s7− 1

=
√
nÊn

N 6I
n1 s7+�n

N 4�
n1 s

3 −� n1 s
3 5−

√
nD̂ n1 s

N 6I n1 s7− n�N

∫

I n1 s
ë̄ n1 s

N 4u5du− 10

Note that
�N

∫

I n1 s
ë̄ n1 s

N 4u5du≤�N�N 4�
n1 s

3 −� n1 s
3 5= �N 4�

n1 s
3 −� n1 s

3 51

thus

−
�

2
≥ −2

�Ên
N�T

√
n

− 2
�D̂n

N�T
√
n

+
4�n

N − n�N 54�
n1 s

3 −� n1 s
3 5

n
−

1
n
0

Since 0 ≤ ë̄ n1 s
N ≤ 1, we have �D̂ n1 s�T ≤ �Ŝn�T . Also, n−1/24�n

N − n�N 5 converges. Hence

−
�

2
≥ −2

�En
N�T

√
n

− 2
�Sn

N�T
√
n

−
KT
√
n

−
1
n
0

By the tightness of �Ên
N�T and �Ŝn

N�T for n ∈� (and T fixed) and the fact that �4ìn
15→ 1, we obtain �4

⋃

s ì
n1 s5

→ 0. Since �> 0 is arbitrary, the result follows. �
Consider a stochastic differential equation with reflection, for a process Y that lives in

G= 8y ∈�N 2 1 · y ≤ �N 91

and reflects on the boundary of G in the direction −eN . Let 8W4t59 be a 4�̂1A5-BM, where A= diag4�14C
2
IA1

+ 151
: : : 1 �N 4C

2
IAN

+ 155. Let b2 �N →�N be given by

b4y5= −
(

�1y11 : : : 1�N−1yN−11�N 4yN − 41 · y5+5
)

0 (38)

Let 4X1L5 be the unique pair of processes that is adapted to the filtration �4X05∨ �8W4u51u ≤ t9, where X has
sample paths in �G, L has nondecreasing sample paths in ��+

, and the pair satisfies a.s.,

X4t5=X0 +W4t5+

∫ t

0
b4X4u55du−L4t5eN 1 t ≥ 01

∫

601�5
181·X4t5<�N 9

dL4t5= 00
(39)
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The existence and uniqueness of such a pair follows from Proposition 3 of Anderson and Orey [3] on noting that b
is Lipschitz. We call this pair the solution to the SDE (39).

Define â2 ��N 4601 T 75→��N 4601 T 75 by

â4f 54t5= f 4t5− g4t5eN 1 g4t5= sup
0≤u≤t

4�N − 1 · f 4u55−0 (40)

The following two properties follow directly from the definition, namely, there exists a constant C such that

�â4f 5− â4f̃ 5�T ≤C�f − f̃ �T 1 f 1 f̃ ∈��N 4601 T 751 (41)

and
wT 4â4f 51 ·5≤CwT 4f 1 ·51 f ∈��N 4601 T 750 (42)

Given z∈��N , z405∈G, we say that 4y1 `5∈��N ×�� solves the Skorohod problem (SP) in G, with reflection in
the direction −eN , for data z, if y4t5 ∈G for all t, ` is nonnegative and nondecreasing, and

y = z− `eN 1
∫

601�5
181·y<�N 9

d`= 00

It is well known that for z as above, a necessary and sufficient condition for 4y1 `5 to be a solution is that y = â4z5
(this follows, e.g., as a special case of the much broader result of Dupuis and Ishii [8]). This will be used in the
proof below.

Denote

Ŵ n1 s
i 4t5= Ên

i 4t5+
�n
i − n�i
√
n

t − Ŝ n
i

(

∫ t

0
ë̄ n1 s

i 4u5du

)

0 (43)

Recall conditions C1–C2 from Section 1 that characterize C-tightness. We will say that a sequence of processes
8� n1 s9, n ∈�, s ∈30, with sample paths in ��k , is C-tight, uniformly in s if

C1′. The sequence of random variables �� n1 s�T is tight for every fixed T <�, and
C2′. For every T <�, �> 0, and � > 0 there exist n0 and � > 0 such that

n≥ n0 implies �
(

sup
s

wT 4�
n1 s1 �5 > �

)

<�0

Proposition 3.3. The sequence 4Ŵ n1s1X̂n1s1R̂n1s1Q̂n1s1ë̂ n1s5 is C-tight, uniformly in s. Moreover, 4Ŵ n101
X̂n101R̂n101Q̂n101ë̂ n105 converges in distribution to 4W1X1LeN 1Q1ë5, where 4X1L5 form the solution to the
SDE (39), and

Q = 41 ·X5+eN 1 ë =X −Q0

Proof. The C-tightness of Ŵ n1 s , uniformly in s, follows from (43) using (28) and the fact that ë̄ n1 s
i ≤ 1. By

(25)–(27),

X̂ n1 s
i = X̂n

i 405+ Ŵ n1 s
i −�i

∫ ·

0
ë̂ n1 s

i 4u5du− R̂n1 s
i 0

Thus
ë̂ n1 s

i = X̂n
i 405+ Ŵ n1 s

i − Q̂n1 s
i −�i

∫ ·

0
ë̂ n1 s

i 4u5du− R̂n1 s
i 1 i = 11 : : : 1N − 11

and, noting that by (9) one has 1 · Q̂n1 s = 41 · X̂ n1 s5+,

X̂ n1 s
N = X̂n

N 405+ Ŵ n1 s
N −�N

∫ ·

0
4X̂ n1 s

N 4u5− 41 · X̂ n1 s4u55+5du−�N

∫ ·

0

N−1
∑

i=1

Q̂n1 s
i 4u5du− R̂n1 s

N

= X̂n
N 405+ Ŵ n1 s

N −�N

∫ ·

0

(

X̂ n1 s
N 4u5− 4X̂ n1 s

N 4u5+

N−1
∑

i=1

ë̂ n1 s
i 4u55+

)

du

−�N

∫ t

0

N−1
∑

i=1

Q̂n1 s
i 4u5du+�N

∫ ·

0

{

41 · X̂ n1 s4u55+ −

(

X̂ n1 s
N 4u5+

N−1
∑

i=1

ë̂ n1 s
i 4u5

)+}

du− R̂n1 s
N 0

Defining Y n1 s
i = ë̂ n1 s

i , i = 11 : : : 1N − 1, and Y n1 s
N = X̂ n1 s

N , we have, using Lemmas 3.1 and 3.2(i),

Y n1 s
i = X̂n

i 405+ Ŵ n1 s
i −�i

∫ ·

0
Y n1 s
i 4u5du+ e n1 s

i 1 i = 11 : : : 1N − 11 (44)

Y n1 s
N = X̂n

N 405+ Ŵ n1 s
N −�N

∫ ·

0
4Y n1 s

N 4u5− 41 · Y n1 s4u55+5du− R̂n1 s
N + e n1 s0 (45)
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Let
F n1 s

= 1 · Y n1 s
∧ �N − 1 · Y n1 s0 (46)

Then

1 · Y n1 s
= X̂ n1 s

N +

N−1
∑

i=1

ë̂ n1 s
i = Q̂n1 s

N + 1 · ë̂ n1 s
≤ Q̂n1 s

N ≤ �N +
2

√
n
1 (47)

by (34). Thus �F n1 s� ≤ 2/
√
n. Further define Ỹ n1 s

i = Y n1 s
i + 41/N5F n1 s , i = 11 : : : 1N . Then Ỹ n1 s satisfies

Ỹ n1 s4t5 ∈G1 t ≥ 01 (48)

and, as follows from (38), (44), and (45),

Ỹ n1 s
= X̂ n405+ Ŵ n1 s

+

∫ ·

0
b4Ỹ n1 s4u55du− R̂n1 s

N eN + e n1 s0 (49)

Under the reference scenario, no class-N reneging occurs when Q̂n10 < �N , that is,
∫

18Q̂n10
N 4t−5<�N 9

dR̂n10
N 4t5= 00

As a result, the same is true with Q̂n10
N 4t−5 replaced by Q̂n10

N 4t5. Under any other scenario, there may be one
customer that does not follow the rule. For s = 4N 1 j5, j ∈ �, write R̃n1 s

N for the normalized reneging count of all
class-N customers except for customer 4N 1 j5 (if it reneges). For any other s ∈ 30, let R̃n1 s

N = R̂n1 s
N . Then R̃n1 s

N is
nondecreasing and satisfies

�R̃n1 s
N − R̂n1 s

N � ≤ n−1/21 (50)

and
∫

18Q̂n1 s
N 4t5<�N 9

dR̃n1 s
N 4t5= 00

Let us show that 1 · Ỹ n1 s < �N implies Q̂n1 s
N < �N . Indeed, by (46), the former implies that 1 · Y n1 s < �N . Now,

1 · Y n1 s = Q̂n1 s
N + 1 · ë̂ n1 s , by (47). Thus either Q̂n1 s

N = 0, or Q̂n1 s
N > 0 in which case 1 ·ë n1 s = 0 by the nonidling

condition (9). In both cases, Q̂n1 s
N < �N . It thus follows that

∫

181·Ỹ n1 s<�N 9
dR̃n1 s

N = 00 (51)

By (49) and (50),

Ỹ n1 s
= X̂n405+ Ŵ n1 s

+

∫ ·

0
b4Ỹ n1 s4u55du− R̃n1 seN + e n1 s0 (52)

Hence from (48), (51), and (52), 4Ỹ n1 s1 R̃n1 s
N 5 solves the aforementioned SP for the data

X̂n405+ Ŵ n1 s
+

∫ ·

0
b4Ỹ n1 s4u55du+ e n1 s0

Therefore

Ỹ n1 s
= â

(

X̂n405+ Ŵ n1 s
+

∫ ·

0
b4Ỹ n1 s4u55du+ e n1 s

)

1 (53)

R̃n1 seN = 4I − â5

(

X̂n405+ Ŵ n1 s
+

∫ ·

0
b4Ỹ n1 s4u55du+ e n1 s

)

0 (54)

The convergence of X̂n405, the uniform C-tightness of Ŵ n1 s , the Lipschitz property of b and the Lipschitz property
of â , as expressed by (41), imply tightness of the r.v.s sups �Ỹ

n1 s�T , upon an application of Gronwall’s lemma
to (53). Hence, using again (53), along with the property (42), shows that the processes Ỹ n1 s are C-tight, uniformly
in s. As a result, R̃n1 s

N are also C-tight, uniformly in s. By Equations (52)–(54), any subsequential weak limit
of 4Ŵ n101 Ỹ n101 R̃n10

N 5 must be equal in distribution to 4W1X1L5. As a result, 4Ŵ n101 Ỹ n101 R̃n10
N 5 ⇒ 4W1X1L5.

From the definition of Ỹ n1 s and Lemma 3.1 it follows that X̂ n1 s = Ỹ n1 s + e n1 s . Moreover, since by Lemma 3.2,
R̂n1 s

i = e n1 s for i ≤ N − 1, we have 4Ŵ n101 X̂ n101 R̂n105 ⇒ 4W1X1LeN 5. Finally, the fact Q̂n1 s
i = e n1 s , i ≤ N − 1,

stated in Lemma 3.1, and the relations 1 · Q̂n1 s = 41 · X̂ n1 s5+, ë̂ n1 s = X̂ n1 s − Q̂n1 s yield the result by the continuous
mapping theorem. �
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4. Serve the longest queue. In this section we carry out our analysis under the SLQ scheduling. The crucial
property in this case is the state space collapse exhibited by the queue length processes. Recall the constants �i
from (33), that determine the upper limit on the value attained by Q̂n1 s

i . While in the previous section the threshold
of the least priority class, �N , was significant, under the current service policy, the property that queue lengths
remain equal makes the minimal threshold important. Thus, assume that the classes are labelled in such a way that

�1 ≥ · · · ≥ �N 1

and let M = min8i2 �i = �N 9. We first treat the case M =N .

Lemma 4.1. Assume M =N . Fix T .
(i) For i = 1121 : : : 1N we have

sup
s

�Q̂n1 s
i −N−141 · X̂ n1 s5+�T → 01 in probability, as n→ �1

sup
s

�ë̄ n1 s
i −�i�T → 01 in probability, as n→ �0

(ii) For i = 1121 : : : 1N − 1, sups R̂
n1 s
i 4T 5→ 0, in probability, as n→ �.

Proof. Fix � > 0. Let �1 = �/444N − 155 and consider the event

ìn
=

{

Q̂n
i 405≤

�

8
and �ë̄ n405−�i� ≤

�1

2
for all i = 11 : : : 1N

}

0

Then it follows from the assumptions that �4ìn5→ 1. For s ∈30 define

� n1 s
1 = inf

{

t ≥ 02 min
i

Q̂n1 s
i 4t5−N−141 · X̂ n1 s4t55+ ≤ −�1

or �ë̄ n1 s
i 4t5−�i� ≥ �1 for some i = 11 : : : 1N − 11

or �ë̄ n1 s
N 4t5−�N � ≥ �

}

0

Let An1 s = 8� n1 s
1 ≤ T 9 and An =

⋃

s A
n1 s . Now let

An1 s1 i
1 = 8� ∈An1 s2 Q̂n1 s

i 4� n1 s
1 5−N−141 · X̂ n1 s4� n1 s

1 55+ ≤ −�9∩ìn1 i = 11 : : : 1N 1

An1 s1 i
2 =

{

� ∈An1 s2 min
j

Q̂n1 s
j 4� n1 s

1 5−N−141 · X̂ n1 s4� n1 s
1 55+ >−� and �ë̄ n1 s

i 4� n1 s
1 5−�i� ≥ �1

}

∩ìn1

i = 11 : : : 1N − 11

An1 s
3 =

{

� ∈An1 s2 min
j

Q̂n1 s
j 4� n1 s

1 5−N−141 · X̂ n1 s4� n1 s
1 55+ >−�1 max

j≤N−1
�ë̄ n1 s

j 4� n1 s
1 5−�j �<�1

and �ë̄ n1 s
N 4� n1 s

1 5−�N � ≥ �
}

∩ìn0

For � ∈An1 s1 i
1 , there exists � n1 s

1 such that

Q̂n1 s
i 4� n1 s

1 5−N−141 · X̂ n1 s4� n1 s
1 55+ >−

�

2
and on I n1 s

1 2= 6� n1 s
1 1 � n1 s

1 71 Q̂n1 s
i −N−141 · X̂ n1 s5+ < 00 (55)

Note that 1 · X̂ n1 s = 1 · Q̂n1 s , hence, on the time interval I n1 s
1 , the ith queue length is less than the average. Since

the scheduling policy always chooses the longest queue and on this time interval, no customer from class i enters
service. Therefore the class-i queue length can only increase during this period. Thus we have

N−141 · X̂ n1 s5+6I n1 s
1 7=N−141 · Q̂n1 s56I n1 s

1 7≥ Q̂n1 s
i 6I n1 s

1 7+
�

2
0 (56)

Hence N−1∑

j 6=i Q̂
n1 s
j ≥ �/2, and so by the balance equation for Qn1 s , (6),

�
√
nN

2
≤
∑

j 6=i

Qn1 s
j 6I n1 s

1 7≤
∑

j 6=i

En
j 6I

n1 s
1 7−

∑

j 6=i

B n1 s
j 6I n1 s

1 70 (57)

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
2.

68
.4

9.
20

6]
 o

n 
14

 D
ec

em
be

r 
20

16
, a

t 2
2:

46
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Atar and Saha: Nash Equilibrium in Heavy Traffic
Mathematics of Operations Research, Articles in Advance, pp. 1–21, © 2016 INFORMS 15

Since, as argued above, B n1 s
i 6I n1 s7= 0, it follows that the last term of (57) equals 1 ·B n1 s6I n1 s

1 7, and since 1 ·ë n1 s =n
on this interval, it follows from (7) that the same term equals 1 · D n1 s6I n1 s

1 7. The argument from Lemma 3.1
(following (30)) now shows that �4

⋃

s A
n1 s1 i
1 5→ 0.

Now we analyze the event An1 s1 i
2 . By (7),

ë̄ n1 s
i 4t5−�i = ë̄ n

i 405−�i + 4B̄ n1 s
i 4t5−�it5−

1
n

(

Sn
i

(

∫ t

0
në̄ n1 s

i 4u5du

)

−�i

∫ t

0
në̄ n1 s

i 4u5du

)

−�i

∫ t

0
4ë̄ n1 s

i 4u5−�i5du

= ë̄ n
i 405−�i + 4Ē n

i 4t5−�it5−
1
n

(

Sn
i

(

∫ t

0
në̄ n1 s

i 4u5du

)

−�i

∫ t

0
në̄ n1 s

i 4u5du

)

−�i

∫ t

0
4ë̄ n1 s

i 4u5−�i5du− Q̄n1 s
i 4t5− R̄n1 s

i 4t50 (58)

Thus, for t ∈ 601 T 7,

�ë̄ n1 s
i 4t5−�i� ≤ �ë̄ n

i 405−�i� + �Ē n
i −�i · �T + n−1/2

�Ŝn
i �T + �Q̄n1 s

i �T

+ R̄n1 s
i 4t5+�i

∫ t

0
�ë̄ n1 s

i 4u5−�i�du0

And so by Gronwall’s lemma we have

�ë̄ n1 s
i 4t5−�i� ≤ 4�ë̄ n

i 405−�i� + �Ē n
i −�i · �T + n−1/2

�Ŝn
i �T + �Q̄n1 s

i �T + R̄n1 s
i 4t55e�iT 0

Using the identity 41 · X̂ n1 s5+ = 1 · Q̂n1 s , we have on An1 s1 i
2 that minj Q̂

n1 s ≥ N−11 · Q̂n1 s − � up to the time � n1 s
1 .

As a result, maxj Q̂
n1 s
j ≤ N−11 · Q̂n1 s +N�. Using the fact that the queue length is limited by Q̂n1 s

N ≤ �N + 2n−1/2

at all times, it follows that for all large n, up to time � n1 s
1 ,

max
j

Q̂n1 s
j ≤ �N + 4N + 15�0

Hence, if � is sufficiently small then up to time � n1 s
1 there can be at most one reneging of class-j customers for

j ≤N − 1. Thus, on An1 s1 i
2 , we have

�1 ≤ �ë̄ n1 s
i 4� n1 s

1 5−�i� ≤ 4�ë̄ n
i 405−�i� + �Ē n

i −�i · �T + n−1/2
�Ŝn

i �T + n−1/24�i + 15+ n−15e�iT 0

Using the convergence of Ên and Ŝn (28) and that of the initial condition (18), we therefore obtain �4
⋃

s A
n1 s1 i
2 5→0.

Finally we analyze An1 s
3 . We have

ë̄ n1 s
N 4� n1 s

1 5≤ 1 −

N−1
∑

i=1

ë̄ n1 s
i 4� n1 s

1 5≤ �N +
�

4
0

Thus by the way An1 s
3 is defined, we have ë̄ n1 s

N 4� n1 s
1 5≤ �N − �. And so there exists � n1 s

2 such that

ë̄ n1 s
N 4� n1 s

2 5 > �N −
�

2
and on 6� n1 s

2 1 � n1 s
1 71 ë̄ n1 s

N 4t5 < �N −
�

4
0 (59)

Hence on 6� n1 s
2 1 � n1 s

1 7, we have
∑

ë̄ n1 s
i 4t5 <

∑

�i + �/4 − �/4 = 1. Thus, on this interval we have 1 · Q̂n1 s = 0, and
so, the argument provided in the last part of the proof of Lemma 3.2 shows �4

⋃

s A
n1 s
3 5→ 0.

We have thus shown that �4An5 → 0. The conclusion of item (i) now follows on using again the fact that
minj Q̂

n1 s
j ≥N−11 · Q̂n1 s − � implies maxj Q̂

n1 s
j ≤N−11 · Q̂n1 s +N�.

As for item (ii), recall that �N < �i for all i < M = N . Hence the assertion is a direct consequence of (34) and
item (i). �

Next, consider M ∈ 81121 : : : 1N 9. Fix a sequence kn, n∈�, such that lim n−1/2kn =� and lim n−1kn = 0. Given
T <�, define

Tn1 s = inf8t2 1 ·Rn1 s4t5≥ kn9∧ T 0

We use the notation U ∗1 n1 s = U n1 s4· ∧ Tn1 s5 for any process U n1 s , and refer to these processes as stopped versions
of the original processes. The following result states that Lemma 4.1 is valid for the stopped processes.
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Lemma 4.2. Consider general M .
(i) For i = 1121 : : : 1N we have

sup
s

�Q̂∗1 n1 s
i −N−141 · X̂∗1 n1 s5+�T → 01 in probability, as n→ �1

sup
s

�ë̄ ∗1 n1 s
i −�i�T → 01 in probability, as n→ �0

(ii) For i = 1121 : : : 1M − 1, sups R̂
∗1 n1 s
i 4T 5→ 0, in probability, as n→ �.

Proof. Note that, by definition, R̄∗1 n1 s = e n1 s . Hence a use of (58) and again Gronwall’s lemma immediately
give ë̄ ∗1 n1 s =�+e n1 s , proving the second part of item (i) on the lemma. With this at hand, the remaining assertions
are proved as in Lemma 4.1. �

In the case where M = N , we provide a convergence result. We do not attempt such an analysis for M < N ,
where, as is shown in a work in progress (Atar and Saha [4]), the limiting behaviour may depend on properties
that are finer than first and second order data. Thus, for M <N , we only obtain C-tightness of the processes, that
however will suffice for the purpose of proving the main result.

To present the result regarding the case M = N , we consider an SDE of the form (39) with different domain G
and drift b. Namely, we consider

G= 8y ∈�N 2 1 · y ≤N�N 91

and b2 �N →�N given by

b4y5= −
(

�14y1 −N−141 · y5+51 : : : 1�N 4yN −N−141 · y5+5
)

0 (60)

The process W4t5 is as in Section 3, and the SDE of interest is now

X4t5=X0 +W4t5+

∫ t

0
b4X4u55du−L4t5eN 1 t ≥ 01

∫

601�5
181·X4t5<N�N 9

dL4t5= 01
(61)

where a solution 4X1L5 is defined similarly. The map â2��N 4601 T 75→��N 4601 T 75 that is relevant for the present
setting is given by

â4f 54t5= f 4t5− g4t5eN 1 g4t5= sup
0≤u≤t

4N�N − 41 · f 4u555−0

Proposition 4.3. (i) For general M , the processes Ŵ n1 s , X̂ n1 s , R̂n1 s , Q̂n1 s and ë̂ n1 s are C-tight, uniformly in s.
(ii) In the case M = N , as n → �, 4Ŵ n101 X̂ n101 R̂n101 Q̂n101 ë̂ n105 converges in distribution to 4W1X1LeN 1

Q1ë5, where 4X1L5 form the solution to the SDE (61), and

Q =N−141 ·X5+
N
∑

i=1

ei1 ë =X −Q0

Proof. Step 1. In this and the next step we consider the case M =N . We have

X̂ n1 s
i = X̂n

i 405+ Ŵ n1 s
i −�i

∫ ·

0
ë̂ n1 s

i 4u5du− R̂n1 s
i

= X̂n
i 405+ Ŵ n1 s

i −�i

∫ ·

0
4X̂ n1 s

i 4u5− Q̂n1 s
i 4u55du− R̂n1 s

i

= X̂n
i 405+ Ŵ n1 s

i −�i

∫ t

0
4X̂ n1 s

i 4u5−N−141 · X̂ n1 s4u55+5du− R̂n1 s
i + e n1 s

i 1

where we have used Lemma 4.1(i) on the last line. Next, by Lemma 4.1(ii),

X̂ n1 s
= X̂n405+ Ŵ n1 s

+

∫ ·

0
b4X̂ n1 s4u55du− R̂n1 s

N eN + e n1 s1 (62)

with b as in (60). Define

Z n1 s
i = X̂ n1 s

i + Q̂n1 s
N −N−141 · X̂ n1 s5+1 i = 11 : : : 1N 1
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and note that Z n1 s = X̂ n1 s + e n1 s . Let

K n1 s
= 6N−141 ·Z n1 s57∧ �N −N−141 ·Z n1 s50

Since

N−141 ·Z n1 s5 = N−141 · X̂ n1 s5+ Q̂n1 s
N −N−141 · X̂ n1 s5+

= N−141 · ë̂ n1 s5+ Q̂n1 s
N

≤ Q̂n1 s
N ≤ �N + 2n−1/21

we have K n1 s = e n1 s . Define Z̃ n1 s
i =Z n1 s

i +K n1 s , i = 1121 : : : 1N . Then

N−141 · Z̃ n1 s54t5≤ �N 1 t ≥ 00 (63)

Moreover, Z̃ n1 s = X̂ n1 s + e n1 s , hence by the Lipschitz property of b and (62),

Z̃ n1 s
= X̂n405+ Ŵ n1 s

+

∫ ·

0
b4Z̃ n1 s4u55du− R̂n1 s

N eN + e n1 s0 (64)

As in the case of FP, an argument based on the fact that under the reference scenario no class-i reneging occurs
when Q̂n10

i < �i shows that
∫

18N−141·Z̃ n1 s5<�N 9
dR̃n1 s

N = 01 (65)

for a nonnegative, nondecreasing process R̃n1 s
N that is close to R̂n1 s

N in the sense

R̃n1 s
N = R̂n1 s

N + e n1 s0 (66)

Step 2. To prove (i) (with M =N ) and (ii), combine (63), (64) (with R̂n1 s
N replaced by R̃n1 s

N ) and (65) to write

Z̃ n1 s
= â

(

X̂n405+ Ŵ n1 s
+

∫ ·

0
b4Z̃ n1 s4u55du+ e n1 s

)

1 (67)

R̃n1 seN = 4I − â5

(

X̂n405+ Ŵ n1 s
+

∫ ·

0
b4Z̃ n1 s4u55du+ e n1 s

)

0 (68)

The completion of the proof, based on the above, is precisely as in Proposition 3.3.
Step 3. It remains to prove (i) for M <N . We start by arguing that conclusions analogous to those obtained in

Step 1 are valid here too, but for the stopped processes. Indeed, working as in Step 1 with Lemma 4.2 in place of
Lemma 4.1 shows that

X̂∗1 n1 s
= X̂n405+ Ŵ ∗1 n1 s

+

∫ ·∧Tn1 s

0
b4X̂ n1 s4u55du−

N
∑

i=M

R̂∗1 n1 s
i ei + e n1 s0

Define
Z∗1 n1 s
i = X̂ n1 s

i + max
i∈8M1 : : : 1N 9

Q̂n1 s
N −N−141 · X̂ n1 s5+1 i = 11 : : : 1N

and
K∗1 n1 s

= 6N−141 ·Z∗1 n1 s57∧ �N −N−141 ·Z∗1 n1 s50

Now with Z̃∗1 n1 s defined as Z̃∗1 n1 s
i =Z∗1 n1 s

i +K∗1 n1 s , i = 11 : : : 1N , it can be argued as in step 1 that,

Z̃∗1 n1 s
= X̂n405+ Ŵ ∗1 n1 s

+

∫ ·∧Tn1 s

0
b4Z̃ n1 s4u55du−

N
∑

i=M

R̂∗1 n1 s
i ei + e n1 s1 (69)

Z̃∗1 n1 s
= X̂∗1 n1 s

+ e n1 s1 (70)
∫

18N−141·Z̃ n1 s5<�N 9
dR̃n1 s

i = 01 i =M1 : : : 1N 1 (71)

for nonnegative, nondecreasing processes R̃n1 s
i that are close to R̂n1 s

i in the sense

R̃n1 s
i = R̂n1 s

i + e n1 s1 i =M1 : : : 1N 1 (72)

(note that the above refers to the unstopped versions of the processes, because again (50) is valid).
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Denote

� n1 s
= 1 · Z̃ n1 s1 � n1 s

= 1 · X̂ n405+ 1 · Ŵ n1 s
+

∫ ·

0
1 · b4Z̃ n1 s4u55du1 �n1 s

=

N
∑

i=M

R̃n1 s
i 0 (73)

Then � n1 s and �n1 s have sample paths in ��, where those of �n1 s are nonnegative and nondecreasing, and moreover,
as follows from (63), (69), (71), and (72),

�∗1 n1 s
= �∗1 n1 s

+ e n1 s
−�∗1 n1 s

≤N�N 1
∫

601�5
18� n1 s<N�N 9

d�n1 s
= 00

It follows that �∗1 n1 s is given by

�∗1 n1 s4t5= sup
0≤u≤t

4N�N − �∗1 n1 s4u5+ e n1 s4u55−0 (74)

We now write c for generic constants and use the Lipschitz property of b. We have

�∗1 n1 s4t5 ≤ c+ ��∗1 n1 s
�t + e n1 s4t5

≤ c+ �X̂n405� + c�Ŵ ∗1 n1 s
�t + c

∫ t∧Tn1 s

0
�Z̃ n1 s4u5�du+ e n1 s4t50

Going back to (69) and recalling that �n1 s has been defined as the sum of positive terms,

�Z̃∗1 n1 s4t5� ≤ c�X̂n405� + c�Ŵ ∗1 n1 s
�t + c

∫ t

0
�Z̃∗1 n1 s4u5�du+ e n1 s4t50

A use of Gronwall’s lemma now shows that for T fixed, �Z̃∗1 n1 s�T , n∈�, are tight, uniformly in s. Next, using (73)
and the C-tightness of Ŵ ∗1 n1 s shows that �∗1 n1 s are C-tight, uniformly in s. In turn, using (74), shows that so are
the processes �∗1 n1 s . In particular, for fixed T ,

�∗1 n1 s4T 5 are tight uniformly in s. (75)

Now, note that

1 · R̂∗1 n1 s4T 5=

M−1
∑

i=1

R̂∗1 n1 s
i 4T 5+�∗1 n1 s4T 5+ e n1 s

= �∗1 n1 s4T 5+ e n1 s1

where we used Lemma 4.2(ii). Hence in view of (75), the definition of Tn1 s , and the assumption lim n−1/2kn = �,
we have �4for some s, Tn1 s <T 5→ 0 as n→ �. Thus all conclusions we have obtained for the stopped processes
are valid for the unstopped versions. Namely, �Z̃ n1 s�T are tight, uniformly in s, � n1 s and �n1 s are C-tight uniformly
in s, and (69) and (70) hold without the asterisk sign.

Using the last part of (73) and the fact that each of the processes R̃n1 s
i , n ∈ �, i = M1 : : : 1N , is nondecreasing

shows that these processes are also C-tight, uniformly in s. Hence by (69), Z̃ n1 s , and in turn, X̂ n1 s are C-tight,
uniformly in s. Finally, Lemma 4.2 is now valid for the processes without the asterisk sign. Thus the uniform
C-tightness of Q̂n1 s follows from that of X̂ n1 s upon using Lemma 4.2(i) and the continuous mapping theorem, and
that of ë̂ n1 s follows from the identity (27). �

5. Reiman’s snapshot principle and proof of the main result. We finally state and prove RSP and obtain the
main result as an immediate consequence thereof. RSP is based on the C-tightness of the processes B n1 s , established
as part of the limit results above. The two policies, namely, FP and SLQ, are addressed here simultaneously.

The proof uses the following identity, that holds regardless of the service policy:

Q̂n1 s
i 4JTn1 s

i 4t55= B̂ n1 s
i 4JTn1 s

i 4t5+ WTn1 s
i 4t55− B̂ n1 s

i 4JTn1 s
i 4t55+�i

̂WTn1 s
i 4t51 (76)

and on properties of the processes involved in it. This identity follows from (15), and the definition of the scaled
processes, (16) and (17). The main argument is that the l.h.s. and the last term on the r.h.s. must be asymptotically
equal once one has that B̂ n1 s are uniformly C-tight and the term ̂WTn1 s is small.

Proposition 5.1. We have for i = 11 : : : 1N ,

�n
i 4T 5 2= sup

s

sup
t∈601 T 7

∣

∣Q̂n1 s
i 4JTn1 s

i 4t55−�i
̂WTn1 s

i 4t5
∣

∣→ 01 in probability, as n→ �0 (77)
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Proof. First we argue that the results of Sections 3 and 4 imply that B̂ n1 s are C-tight, uniformly in s. Indeed,
by (25),

B̂ n1 s
i 4t5= Q̂n

i 405+ Ên
i 4t5+ �̂it − Q̂n1 s

i 4t5− R̂n1 s
i 4t5+ e n1 s4t50

By (18) and (28), the sum of the first two terms forms a C-tight sequence of processes. By Proposition 3.3, Q̂n1 s
i

and R̂n1 s
i are C-tight, uniformly in s, under FP, and by Proposition 4.3, the same is true under SLQ. Thus follows

the uniform C-tightness of B̂ n1 s , and in particular, for i = 1121 : : : 1N and �> 0,

lim
�↓0

lim sup
n→�

�
(

sup
s

wT+24B̂
n1 s
i 1 �5 > �

)

→ 00 (78)

Fix � ∈ 40115 and define

ìn1 s
i =

{

sup
t∈601 T 7

�JTn1 s
i 4t5− t�> �

}

0

Then, on ìn1 s
i there exists t ∈ 601 T 7 such that J n1 s

i 4t + �5− J n1 s
i 4t5= 0, hence

J n1 s
i 4t + �5− n�i4t + �5− 6J n1 s

i 4t5− n�it7= −n�i�0

Hence, on
⋃

s ì
n1 s
i ,

sup
s

sup
0≤t≤T+1

�J n1 s
i 4t5/n−�it� + sup

s

sup
0≤t≤T

�J n1 s
i 4t5/n−�it� ≥ �i�0

By (5), J n1 s =En −Rn1 s , and therefore by the tightness of �Ê n�T+1 and �R̂n1 s�T+1, uniformly in s, we have that

sup
s

sup
0≤t≤T+1

∣

∣

∣

∣

J n1 s
i 4t5− n�it

√
n

∣

∣

∣

∣

are tight. Hence

�
(

sup
s

sup
0≤t≤T

�JTn1 s
i 4t5− t�> �

)

→ 01 as n→ �0 (79)

Next we show
�
(

sup
s

sup
0≤t≤T

WTn1 s
i 4t5 > 1

)

→ 01 as n→ �0 (80)

For every � in the event under consideration there exist t and s such that WTn1 s
i 4t5 > 1. Therefore, by (15),

Qn1 s
i 4JTn1 s

i 4t55 = B n1 s
i

(

JTn1 s
i 4t5+ WTn1 s

i 4t5
)

−B n1 s
i 4JTn1 s

i 4t55

≥ B n1 s
i 4JTn1 s

i 4t5+ 15−B n1 s
i 4JTn1 s

i 4t551

thus
Q̂n1 s

i 4JTn1 s
i 4t55≥ B̂ n1 s

i 4JTn1 s
i 4t5+ 15− B̂ n1 s

i 4JTn1 s
i 4t55+�i

√
n0

The conclusion follows using (79) and the tightness of the r.v.s sups �Q̂
n1 s�T+1 and sups �B̂

n1 s�T+2, n ∈�.
Using (76), the tightness of the r.v.s sups �Q̂

n1 s�T+1 and sups �B̂
n1 s�T+2 and the facts (79) and (80), gives that of

sups �
̂WTn1 s�T . As a result, WTn1 s

= e n1 s . Using (76) again shows that �n
i 4T 5 of (77) satisfies

�n
i 4T 5≤ sup

s

wT+24B̂
n1 s1 �5

on the event 8sups supt≤T 4JTn1 s
i 4t5+ WTn1 s

i 4t55 ≤ T + 29∩ 8sups WTn1 s
i < �9. Since we have just argued that the

probability of this event converges to 1 as n→ �, the result follows from (78). �

Finally, we provide the proof of our main result, as a direct consequence of Proposition 5.1.

Proof of Theorem 2.1. Let ì̃n be the event defined by (23). Fix 4i1 j5 ∈3. Then if

C n
ij 4�

n
ij 1�

n1 ij5 > C n
ij 4�̄

n
ij 1�

n1 ij5+ �1 (81)

we have by (20), that ATn
ij ≤ T̄ . Now, there can be two cases.
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Case 1. hi4�
−1
i Qn10

i 4ATn
ij−55< ri. Then by (22), ãn

i 4j5= 1, hence by (20), Cn
ij4�

n
ij 1�

n1 ij5=hi4̂WTn10
ij 5, whereas

Cn
ij4�̄

n
ij 1�

n1 ij5= ri. Thus hi4̂WTn10
ij 5 > ri + �, and so

hi4̂WTn10
ij 5− � > ri >hi

(

Q̂n10
i 4ATn

ij−5

�i

)

0

Since Q̂n10
i is bounded by �i + 1, it follows that

N
∑

k=1

�n
k 4T 5

�k

+
1

√
n

≥ ̂WTn10
i 4ATn

ij5−
Q̂n10

i 4JTn1 s
i 4ATn

ij55

�i

+
1

√
n

= ̂WTn10
ij −

Q̂n10
i 4ATn

ij−5

�i

≥ inf8b− a2 h4b5−h4a5 > �1 a ∈ 601�−1
i 4�i + 1571 b ≥ 09 > 01 (82)

by the continuity of h.
Case 2. hi4�

−1
i Q̂n10

i 4ATn
ij−55≥ri. In this case, by (22) ãn

i 4j5=0, by (20), Cn
ij4�

n
ij 1�

n1ij5=ri and Cn
ij4�̄

n
ij 1�

n1ij5=

hi4̂WTn1s
ij 5. Hence hi4̂WTn1s

ij 5<ri−�, and so

hi4̂WTn1 s
ij 5+ � < ri ≤ hi

(

Q̂n10
i 4ATn

ij−5

�i

)

0

As a result,

N
∑

k=1

�n
k 4T 5

�k

≥
Q̂n10

i 4JTn1 s
i 4ATn

ij55

�i

−
1

√
n

−̂WTn1 s
i 4ATn

ij5=
Q̂n1 s

i 4ATn
ij−5

�i

−̂WTn1 s
ij

≥ inf
{

b− a2 h4b5−h4a5 > �1 b ∈ 601�−1
i 4�i + 1571 a≥ 0

}

> 01 (83)

by the continuity and strict monotonicity of h.
Combining (82) and (83) shows that if (81) holds for some 4i1 j5 ∈3, then

N
∑

k=1

�n
k 4T 5

�k

≥ c > 01

where c is a constant that does not depend on n. Using Proposition 5.1 shows that �44ì̃n5c5→ 0 as n→ �. This
completes the proof. �

6. Concluding remarks. This paper combines game theoretic analysis with heavy traffic theory. It addresses
a particular queueing model and two families of scheduling disciplines, leaving room for various extensions. Let
us briefly mention some.

As already mentioned, the proof of the main result provided above is based solely on Proposition 5.1. This
proof shows that the sequence 8�n9 of (22) is an �-Nash equilibrium w.h.p. under any scheduling policy for which
RSP holds. At the same time, as stated in Remark 2.4, RSP does not hold for arbitrary policies. It is therefore of
interest to ask to what degree RSP (and consequently our main result) can be extended to cover a larger collection
of scheduling policies. Another problem, already mentioned in Remark 2.3, is to obtain our main result without
assuming that customers have access to any of the system parameters. One may assume, for example, that customers
know how long other customers have waited.

While the latter problem is relevant for the scheduling policies treated in this paper, it is of interest to study both
problems with regard to a larger class of scheduling policies. Specific ones that we find natural are the following.

1. When a server becomes available it chooses a customer class uniformly at random from those with nonempty
buffers. Like FP, this policy does not use queue length information (beyond the information of which buffers are
nonempty), and in a sense is at the other extreme as far as fairness is concerned.

2. When a server becomes available it chooses a customer of class i at random with probability Qi/4
∑

j Qj5.
This can be thought of as a randomized version of SLQ.

Beyond the desired extensions alluded to above for the queueing model under consideration, it would be of
interest to implement an approach that combines game theory and heavy traffic theory, such as the one proposed
here, in the setting of more general queueing networks.
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