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For a multiclass G/G/1 queue with finite buffers, admission and
scheduling control, and holding and rejection costs, we construct a
policy that is asymptotically optimal in the heavy traffic limit. The
policy is specified in terms of a single parameter which constitutes the
free boundary point from the Harrison-Taksar free boundary prob-
lem, but otherwise depends explicitly on the problem data. The cµ

priority rule is also used by the policy, but in a way that is novel,
and, in particular, different than that used in problems with infi-
nite buffers. We also address an analogous problem where buffer con-
straints are replaced by throughput time constraints.

1. Introduction. In this work we consider the problem of finding
asymptotically optimal (AO) controls for the multiclass G/G/1 queue with
finite buffers, in heavy traffic. Upon arrival of a class-i customer into queue
i (with i ∈ {1, . . . , I} and where I denotes the number of classes), a decision
maker may either accept or reject the job. In addition, the decision maker
controls the fraction of effort devoted by the server to the customer at the
head of queue i, for each i. We refer to the two elements of the control as
admission control and scheduling, respectively. The problem considered is
to minimize a combination of holding and rejection costs. The term ‘heavy
traffic’ refers to assuming a critical load condition and observing the model
at diffusion scale. Our interest in this problem stems from recent develop-
ments in the application area of cloud computing. In a hybrid cloud where
a private cloud (namely, a local server) has a given capacity and memory
limits, tasks that cannot be queued in real time are rejected from the local
system and sent to a public cloud, where a fixed charge per usage applies. For
further details on modeling toward these applications, see [37]. For a more
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general modeling framework of data centers, see [12]. The analysis of the
model leads in the scaling limit to a control problem associated with Brow-
nian motion (BM), often referred to in this context as a Brownian control
problem (BCP). Our main result is the convergence of the queueing control
problem (QCP) value function to that of the BCP, and the construction of a
particular AO admission/scheduling policy. The policy is specified in terms
of a free boundary point that is used in solving the BCP, but otherwise it
depends explicitly on the problem data.

A line of research starting from Harrison [25] and continuing with Harrison
and van Mieghem [29], Harrison [26, 27] and Harrison and Williams [30]
has treated BCP associated with a broad family of models called stochastic
processing networks. These problems, aimed at describing the heavy traffic
limits of QCP, were shown to be equivalent to reduced BCP (RBCP), in
which workload plays the role of a state process. RBCP simplify BCP in two
ways: Their state lies in lower dimension, and their form, specifically, that
of a singularly controlled diffusion, makes control theoretic tools applicable.
Addressing these models at the same level of generality, Atar and Budhiraja
[6] and Atar, Budhiraja and Williams [7] use such control theoretic tools to
characterize the BCP (equivalently, RBCP) value functions as solutions to
Hamilton-Jacobi-Bellman (HJB) equations, and Budhiraja and Ghosh [15]
and [16] prove convergence of QCP value function to BCP value functions.
Many other works address these models in situations where the BCP are
explicitly solvable, see e.g. Ata and Kumar [2] and references therein.

As far as BCP are concerned, the model studied here is a special case of
the models considered in some of the aforementioned papers. In particular,
BCP and RBCP play here important roles, where the reduction from an
I-dimensional BCP to a one-dimensional RBCP is a special case of [30].
Moreover, the HJB equation, that in the present setting is an ordinary dif-
ferential equation and will be referred to merely as a Bellman equation, is
a special case of the partial differential equations treated in [7]. In addition,
our specific one-dimensional RBCP, its relation to the Bellman equation,
and its solution go back to Harrison and Taksar [28], where a singular con-
trol problem for a BM is solved. The solution is given by a reflected BM
(RBM), with supporting interval determined by a free boundary problem
associated with the Bellman equation. This type of free boundary problem
first appeared in [28], and we therefore refer to it as the Harrison-Taksar
free boundary problem. In our case, the interval is always of the form [0,x∗],
and we call x∗ the free boundary point.

On the other hand, the works [15, 16] and [2], despite their vast generality,
do not cover the present model as they do not treat admission control and
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rejection penalties. Thus, while the BCP is well understood, convergence
and AO issues have not been addressed before. Addressing these issues is the
main contribution of this paper. This is done by proving that the BCP value
function constitutes a lower bound on the limit inferior of QCP costs under
any sequence of policies (Theorem 3.1), and then constructing a specific
policy that asymptotically achieves this lower bound (Theorem 4.1). This
AO policy depends explicitly on the system parameters, except that it also
depends on the quantity x∗. Moreover, it uses the well-known cµ rule in a
novel way, as we now explain.

The structure of the policy alluded to above is simple enough to describe
without introducing much notation. The notation needed is as follows. For
class-i customers, denote holding cost per unit time by hi, rejection penalty
per customer by ri, and reciprocal mean service time by µi. The policy is
defined in terms of three elements: The index hiµi, the index riµi, and the
free boundary point x∗. The first index is used for scheduling. It is precisely
the index used for the cµ priority rule (a terminology used when c, rather
than h, denotes holding cost per unit time), where classes are prioritized
in the order of hiµi, the highest priority given to the class i with greatest
hiµi. As observed first by Smith [38] and Cox and Smith [18], the cµ priority
rule is exactly optimal for holding costs. Many extensions to this result have
been shown (see e.g., [17, 39] and discussions therein). Our scheduling policy
uses the same index to assign priorities, but in a state-dependent fashion,
as follows. At any given time, the lowest priority is assigned to the class i
having lowest index hiµi among classes for which the buffers are not nearly
full. We give precise meaning to the term ‘nearly full’.

Let us contrast this with the case of infinite buffers and no rejection.
For this model, an AO policy applying dynamic priorities, in the form of
an extended version of the cµ rule, was developed by van Mieghem [39]
to address nonlinear delay costs. When costs are linear, as they are in the
present paper, it is the fixed priority rule according to hiµi that is AO.
Suppose now that I is the class that has lowest hiµi value, so that class I is
assigned lowest priority by this rule. Then, as is well-known since Whitt [41],
the multiclass G/G/1 queue behaves in such a way that all classes i < I
exhibit vanishing queuelength in the heavy traffic limit. Consequently, it
is not only the aforementioned assignment rule that is AO. Any priority
policy assigning lowest priority to the class I performs equally well, and is
therefore AO for such a QCP. In other words, the only aspect of the index
policy which is important for AO in the problem with infinite buffers and
no rejections, is the class assigned the lowest priority. Thus there is a major
difference between the way in which the index is used in the infinite buffer
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setting and in this paper. In the latter case, the full information on the
ordering of classes is important.

The admission control is based on the other index, riµi, and the free
boundary point x∗. The significance of this index for admission control in
heavy traffic was first noticed by Plambeck, Kumar and Harrison [33] (see
below). Our policy acts as follows. When the diffusion-scaled workload level
exceeds the level x∗, all arrivals of one particular class are rejected. This is
the class i having the least riµi value. When the workload level is below x∗,
all arrivals are admitted, except rejections that must take place so as to keep
the buffer size constraint valid (namely arrivals that occur at a time when the
corresponding buffer is full). We call these forced rejections. A property of the
policy that is important for AO is that it maintains, with high probability, a
low number of forced rejections. As a result, nearly all rejections occur when
the workload exceeds x∗, and only from one class. It is to this end that the
scheduling policy prioritizes classes with nearly full buffer.

The aforementioned paper [33] studies the problem of minimizing rejection
penalties, subject to throughput time constraints, for the multiclass G/G/1
queue in heavy traffic (see also Ata [1] for a closely related formulation). Each
class has a deterministic constraint on the throughput time, and arrivals
that are admitted into the system are assured that, with high probability,
their throughput time constraint will be kept. This property of the policy is
referred to as asymptotic compliance. The policy of [33] admits all arrivals
except those from the class having lowest riµi value, and only when the
workload exceeds a threshold value. Thus our admission policy resembles
that of [33], except that our threshold level is characterized by the free
boundary problem, whereas it is explicit in [33] (their scheduling policy is
different than ours).

But the relation of our work to [33] is deeper than similarities in the ad-
mission policies. Reiman’s snapshot principle [35] states that, under suitable
assumptions, a deterministic relation holds in the heavy traffic limit between
throughput time and queuelength processes. Accordingly, buffer constraints
on queuelength should be asymptotically equivalent to throughput time con-
straints. We follow this rationale in the last section of this paper, where we
formulate a QCP that parallels the QCP addressed in the main body of the
paper, where finite buffer constraints are replaced by throughput time con-
straints. This may be regarded an extended version of the QCP of [33] that
accommodates holding costs. We do not succeed in fully solving this prob-
lem here; our purpose in this part of the work is mainly to pose the problem
and to discuss similarities with the main body of this paper, leaving the
main question open. We begin by proving the validity of Reiman’s snap-
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shot principle in the form of a conditional result (Proposition 5.1). There is
no guarantee that queuelength and throughput times satisfy the snapshot
principle under an arbitrary sequence of controls. We show that C-tightness
of the processes involved suffices. Using this result we can show that the
policy we develop for the finite buffer problem satisfies the throughput time
constraints and that its limit performance is dominated by the BCP value
(Theorem 5.1). In order to deduce that it is AO, a lower bound in the same
form is also needed. However, due to the lack of validity of the snapshot
principle for general sequences of policies, we can only show AO in a re-
stricted class of policies (Proposition 5.2). The broader problem, and hence
the question of AO remain open (see Conjecture 5.1).

Under the AO policy, the I-dimensional queuelength process converges
to the process solving the BCP. This convergence is a form of a state space
collapse (SSC), a term referring to a behavior where queuelength process
limits are dictated by workload process limits. SSC is an important ingredi-
ent in the analysis of queueing network models in heavy traffic. It has been
considered in many works, and in particular in a general setting by Bramson
[14] and Williams [42]. The form of the SSC obtained in this paper involves
spatial inhomogeneity due to the dynamic priorities, and is not covered by
[14, 42], or, to the best of our knowledge, any other work on SSC. A part of
the proof of Theorem 4.1 is aimed at showing a SSC result.

For a different formulation of a QCP with finite buffers and rejection
costs, see Ghosh and Weerasinghe [24]. For a formulation other than [33] that
combines asymptotic compliance and asymptotic optimality see Plambeck
[34]. See Ward and Kumar [40], Rubino and Ata [36] and Ata and Olsen [3]
for other treatments of AO in heavy traffic via a Bellman equation with free
boundary, and Dai and Dai [19] for results on heavy traffic for systems with
finite buffers without optimal control aspects. Finally, see Ghamami and
Ward [23] for asymptotic optimality results based on a Bellman equation
for the BCP, for a model with customer abandonment rather than rejection.

We will use the following notation. Given k ∈ N, {e(i), i = 1, . . . , k} denote
the standard basis in R

k. For x ∈ R, x+ = max(x, 0). For a, b ∈ R
k, a =

(ai)i=1,...,k, b = (bi)i=1,...,k, we denote ‖a‖ =
∑k

i=1 |ai| and a · b =
∑k

i=1 aibi.
For y : R+ → R

k and T > 0, ‖y‖T = supt∈[0,T ] ‖y(t)‖. The modulus of
continuity of y is given by

(1) w̄T (y, θ) = sup{‖y(s)− y(t)‖ : s, t ∈ [0, T ], |s − t| ≤ θ}, θ, T > 0.

For Polish space E, denote by DE [0, T ] the space of RCLL maps from [0, T ]
to E, equipped with the usual Skorohod topology. A sequence of stochastic
processes with sample paths in this space is said to be C-tight if it is tight and
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every subsequential limit has continuous sample paths w.p.1. Convergence
in distribution of a sequence of random variables {Xn} to X is denoted by
Xn ⇒ X. For a, b ∈ R, a < b, C2[a, b] denotes the set of functions from [a, b]
to R that are twice continuously differentiable on (a, b), for which derivatives
of order ≤ 2 have continuous extensions to [a, b].

The rest of this paper is organized as follows. In the next section we
introduce the queueing model and QCP. Then we formulate the BCP and
the RBCP, and state their solution via the Harrison-Taksar free boundary
problem. We then discuss the interpretation of the solution. Section 3 shows
that the BCP value function is a lower bound on the limit inferior of the
sequence of value functions for the QCP. Section 4 constructs a policy for the
QCP and proves that it is AO. Section 5 proves Reiman’s snapshot principle
and relates the main body of the paper to the throughput time constraints
formulation of [33].

2. Queueing and diffusion models.

2.1. The multiclass G/G/1 model. A sequence of systems is considered,
indexed by n ∈ N. Quantities that depend on n have n as superscript in
their notation. The system has a single server and I ≥ 1 buffers, where
each buffer is dedicated to a class of customers. The capacity of each of the
buffers is limited, where the precise formulation of capacity is presented later.
Customers that arrive at the system may either be accepted or rejected.
Those that are accepted are queued in the corresponding buffers. Within
each class, service is provided in the order of arrival, where the server only
serves the customer at the head of each line. Processor sharing is allowed, in
the sense that the server is capable of serving up to I customers (of distinct
classes) simultaneously. An allocation vector, representing the fraction of
effort dedicated to each of the classes, is any member of

B :=
{
β ∈ R

I
+ :

∑

i∈I
βi ≤ 1

}
,

where, throughout, I = {1, 2, . . . , I}.
A probability space (Ω,F ,P) is given, on which all random variables and

stochastic processes involved in describing the model will be defined. Ex-
pectation w.r.t. P is denoted by E. Arrivals occur according to independent
renewal processes. Let parameters λni > 0, i ∈ I, n ∈ N be given, represent-
ing the reciprocal mean inter-arrival times of class-i customers in the n-th
system. Let {IAi(l) : l ∈ N}i∈I be independent sequences of strictly positive
i.i.d. random variables with mean E[IAi(1)] = 1, i ∈ I and squared coef-
ficient of variation Var(IAi(1))/E[IAi(1)

2] = C2
IAi

∈ (0,∞). With
∑0

1 = 0,
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the number of arrivals of class-i customers up to time t, for the n-th system,
is given by
(2)

An
i (t) = Ai(λ

n
i t), where Ai(t) = sup

{
l ≥ 0 :

l∑

k=1

IAi(k) ≤ t
}
, t ≥ 0.

The parameters λni satisfy

(3) λni = nλi +
√
nλ̂i + o(

√
n),

where λi > 0 and λ̂i ∈ R are fixed.
Similarly, let parameters µni > 0, i ∈ I, n ∈ N be given, representing recip-

rocal mean service times for service to class i in the n-th system. Let indepen-
dent sequences {ST i(l) : l ∈ N}i∈I of strictly positive i.i.d. random variables
(independent of the sequences {IAi}) be given, with mean E[ST i(1)] = 1 and
squared coefficient of variation Var(ST i(1))/E[ST i(1)

2] = C2
ST i

∈ (0,∞).
The time required to complete the l-th service to a class-i customer in the
n-th system is given by ST i(l)/λ

n
i units of time dedicated by the server to

this class. This can otherwise be stated in terms of the potential service time
processes, given by
(4)

Sn
i (t) = Si(µ

n
i t), where Si(t) = sup

{
l ≥ 0 :

l∑

k=1

ST i(k) ≤ t
}
, t ≥ 0.

Sn
i (t) is the number of class-i jobs completed by the time when the server

has dedicated t units of time to work on jobs of this class. It is assumed that
µni satisfy

(5) µni = nµi +
√
nµ̂i + o(

√
n),

where µi > 0 and µ̂i ∈ R are fixed. The first order quantities λi and µi are
assumed to satisfy the critical load condition

(6)
∑

i∈I
ρi = 1, where ρi =

λi
µi
, i ∈ I.

The number of class-i rejections until time t in the n-th system is denoted
by Zn

i (t). Since rejections occur only at times of arrival, we have

(7) Zn
i (t) =

∫

[0,t]
zn,is dAn

i (s)

for some process zn,i.
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The number of class-i customers present in the n-th system at time t is
denoted by Xn

i (t). For simplicity, the initial number of customers, Xn
i (0) is

deterministic, and it is assumed that no partial service has been provided to
any of the jobs present in the system at time zero. We will call Xn = (Xn

i )i∈I
the queuelength process. Let Bn = (Bn

i )i∈I be a process taking values in
the set B, representing the fraction of effort devoted by the server to the
various customer classes. Then

(8) T n
i (t) =

∫ t

0
Bn

i (s)ds

gives the time devoted to class-i customers up to time t. The number of
service completions of class-i jobs during the time interval [0, t] can thus be
expressed in terms of the potential service process and the process T n

i as

(9) Dn
i (t) = Sn

i (T
n
i (t)).

We thus have
(10)
Xn

i (t) = Xn
i (0)+A

n
i (t)−Dn

i (t)−Zn
i (t) = Xn

i (0)+A
n
i (t)−Sn

i (T
n
i (t))−Zn

i (t).

Use the notation An for (An
i )i∈I and similarly for the processes Sn, Zn,

Dn, Xn, T n. It is assumed that Bn has RCLL sample paths. By construc-
tion, the arrival and potential service processes also have RCLL paths, and
accordingly, so do Dn, Zn and Xn.

We define a rescaled version of the processes at diffusion scale as

Ân
i (t) =

An
i (t)− λni t√

n
, Ŝn

i (t) =
Sn
i (t)− µni t√

n
, i ∈ I,

(11)

Ẑn(t) =
Zn(t)√

n
, X̂n(t) =

Xn(t)√
n
.

We now come to the buffer structure. A bounded closed convex set with
nonempty interior X ⊂ R

I
+ is given, satisfying 0 ∈ X . It is assumed that, for

every n, the rescaled initial condition X̂n(0) lies in X , and that the rejection
mechanism assures that the buffer constraint is always met, namely:

(12) X̂n(t) ∈ X , t ≥ 0, a.s.

For example, the case X = {y ∈ R
I
+ : yi ≤ bi, i ∈ I} corresponds to a system

having a dedicated buffer, of size bi
√
n, for each class, i. A single, shared

buffer of size b
√
n can be modeled by letting X = {y ∈ R

I
+ :

∑
i yi ≤ b}. In

any case, the actual (un-normalized) buffer size scales like
√
n. To meet the
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constraint (12), the control mechanism must reject some of the arrivals. In
particular, consider a class-i arrival occurring at a time t when

(13) (Xn(t−) + e(i))/
√
n 6∈ X .

This arrival has to be rejected so as to keep (12) valid. Physically, this situ-
ation represents buffers being full, with no available space to accommodate
new arrivals. Such rejections, that occur when (13) holds, are often called
loss in the literature. In our setting, admission/rejection decisions are con-
trolled by the decision maker, and it is natural to refer to these as part of
the rejection control process. We will refer to them as forced rejections, to
distinguish them from rejections that occur when the buffers are not full
(i.e., when (13) does not hold).

The process Un = (Zn, Bn) is regarded a control, that is determined
based on observations from the past (and present) events in the system.
The precise definition is as follows.

Definition 2.1 (Admissible control, QCP). Fix n ∈ N and consider
fixed processes (An, Sn) given by (2) and (4). An and Sn are called the
primitive processes. A process Un = (Zn, Bn), taking values in R

I
+ × B,

having RCLL sample paths with the processes Zn
i , i ∈ I having nondecreas-

ing sample paths and given in the form (7), is said to be an admissible

control for the n-th system if the following holds. Let the processes T n,
Dn, Xn be defined by the primitive and control processes, (An, Sn) and
(Zn, Bn), via equations (8), (9) and (10), respectively. Then

• (Zn, Bn) is adapted to the filtration σ{An
i (s),D

n
i (s), i ∈ I, s ≤ t};

• One has a.s., that, for all i ∈ I and t ≥ 0,

(14) Xn
i (t) = 0 implies Bn

i (t) = 0.

An admissible control under which the scaled version X̂n of Xn satisfies (12)
is said to satisfy the buffer constraints.

The first bullet above asserts that control decisions are based on the past
arrival and departure events. The second bullet expresses the fact that jobs
from a certain class can be processed only if there is at least one customer
of that class in the system. We denote the class of all admissible controls
Un by Ũn, and the subset of those members of Ũn satisfying the buffer
constraints, by Un. Except for the last section of this paper, we will refer to
processes in Un as merely admissible controls, for short. Note that the class
Un depends on the processes An and Sn, but we consider these processes to
be fixed.
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Fix α > 0, h ∈ (0,∞)I and r ∈ (0,∞)I . For each n ∈ N consider the cost
(15)

Jn(Un) = E

[ ∫ ∞

0
e−αt[h · X̂n(t)dt+ r · dẐn(t)]

]
, Un = (Zn, Bn) ∈ Ũn.

It will be assumed throughout that, for some x0 ∈ X ,

(16) X̂n(0) → x0, as n→ ∞.

The QCP value is given by

(17) V n = inf
Un∈Un

Jn(Un).

We will be interested in the asymptotic behavior of V n.
Denote by θn = (θni )i∈I θni = 1/µni , and θ = (θi)i∈I , θi = 1/µi. The

process θn · Xn, its normalized version θn · X̂n and the formal limit of the
latter, θ · X, will play an important role in reducing the dimensionality of
the problem. These processes are often referred to as the nominal workload
(eg., in [33]), but we will refer to them simply as workload.

2.2. The Brownian control problems. Using (6), (10) and the definition of
the rescaled processes, a simple calculation shows that the following identity
holds for i ∈ I and t ≥ 0:

(18) X̂n
i (t) = X̂n

i (0) + Ŵ n
i (t) + Ŷ n

i (t)− Ẑn
i (t),

where, denoting mi = λ̂i − ρiµ̂i,

(19) mn
i =

λni − ρiµ
n
i√

n
= mi + o(1),

(20) Ŵ n
i (t) = Ân

i (t)− Ŝn
i (T

n
i (t)) +mn

i t,

and

(21) Ŷ n
i (t) =

µni√
n
(ρit− T n

i (t)).

Since
∑

i ρi = 1 and one always has
∑

iB
n
i (t) ≤ 1, it follows that

(22) θn · Ŷ n is a nonnegative, nondecreasing process.

We derive from (18)–(22) and (15)–(17) a control problem associated with
diffusion by taking formal limits. Consider equation (18). The scaled ini-
tial conditions converge to x by (16). Next, the centered, rescaled renewal
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process Ân
i [resp., Ŝn

i ] converges weakly to a BM starting from zero, with
zero mean and diffusion coefficient

√
λiCIAi [resp.,

√
µiCST i ] (see Section 17

of [13]). Heuristically, if the processes involved in (18) are to give rise to a
limiting BCP then in particular Ŷ n are order one as n → ∞. Thus by (21)
one has that T n(t) converge to ρt. Thus, taking into account the time change
in the second term of (20), Ŵ n is to be replaced a BM starting from zero,
with drift vector m = (mi)i∈I and diffusion matrix σ = diag(σi), where

σ2i := λiC
2
IA

i + µiC
2
ST

iρi = λi(C
2
IA

i + C2
ST

i).

Such a process will be called an (m,σ)-BM. Finally, Ŷ n gives rise to a process
Y for which θ ·Y is nonnegative and nondecreasing, whereas Ẑn to a process
having nonnegative, nondecreasing components.

2.2.1. The BCP.

Definition 2.2 (Admissible control, BCP). An admissible control

for the initial condition x0 ∈ X is a filtered probability space

(Ω′,F ′, {F ′
t},P′)

for which there exist an (m,σ)-BM, W , and a process U = (Y,Z) taking
values in (RI

+)
2, with RCLL sample paths, such that the following conditions

hold:

• W , Y and Z are adapted to {F ′
t};

•

(23) For 0 ≤ s < t, W (t)−W (s) is independent of F ′
s under P′;

•

(24) θ · Y and Zi, i = 1, . . . , I, are nondecreasing;

• With

(25) X(t) = x0 +W (t) + Y (t)− Z(t), t ≥ 0,

one has

(26) X(t) ∈ X for all t, P′-a.s.

We write A(x0) for the class of admissible controls for the initial con-
dition x0. When we write (Y,Z) ∈ A(x0) it will be understood that these
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processes carry with them a filtered probability space and the processes W
and X. Moreover, with a slight abuse of notation, we will write E for the
expectation corresponding to this probability space. For (Y,Z) ∈ A(x0), let

(27) J(x0, Y, Z) = E

[ ∫ ∞

0
e−αt[h ·X(t)dt+ r · dZ(t)]

]
.

The BCP is to find (Y,Z) that minimize J(Y,Z) and achieve the value

(28) V (x0) = inf
(Y,Z)∈A(x0)

J(x0, Y, Z).

2.2.2. The RBCP. The BCP is treated by reduction to a one-dimensional
problem. This is obtained by multiplying equation (25) and the processes
involved in it by θ. To introduce it, denote x̄0 = θ · x0, m̄ = θ · m and
σ̄2 =

∑
θ2i σ

2
i . Let

(29) x = max{θ · ξ : ξ ∈ X}.

Definition 2.3 (Admissible control, RBCP). An admissible control

for the initial condition x̄0 ∈ [0,x] is a filtered probability space

(Ω′,F ′, {F ′
t},P′)

for which there exist an (m̄, σ̄)-BM, W̄ , and a process Ū = (Ȳ , Z̄) taking
values in R

2
+, with RCLL sample paths, such that the following conditions

hold:

• W̄ , Ȳ and Z̄ are adapted to {F ′
t};

• For 0 ≤ s < t, W̄ (t)− W̄ (s) is independent of F ′
s under P′;

•

(30) Ȳ and Z̄ are nondecreasing;

• With

(31) X̄(t) = x̄0 + W̄ (t) + Ȳ (t)− Z̄(t), t ≥ 0,

one has

(32) X̄(t) ∈ [0,x] for all t, P′-a.s.

We write Ā(x̄0) for the class of admissible controls for the initial condition
x̄0. Given (Ȳ , Z̄) ∈ Ā(x̄0), let

(33) J̄(x̄0, Ȳ , Z̄) = E

[ ∫ ∞

0
e−αt[h̄(X̄(t))dt + r̄dZ̄(t)]

]
,



568 R. ATAR AND M. SHIFRIN

where
h̄(w) = min{h · ξ : ξ ∈ X , θ · ξ = w}, w ∈ [0,x],

r̄ = min{r · z : z ∈ R
I
+, θ · z = 1}.

Note that h̄ is convex by convexity of the set X (in case when X is polyhedral,
h̄ is also piecewise linear). Note also that as members of (0,∞)I , θ and h
cannot be orthogonal, thus h̄(w) > 0 for any w > 0. Since h̄(0) = 0, it
follows that h̄ is strictly increasing. Let

V̄ (x̄0) = inf
(Ȳ ,Z̄)∈Ā(x̄0)

J̄(x̄0, Ȳ , Z̄).

Toward relating the two problems, we will need the following additional
definitions. First, the extremal points of the set {z ∈ R

I
+ : θ · z = 1} are

precisely θ−1
i e(i), namely µie

(i), i ∈ I. Hence there exists (at least one) i∗

such that ζ∗ = µi∗e
(i∗) satisfies

ζ∗ ∈ argmin
z

{r · z : z ∈ R
I
+, θ · z = 1}.

Fix such i∗ and the corresponding ζ∗. Note that i∗ can alternatively be
characterized via

(34) ri∗µi∗ = min
i
riµi.

Next, let γ : [0,x] → X be Borel measurable, satisfying

(35) γ(w) ∈ argmin
ξ

{h · ξ : ξ ∈ X , θ · ξ = w}, w ∈ [0,x].

(For the existence of a measurable selection see Corollary 10.3 in the ap-
pendix of [22]). Note that, by definition, γ(w) ∈ X , θ · γ(w) = w, and
h · γ(w) = h̄(w) ≤ h · ξ for every ξ ∈ X for which θ · ξ = w. The relation
between the problems is as follows.

Proposition 2.1. Let x0 ∈ X and x̄0 = θ · x0.
i. Given an admissible control (Ω′,F ′, {F ′

t},P′,W, Y, Z) for x for the (mul-
tidimensional) BCP, define (W̄ , X̄, Ȳ , Z̄) by (θ ·W, θ ·X, θ · Y, θ · Z). Then
(Ȳ , Z̄) ∈ Ā(x̄0) and J̄(x̄0, Ȳ , Z̄) ≤ J(x0, Y, Z).
ii. Conversely, let an admissible control (Ω′,F ′, {F ′

t},P′, W̄ , Ȳ , Z̄) for x̄0 for
the RBCP be given, and assume the probability space supports an (m,σ)-BM
W . Assume W is {F ′

t}-adapted and satisfies θ ·W = W̄ and (23). Construct
(X,Y,Z) by

X(t) = γ(X̄(t)), Z(t) = ζ∗Z̄(t),(36)
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Y (t) = X(t) − x0 −W (t) + Z(t).(37)

Then (Y,Z) ∈ A(x0), and J(x0, Y, Z) ≤ J̄(x̄0, Ȳ , Z̄).
iii. V (x0) = V̄ (x̄0).

Proof. i. We verify that Definition 2.3 is satisfied by (W̄ , X̄, Ȳ , Z̄). The
first three bullets in that definition are straightforward. Equation (31) fol-
lows from (25), while (32) from (26).

Now, by definition of h̄,

(38) h ·X(t) ≥ h̄(θ ·X(t)),

and by definition of r̄,

(39)

∫ ∞

0
e−αtr · dZ(t) ≥

∫ ∞

0
e−αtr̄d(θ · Z(t)).

Therefore
J(x0, Y, Z) ≥ J̄(x̄0, Ȳ , Z̄).

ii. We show that (Y,Z) ∈ A(x0) by verifying that Definition 2.2 is satisfied.
The adaptedness follows by the assumption on W and the construction of
X,Y and Z. Property (23) holds by assumption. By construction, (X,Y,Z)
satisfy (25). Property (26) holds because, by definition, γ(w) ∈ X for all
w ∈ [0,x]. Zi are nonnegative, nondecreasing because so is Z̄, and ζ∗i ≥ 0.
Moreover,

θ · Y (t) = θ ·X(t)− θ · x0 − θ ·W (t) + θ · Z(t) = Ȳ (t).

Hence θ · Y is nonnegative, nondecreasing. As a result, (Y,Z) ∈ A(x0).
Next, note that

h ·X(t) = h̄(X̄(t)), r · dZ(t) = r̄dZ̄(t).

Therefore

(40) J(x0, Y, Z) = J̄(x̄0, Ȳ , Z̄).

iii. The last assertion will follow from the first two once we show that, in
(ii), one can always find W with the stated properties. This is possible
by supplementing the one-dimensional BM W̄ with an (I − 1)-dimensional
BM, independent of W̄ , and augmenting the probability space accordingly.
Specifically, if W̄ is a (one-dimensional) (m̄, σ̄)-BM w.r.t. a filtration {F̄t}t≥0

and Ŵ is a standard (I−1)-dimensional BM independent of W̄ then it is not
hard to see that an I × (I − 1) matrix Â and I-dimensional vectors Ā and a
can be found so that the I-dimensional processW (t) = ÂŴ (t)+ ĀW̄ (t)+at
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is an (m,σ)-BM and one has θ ·W (t) = W̄ (t), t ≥ 0. Letting

F ′
t = F̄t ∨ σ{Ŵ (s) : s ∈ [0, t]}, t ≥ 0,

then gives a filtration with which all conditions of an admissible control for
the BCP are satisfied.

2.2.3. The Harrison-Taksar free boundary problem. The solution to the
one-dimensional problem has been studied by Harrison and Taksar [28] via
the Bellman equation. They showed that the function V̄ is C2[0,x] and
solves the equation

(41)





[1
2
σ̄2f ′′ + m̄f ′ − αf + h̄

]
∧ f ′ ∧ [r̄ − f ′] = 0, in (0,x),

f ′(0) = 0, f ′(x) = r̄.

It follows from their work that an optimal control is one under which the
process X̄ is a RBM on a certain subinterval of [0,x]. We will consider a
RBM as a path transformation of a BM by a Skorohod map, a map that
will later be used in a wider context. To introduce this map, let a > 0. The
Skohorod map on the interval [a, b], denoted by Γ[a,b], is map D([0,∞) :
R) → D([0,∞) : R)3. It is characterized as the solution map ψ → (ϕ, η1, η2)
to the so called Skorohod Problem, namely the problem of finding, for a
given ψ, a triplet (ϕ, η1, η2), such that

(42) ϕ = ψ + η1 − η2, ϕ(t) ∈ [a, b] for all t,

ηi are nonnegative and nondecreasing, ηi(0−) = 0, and∫

[0,∞)
1(a,b](ϕ)dη1 =

∫

[0,∞)
1[a,b)(ϕ)dη2 = 0.

(43)

By writing ηi(0−) = 0 we adopt the convention that ηi(0) > 0 is regarded
a jump at zero. This convention, in conjunction with

∫
[0,∞) 1(a,b](ϕ)dη1 = 0

[resp.,
∫
[0,∞) 1[a,b)(ϕ)dη2 = 0], means that if ψ(0) < a [resp., ψ(0) > b] then

ϕ(0) = a [resp., b]. If, however, ψ(0) ∈ [a, b] then ϕ(0) = ψ(0), and ηi have
no jump at zero.

See [32] for existence and uniqueness of solutions, and continuity and
further properties of the map. In particular, it is well-known that Γ[a,b] is
continuous in the uniformly-on-compacts topology.

We now go back to the RBCP. The following is mostly a result of [28].

Proposition 2.2. The function V̄ is in C2[0,x] and solves (41) uniquely
among all C2[0,x] functions.1 Denote x∗ = inf{y ∈ [0,x] : V̄ ′(z) = r̄ for
z ∈ [y,x]}. Then x∗ ∈ (0,x). Fix x̄0 ∈ [0,x]. Let W̄ be an (m̄, σ̄)-BM and

1This uniqueness question was left open in [28], at the end of Section 6.
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let X̄, Ȳ and Z̄ be the corresponding RBM on [0,x∗] and boundary terms
for 0 and x∗, defined as

(44) (X̄, Ȳ , Z̄) = Γ |[0,x∗](x̄0 + W̄ ).

Then (Ȳ , Z̄) is optimal for V̄ (x̄0), i.e., J̄(x̄0, Ȳ , Z̄) = V̄ (x̄0).

Remark 2.1. Note that X̄ has the form X̄ = x̄0+W̄+ Ȳ −Z̄. Moreover,
if x̄0 > x∗ then X̄ is initially at x∗; in particular, Z̄(0) = (x̄0 − x∗)+.

Proof. The fact that V̄ is C2 and solves the equation is proved in [28],
Proposition 6.6 and the discussion that follows. Uniqueness follows from the
uniqueness of solutions in the viscosity sense, for a class of equations for
which the above is a special case [7]. Let us explain how. It follows from the
main result of [7] that uniqueness of viscosity solutions holds for (41) where
the Neumann boundary condition (BC) is replaced by a state constraint BC
(see [7] for the definitions of viscosity solutions and state constraint BC).
As is well-known (and follows directly from the definition), any C2 function
satisfying equation (41) is also a viscosity solution in the interior (0,x).
As for the state constraint BC, it is easy to check (again following directly
from the definition) that any smooth function satisfying the Neumann BC
f ′(0) = 0 and f ′(x) = r̄, also satisfies the state constraint BC. This gives
the uniqueness.

It is shown in [28] (see the discussion preceding (6.9) therein) that f ′ = r̄
on [y,x], some y ∈ [0,x). This shows x∗ < x.

Next, it is shown in [28] that the control under which X̄ is a RBM on
[a,x∗], for some 0 ≤ a < x∗, is optimal. It remains to show that, in the case
considered in this paper, a = 0. The argument relies on the fact that h̄ is
strictly increasing, as shown in the discussion following (33).

Arguing by contradiction, assume a > 0. The interval [a,x∗] is indepen-
dent of the initial condition, and so we are free to choose any x̄0. Consider
x̄0 = 0. Consider a BM W̄ and the process X̄ = x̄0 + W̄ + Ȳ − Z̄ that
initially has the value a and is given as a RBM on [a,x∗], driven by W̄ . By
the result of [28] alluded to above, (Ȳ , Z̄) is optimal, i.e., J̄(0, Ȳ , Z̄) = V̄ (0).
Let τ be the first hitting time of X̄ at a + ε < x∗. Next, construct on
the same probability space another triplet (X̃, Ỹ , Z̃), where X̃ behaves as
a RBM on [0,x∗], driven by W̄ , up to the time τ , and starting at time
τ agrees with X (in particular, it has a jump at time τ). In other words,
(X̃, Ỹ , Z̃) = (X̄−a, Ȳ −a, 0) on [0, τ), and (X̃, Ỹ , Z̃) = (X̄, Ȳ , Z̄) on [τ,∞).
Clearly, the cost incurred by (X̃, Ỹ , Z̃) on [τ,∞), namely

∫

[τ,∞)
e−αt[h̄(X̃(t))dt + r̄dZ̃(t)]
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is equal to that incurred by (X̄, Ȳ , Z̄) on that interval, while, owing to the
strict monotonicity of h̄ and the positivity of τ ,

∫

[0,τ)
e−αth̄(X̃(t))dt <

∫

[0,τ)
e−αth̄(X̄(t))dt.

Note that no cost of the form r̄dZ̃ is incurred during the time interval [0, τ).
Taking expectations shows J̄(0, Ỹ , Z̃) < J̄(0, Ȳ , Z̄) = V̄ (0), a contradiction.
This shows a = 0.

As an immediate consequence of the above two results, we obtain an
optimal control for the BCP.

Corollary 2.1. Let x0 ∈ X andW be an (m,σ)-BM. Denote x̄0 = θ·x0
and W̄ = θ · W , and let x∗ be the free boundary point. Let (X̄, Ȳ , Z̄) be
defined in terms of W̄ as in (44), and let (X,Y,Z) be defined in terms
of (W, X̄, Z̄) as in (36)–(37). Then (Y,Z) is optimal for V (x0), namely
J(x0, Y, Z) = V (x0).

2.3. Discussion. A brief description of the solution to the BCP is as
follows. The workload process X̄ = θ · X is given as a RBM on [0,x∗],
where the free boundary point x∗ is dictated by the Bellman equation. The
multidimensional queuelength process X is recovered from X̄ by X = γ(X̄).
The multidimensional rejection process Z has only one nonzero component,
namely the i∗-th component, which increases only when X̄ ≥ x∗.

This structure has an interpretation for the queueing model, that can be
used to identify asymptotically optimal policies. Our main interest will be
in the case of a rectangular domain, namely

(45) X = {x ∈ R
I : 0 ≤ xi ≤ bi, i ∈ I},

for some fixed bi > 0, representing a system where each class has a dedicated
buffer (this will be our assumption in Section 4, although in Section 3 we
allow general domains). In this case, the parameter x associated with the
RBCP (defined in (29)) is given by θ · b.

The BCP solution suggests that, in the queueing model, rejections should
occur only when the scaled workload exceeds the level x∗, and only from
class i∗. Recall from (34) that this class is the class for which riµi is minimal.
As explained in [33], i∗ is the class for which the rejection penalty per unit
of work is smallest.

Next, the relation

(46) X̂n = γ(θ · X̂n) + o(1)



MULTICLASS QUEUE WITH FINITE BUFFERS 573

between the queuelength and workload processes should hold. This is a re-
quirement on the scheduling control. As mentioned in the introduction, when
a critically loaded multiclass G/G/1 queue operates under fixed priority, the
queuelength of all classes but one is asymptotically zero in diffusion scale,
the exception being the class with least priority [41]. This is a simple exam-
ple of a scheduling policy that dictates a relation of the form (46), where
here γ(w) = (0, . . . , 0, wµI). Relation (46) with a more complicated γ ap-
pears implicitly when applying the generalized cµ rule of [39]. In [10] and
[8] the scheduling policies keep (46) where γ is a generic minimizing curve.

We can solve for the minimizing curve γ in the present setting, where X
takes the form (45). Equation (35) can in this case be written as

γ(w) ∈ argmin
x

{h · x : 0 ≤ xi ≤ bi for all i, and θ · x = w}, w ∈ [0,x].

Assume that the classes are labeled in such a way that

(47) h1µ1 ≥ h2µ2 ≥ · · · ≥ hIµI .

Given w ∈ [0,x] let (j, ξ) be the unique pair determined by the relation

(48) w =

I∑

i=j+1

θibi + θjξ, j ∈ {1, 2, . . . , I}, ξ ∈ [0, bj).

An exception is the special case w = x = θ · b, where one lets j = 1 and
ξ = b1. In other words, denote b̂j =

∑I
i=j+1 θibi, j ∈ {0, . . . , I} and note

that 0 = b̂I < b̂I−1 < · · · < b̂1 < b̂0 = θ · b = x. Then j = j(w) is determined
by

w ∈ [b̂j , b̂j−1)

and ξ = ξ(w) = (w − b̂j)/θj . Thus γ can be written explicitly as

(49) γ(w) =

I∑

i=j+1

bie
(i) + ξe(j).

Simple examples are depicted in Figure 1. While the usual use of the cµ
rule is by assigning fixed priority, here the index shows up differently. When
buffer I becomes full and workload is increased, a queue in buffer I−1 starts
building up, and so on. A policy that aims at achieving (46) is developed in
Section 4. Examples for the case of a shared buffer are depicted in Figure 2.
As shown in this figure, the case of two classes with a shared buffer leads
to a triangular domain. In higher dimension one may think of one set of
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Fig 1. The curve γ (thick line) for the case of dedicated buffers in dimension I = 2
and 3. As workload increases, starting from level zero, queuelength I builds up until the
corresponding buffer becomes full. Then buffer I − 1 starts to build up, and so on, until
the rejection level (x∗, γ(x∗)) is reached. Rejections that occur starting at x∗ assure that
this level is not exceeded.

1

2

1

2

Fig 2. The case of a single buffer shared by 2 classes. Rejection level may be reached before
the buffer with least priority is full (left). For a higher rejection level, the curve continues
along the boundary (right).

classes sharing one buffer, another set sharing another buffer etc., leading to
more examples of non-rectangular domains. General domains are covered in
this paper as far as the lower bound is concerned, but we only address AO
controls for the case of rectangular domains.

Example 2.1 (Numerical solution of the BCP). In this example we
consider a specific three-dimensional BCP and provide its solution explicitly.
The parameters are given in the following table:

i bi hi ri µi λi hiµi riµi

1 15 32.9 5.0 28.0 9.33 921.2 140
2 15 35.0 4.0 23.0 7.67 805 92
3 10 39.0 5.5 18.0 6.0 702 99

We further assume that λ̂i = µ̂i = 0 for all i (so that m̄ = 0), that σ̄2 = 0.1,
and take the discount parameter α = 10. The resulting ordering of the hiµi
index is as in (47), namely h1µ1 > h2µ2 > h3µ3. The ordering of riµi is such



MULTICLASS QUEUE WITH FINITE BUFFERS 575
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0 0.5 1.0 1.47 1.74
0
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92

V
′
, r̄ = 92.0

Fig 3. Graphs of V and V ′. The free boundary point x∗ is found by seeking the smallest
x for which V ′(x) = r̄ (Example 2.1).

that class 2 is the most inexpensive as far as rejections are concerned, that
is, i∗ = 2. The Bellman equation takes the form

(50)




[0.05f ′′ − 10f + h̄] ∧ f ′ ∧ [92 − f ′] = 0, in (0, 1.74),

f ′(0) = 0, f ′(1.74) = 92.

The function h̄ defined by

h̄(w) = min
{ 3∑

i=1

hiξi : ξ ∈ X ,
3∑

i=1

θiξi = w
}
, w ∈ [0, 1.74],

where X = [0, 15] × [0, 15] × [0, 10] and θi = µ−1
i , is explicitly given by

h̄(w) ≈





18 · 39w 0 ≤ w ≤ 0.56,

390 + 23 · 35 (w − 0.56) 0.56 < w ≤ 1.21,

915 + 28 · 32.9 (w − 1.21) 1.21 < w ≤ 1.74.

A numerical solution of the equation is shown in Figure 3 above.
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The free boundary point in this case, found numerically, is the point
x∗ ≈ 1.47 at which V ′ = r̄. The curve γ from (48)–(49) is given by

γ(w) ≈





w

0.56
10 [0, 0, 1], 0 ≤ w ≤ 0.56,

10 [0, 0, 1] +
w − 0.56

1.21− 0.56
15 [0, 1, 0], 0.56 < w ≤ 1.21,

10 [0, 0, 1] + 15 [0, 1, 0] +
w − 1.21

1.74 − 1.21
15 [1, 0, 0], 1.21 < w ≤ 1.47.

(We have not specified γ for values of w beyond the free boundary point 1.47).
Note that the structure of this curve is of the form depicted in Figure 1
(right).

Example 2.2 (Numerical solution of the QCP). Here we present simu-
lation results for the behavior of a two-class M/M/1 queue operating under
the optimal policy. While for general service time and inter-arrival time dis-
tributions finding the optimal policy is hard, in the case of Poisson arrivals
and exponential service times the problem has the form of a Markov de-
cision process and one has access to the optimal policy by means of the
corresponding Bellman equation on the discrete 2d grid. We have solved
this equation numerically, computed the optimal policy based on the so-
lution, and run a simulation for the behavior of the resulting queuelength
process. Figure 4 depicts histograms for the position of the two-dimensional
queueing process, where gray levels encode the frequency of visits to each
site in the state space (darker gray corresponds to more often visited sites).
The histograms are depicted for an increasing value of the heavy traffic pa-
rameter. The results clearly indicate that the behavior becomes closer and
closer to that given by the limit curve of the form depicted in Figure 1
(left).

While this numerical analysis is related to our results, note carefully that
the relation is indirect: the simulation runs demonstrate the behavior under
the optimal policy, whereas our results address the asymptotics under a sub-
optimal (but AO) policy. The two are related in that both show convergence
to the limit behavior identified by the BCP solution.

Finally, we have also simulated the performance of the sub-optimal pol-
icy that we propose. The graph in Figure 5 shows the ratio between the
cost under the proposed policy and the optimal cost for different values
of n.

3. A general lower bound. Recall that V n is defined for the specific
initial condition X̂n(0), and that by (16), X̂n(0) → x0 as n→ ∞. The main
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Fig 4. Histograms for queuelength process under the optimal policy for an increasing value
of the heavy traffic parameter. The buffer sizes are 15 × 15, 30× 30 and 50 × 50 (Exam-
ple 2.2).
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Fig 5. Ratio between the (simulated) cost under the proposed policy and the (computed)
optimal cost as a function of

√
n. The graph shows values for

√
n = 3, 5, 10 and 20. The

corresponding buffer sizes are given by 5
√
n, namely 15×15, 25×25, 50×50 and 100×100,

respectively.
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result of this section asserts that the performance of any sequence of policies
for the queueing model is asymptotically bounded below by the BCP value
function.

Theorem 3.1. V := lim infn→∞ V n ≥ V (x0).

With an eye toward the last section, we will, in fact, prove a slightly
stronger result. Instead of assuming the hard constraint (12), that is a part
of the definition of ‘admissible controls satisfying the buffer constraint’, we
will assume throughout this section the following weaker condition.

For every open set X̃ ⊂ R
I with X ⊂ X̃ , and every T > 0,

P(X̂n(t) ∈ X̃ for all t ∈ [0, T ]) → 1 as n→ ∞.
(51)

Denote by I the operator

Iϕ =

∫ ·

0
ϕ(t)dt,

for locally integrable functions ϕ.

Lemma 3.1. For Un ∈ Ũn,

(52) Jn(Un) = J̃n(Un) := E

[ ∫ ∞

0
e−αt[αh · IX̂n(t) + α2r · IẐn(t)]dt

]
.

Proof. The identity will follow from integration by parts once we show
that the three terms e−αt

IX̂n(t), e−αtẐn(t) and e−αt
IẐn(t) converge to zero

a.s. as t→ ∞. Note by (10) that

X̂n
i (t) + Ẑn

i (t) = n−1/2[Xn
i (t) + Zn

i (t)] ≤ n−1/2[Xn
i (0) +An

i (t)].

As a renewal process with finite expectation, An
i satisfies a law of large

numbers in the sense that An
i (t)/t converges a.s. as t → ∞. Thus the three

terms alluded to above converge to zero a.s., and the identity follows.

Before stating the following lemma we introduce some additional nota-
tion. Let AP (x0) denote the class of controls for the BCP, defined as in
Definition 2.2, except that instead of having RCLL paths, the processes are
only assumed to be progressively measurable. More precisely, an element of
AP (x0) is a filtered probability space (Ω′,F ′, {F ′

t},P′) with an (m,σ)-BM,
W , and a progressively measurable process (Y,Z) taking values in (RI

+)
2,

such that W is adapted, W (t)−W (s) is independent of F ′
s (0 ≤ s < t), and,
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on an event having full P′-measure one has: θ · Y is a.e. equal to a process
with nondecreasing sample paths; the same holds for each of the processes
Zi, i = 1, . . . , I; and, with X(t) = x0 +W (t) + Y (t)− Z(t),

X(t) ∈ X for a.e. t.

Note that A(x0) ⊂ AP (x0).
The purpose of introducing this extended class of controls is as follows.

The technique employed in the proof of Theorem 3.1 below is based on
tightness of the processes IX̂n, IŶ n and IẐn rather than X̂n, Ŷ n and Ẑn.
It is established that the limits of these processes have Lipschitz continuous
sample paths, and as a result they are a.e. differentiable. In order to connect
these limits to the BCP one needs to construct from them an admissible
control for the latter, but since the derivatives of Lipschitz functions need
not be RCLL, the class of controls A(x0) is too small for this purpose. Using
instead the class AP (x0) is possible thanks to a result from [20] (see below)
that shows that progressively measurable a.e. derivatives always exist.

The following lemma shows that working with the extended class of con-
trols does not vary the value function.

Lemma 3.2. Let

J̃(x0, Y, Z) = E

[ ∫ ∞

0
e−αt[αh · IX(t) + α2r · IZ(t)]dt

]

and V P (x0) = infAP (x0) J̃(x0, Y, Z) (compare with the definitions (27), (28)

of J and V ). Then V P = V .

Proof. Given x0, consider the specific control that is optimal for V (x0),
namely (X,Y,Z) given in Proposition 2.1(ii), where (X̄, Ȳ , Z̄) is the RBM
on [0,x∗]. In particular, Z(t) = ζ∗Z̄(t), where Z̄ is one of the boundary terms
of a RBM. It is well known that e−αt(Z̄(t)+ IZ̄(t)) → 0 a.s., as t→ ∞. As a
result, a similar statement holds for e−αt(Zi(t)+IZi(t)), for each i ∈ I. Using
integration by parts, this shows that V (x0) = J(x0, Y, Z) = J̃(x0, Y, Z) ≥
V P (x0).

Next, let ε > 0 and consider an ε-optimal control for V P (x0), again
denoted by (X,Y,Z). Fix T > 0. Construct processes (X̃, Ỹ , Z̃) that are
identical to (X,Y,Z) on [0, T ). As for the time interval [T,∞), let X̄ be a
RBM on [0,x∗] starting from X̄(T ) = 0, and let (X̃, Ỹ , Z̃) be constructed
from this RBM in the same fashion that (X,Y,Z) are constructed from X̄ in
the first part of the proof. In particular, Z̃ satisfies e−αt(Z̃i(t)+ IZ̃i(t)) → 0,
for each i ∈ I (and it may have a jump at T ). By construction, (Ỹ , Z̃) is
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progressively measurable. The constructed processes thus form an element
of AP (x0), and owing to the above tail condition, using integration by parts,
J(x0, Ỹ , Z̃) = J̃(x0, Ỹ , Z̃). Now,

J̃(x0, Ỹ , Z̃)− J̃(x0, Y, Z)

= E

[ ∫ ∞

T
e−αt[αh · (IX̃(t)− IX(t)) + α2r · (IZ̃(t)− IZ(t))]dt

]

≤ c

∫ ∞

T
te−αtdt+ α2

∫ ∞

T
e−αt

∫ t

T
E[r · (Z̃(s)− Z̃(T ))]dsdt

+ E[r · Z̃(T )]α2

∫ ∞

T
e−αt

∫ t

T
dsdt,

using the equality Z̃ = Z on [0, T ). Since on [T,∞), Z̃−Z̃(T ) is the boundary
term of an RBM on a fixed interval, it is a standard fact that the second
term in the above display converges to zero as T → ∞. As for the last term,
since J̃(x0, Ỹ , Z̃) < ∞, one has E

∫∞
T e−αtr · IZ̃(t)dt → 0 as T → ∞, thus

using monotonicity of r · Z̃,

e−α(T+2)
E[r ·Z̃(T )] ≤ e−α(T+2)

E[r ·IZ̃(T+1)] ≤ E

∫ T+2

T+1
e−αtr ·IZ̃(t)dt → 0,

as T → ∞. This shows

J(x0, Ỹ , Z̃) = J̃(x0, Ỹ , Z̃) ≤ V P (x0) + ε+ a(T ),

where a(T ) → 0 as T → ∞. Taking T → ∞ shows J(x0, Ỹ , Z̃) ≤ V P (x0)+ε.
Thus to complete the proof, it suffices to show that J(x0, Ỹ , Z̃) ≥ V (x0).
This is not immediate, because (Ỹ , Z̃) is an element of AP (x0) whereas V
is defined with the smaller class A(x0). We will argue by passing to the
one-dimensional problem. To this end, note that (38) and (39) are valid for
the progressively measurable processes, thus

J(x0, Ỹ , Z̃) ≥ E

[ ∫ ∞

0
e−αt[h̄(θ · X̃(t))dt+ r̄d(θ · Z̃(t))]

]
.

Now, the processes θ · Ỹ and θ · Z̃ are pathwise nondecreasing, due to the
definition of AP (x0). Hence, if we define Ŷ (t) = lims↓t θ · Y (s), Ẑ(t) =

lims↓t θ ·Z(s) and X̂ = θ · x0 + θ ·W + Ŷ − Ẑ, then X̂, Ŷ and Ẑ are RCLL.
Moreover, they satisfy all assumptions of Definition 2.3, with x̄0 = θ ·x0 and
W̄ = θ ·W . As a result, they are in Ā(x̄0), and so

J(x0, Ỹ , Z̃) ≥ J̄(x̄0, Ŷ , Ẑ) ≥ V̄ (x̄0).

By Proposition 2.1, V̄ (x̄0) = V (x0). We have thus shown that V (x0) ≤
V P (x0) + ε, and the result follows on taking ε→ 0.
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In the proof below and in the next section we will use the following charac-
terization of C-tightness for processes with sample paths in DR (see Propo-
sition VI.3.26 of [31]): C-tightness of {XN}, N ∈ N is equivalent to

The sequence ‖XN‖T is tight for every fixed T <∞, and(53)

For every T <∞, ε > 0 and η > 0 there exist N0 and θ > 0 such that

N ≥ N0 implies P (w̄T (X
N , θ) > η) < ε,(54)

where w̄ is defined in (1).

Proof of Theorem 3.1. The structure of the proof is as follows. We
invoke Lemma 3.1 that allows us to work with the cost associated with the in-
tegrated version of the processes. We establish C-tightness of the integrated
processes; more precisely, of the sequence (Ŵ n, IX̂n, IŶ n, IẐn). The rest of
the proof is devoted to showing that any subsequential limit of this sequence
gives rise to control within the extended class AP , where the justification to
work with the extended class is provided by Lemma 3.2.

We thus will rely on Lemma 3.1 and work with J̃n. Using (17) and Lemma
3.1, V n = infUn J̃n(Un). Fix a subsequence {n′} along which lim J̃n′

(Un′

) =
V , and relabel it as {n}. Assume, without loss of generality, that J̃n(Un) <
V (x0)+1 for all n. Then J̃n(Un) is bounded, and so is Jn(Un), and therefore,
for every T <∞,

e−αT
E[r · Ẑn(T )] ≤ E

∫ T

0
r · dẐn(t) ≤ V (x0) + 1.

This shows that ‖Ẑn(T )‖, n ∈ N, is tight as a sequence of r.v.s, for each T .
Recall that Ân and Ŝn converge u.o.c. to BMs, and note by (8) that

T n
i (t) ≤ t for every t. Using this and equations (19) and (20) shows that the

sequence of processes Ŵ n is C-tight.
Given T , using the monotonicity of Ẑn

i , the Lipschitz constant of IẐ
n
i |[0,T ]

is bounded by ‖Ẑn(T )‖. Thus, using the characterization (53)–(54), the
tightness of Ẑn(T ) for each T implies that IẐn is a C-tight sequence of
processes. The condition (51) implies that, for every T , ‖X̂n‖T , n ∈ N, is a
tight sequence of random variables. As a result, by (53)–(54), the sequence
IX̂n is also C-tight. Next, by (18),

(55) ‖Ŷ n(t)‖ ≤ ‖X̂n(t)‖+ ‖Ŵ n(t)‖+ ‖Ẑn(t)‖.

It follows from this discussion that, for each T ,

Ln(T ) := ‖X̂n‖T ∨ ‖Ŷ n‖T ∨ ‖Ẑn(T )‖
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is a tight sequence of r.v.s, and that (IX̂n, IŶ n, IẐn) is C-tight, with bound
Ln(T ) on the Lipschitz constant over the interval [0, T ]. Since Ln(T ) are
tight for each T , any weak limit point of the C-tight sequence is a process
having locally Lipschitz paths a.s.

Next, since for each T , the sequence ‖Ŷ n‖T is tight, we have by (21) and
the fact µni /

√
n → ∞, that T n

i converge u.o.c. to T̄i where T̄i(t) = ρit. By
(20), using a lemma regarding random change of time [13], p. 151, it follows
that Ŵ n ⇒W , where we recall that W is an (m,σ)-BM.

By tightness of (Ŵ n, IX̂n, IŶ n, IẐn), there exists a convergent subse-
quence. Denote its limit by (W, IX, IY, IZ). Note that the last three terms
have Lipschitz sample paths. By an argument as in section IV.17 of [20],
they possess a.e. derivatives that are progressively measurable w.r.t. the
filtration F ′

t = σ{W (s), IX(s), IY (s), IZ(s) : s ≤ t}. For concreteness,
let ∂−f , for a Lipschitz f : [0,∞) → R, be defined by ∂−f(0) = 0 and
∂−f(t) = lim infs↑t(t− s)−1(f(t)− f(s)), t > 0. Define pathwise X = (Xi),
Y = (Yi) and Z = (Zi) as Xi = ∂−IXi, Yi = ∂−IYi and Zi = ∂−IZi. Then
(X,Y,Z) are progressively measurable, and IX = IX. We will show below
that these processes along with the filtration {F ′

t} form an element of the
class AP (x0). Consequently, using Lemma 3.1 and Fatou’s lemma for the
subsequence under consideration,

V = lim inf J̃n(Un) ≥ J̃(x0, Y, Z) ≥ inf
AP (x0)

J̃(x0, ·, ·) = V P (x0) = V (x0),

where in the last equality we used Lemma 3.2.
It thus remains to show that the progressively measurable processes we

have constructed form an element of the class AP (x0). To show (23), we bor-
row a few lines from the proof of Lemma 6 of [9]. Fix 0 ≤ s ≤ t < t+ u. Let
αn = (Ŵ n(s), IX̂n(s), IŶ n(s), IẐn(s)) and α = (W (s), IX(s), IY (s), IZ(s)).
For i ∈ I let tni [resp., τni ] denote the renewal epoch of An

i [resp., Sn
i ] fol-

lowing t [resp., T n
i (t)]. That is,

tni = inf{t′ ≥ t : An
i (t

′) > An
i (t)}, τni = inf{t′ ≥ T n

i (t) : S
n
i (t

′) > Sn
i (T

n
i (t))}.

Let βn = (βni )i∈I be defined by

βni = (An
i (t

n
i + u)−An

i (t
n
i ), S

n
i (τ

n
i + ρiu)− Sn

i (τ
n
i )).

Then αn and βn are mutually independent. As a result, αn and γn = (γni )i∈I
are mutually independent, where

γni = Ân
i (t

n
i + u)− Ŝn

i (τ
n
i + u)− Ân

i (t
n
i ) + Ŝn

i (τ
n
i ) +mn

i u.
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Recall the definition (20) of Ŵ n. We have tni ⇒ t, and T n(t) ⇒ T̄ (t) by
which τni ⇒ ρit. As a result, Ŵ n

i (t+ u)− Ŵ n
i (t)− γn ⇒ 0. This shows that

α and W (t+u)−W (t) are mutually independent. Since u > 0 and s ≤ t are
arbitrary, an application of Theorem 1.4.2 of [21] shows that all increments
W (t+ u)−W (t) and F ′

s are independent.
Let Xδ = {x ∈ R

I : dist(x,X ) < δ}, δ > 0. Condition (51) implies
that for every s < t and δ > 0, (t− s)−1(IX̂n(t)− IX̂n(s)) ∈ Xδ occurs with
probability tending to 1 as n→ ∞. As a result, (t−s)−1(IX(t)−IX(s)) ∈ Xδ

a.s. Since X is closed and convex, the intersection of Xδ over δ > 0 gives X ,
so (t−s)−1(IX(t)−IX(s)) ∈ X a.s. Thus X(t) ∈ X for a.e. t, a.s. Now, each
IẐn

i is nonnegative, nondecreasing and convex, hence so is IZi. Therefore Zi

is nonnegative and nondecreasing. As for θ · Y , note that it is a.e. equal to
the pathwise left-derivative of the process θ ·IY , which, for reasons as above,
has convex sample paths a.s. Hence θ · Y is a.e. equal to a nondecreasing
process. This shows that (X,Y,Z) ∈ AP (x0) and completes the proof.

4. A nearly optimal policy in the case of a rectangle. In this
section we consider the case of a rectangular domain, where each customer
class has a dedicated buffer. We have introduced in Section 2.3 some notation
for this case, and identified the curve γ. In particular, the domain X is given
by (45), where bi > 0 are fixed constants, and the parameter x is given by
θ · b. The classes are labeled so that

h1µ1 ≥ h2µ2 ≥ · · · ≥ hIµI ,

and, given w ∈ [0,x], (j, ξ) = (j, ξ)(w) are determined by

w ∈ [b̂j , b̂j−1)

and ξ = ξ(w) = (w− b̂j)/θj , where b̂j =
∑I

i=j+1 θibi, j ∈ {0, . . . , I} and one

has 0 = b̂I < b̂I−1 < · · · < b̂1 < b̂0 = θ · b = x. With this notation, γ is given
(as in (49)) by

γ(w) =
I∑

i=j+1

bie
(i) + ξe(j).

The difficulty in treating the queueing model according to the BCP solu-
tion, as described in terms of γ, is that this curve lies along the boundary of
X , in particular, along the part ∂+X := {x ∈ X : xi = bi for some i} of the
boundary ∂X . This part corresponds to states at which some of the buffers
are full. This sets up contradictory goals of keeping some of the buffers
(nearly) full and at the same time avoiding any rejections except when the
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workload process reaches the level x∗. The policy we propose is based on an
approximation of γ by another curve that is bounded away from the buffer
limit boundary.

Let ε ∈ (0,mini bi) be given. Let ai = bi−ε, i ∈ I, and a∗ := x∗∧ (θ ·a) <
x = θ · b. Note that if ε is small then a∗ = x∗ (unless x∗ = x). We define
an approximation γa : [0,x] → X of γ by first defining it on [0, θ · a] as the
function obtained upon replacing the parameters (bi) by (ai) in (48) and
(49). That is, for w ∈ [0, θ · a), the variables j = j(w) and ξ = ξ(w) are
determined via

(56) w =

I∑

i=j+1

θiai + θjξ, j ∈ {1, 2, . . . , I}, ξ ∈ [0, aj),

and

(57) γa(w) =

I∑

i=j+1

aie
(i) + ξe(j).

Given w ∈ [0, θ · a), we will sometimes refer to the unique pair (j, ξ) alluded
to above as the representation (j, ξ) of w via (56). Next, on [θ ·a, θ ·b] we only
need the function γa to be continuous and satisfy the relation θ ·γa(w) = w.
For concreteness we may define it as the linear interpolation between the
points (θ · a, a) and (θ · b, b):

γa(w) = a+
w − θ · a
θ · b− θ · a(b− a), w ∈ [θ · a, θ · b].

We also define âj =
∑I

i=j+1 θiai, j ∈ {0, 1, . . . , I}, similarly to b̂j.
The definition of the policy is provided by specifying (Zn(t), Bn(t)) as a

function of Xn(t).
Rejection policy: As under any policy, in order to keep the buffer size

constraint (12), all forced rejections take place. That is, if a class-i arrival
occurs at a time t when X̂n

i (t−)+n−1/2 > bi, then it is rejected. Apart from
that, no rejections occur from any class except class i∗, and no rejections
occur (from any class) when θ · X̂n < a∗. When θ · X̂n ≥ a∗, all class-i∗

arrivals are rejected.
Service policy: For each x ∈ X define the class of low priority

L(x) = max{i : xi < ai},

provided xi < ai for some i, and set L(x) = I otherwise. The complement
set is the set of high priority classes:

H(x) := I \ {L(x)}.
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a

1             2             3             4             5             6

               S            L             S             S            S

a

1             2             3             4             5             6

S                           S             S             L             S

Fig 6. An example with imaginary buffer sizes ai = 1 and reciprocal service rates θi = 1,
i = 1, . . . , 6. The figures depict possible states X̂n(t) = x at a time when the normalized
workload θ · x = x1 + · · · + x6 is around 3.5. The target population distribution is then
γ(3.5) = (0, 0, 0.5, 1, 1, 1). The class of low priority (L) is the maximal i with xi < ai. The
classes served (S) are the high priority classes having positive population. Thus, for all i,
i is being served provided that xi exceeds the target population γi(3.5).

When there is at least one class among H(x) having at least one customer in
the system, L(x) receives no service, and all classes within H(x), having at
least one customer, receive service at a fraction proportional to their traffic
intensities. More formally, denote H+(x) = {i ∈ H(x) : xi > 0}, and define
ρ′(x) ∈ R

I as

(58) ρ′i(x) =





0, if x = 0,
ρi1{i∈H+(x)}∑

k∈H+(x) ρk
, if H+(x) 6= ∅,

e(I), if xi = 0 for all i < I and xI > 0.

(Note that H+(x) = ∅ can only happen if xi = 0 for all i < I, which is
covered by the first and last cases in the above display). Then for each t,

(59) Bn(t) = ρ′(X̂n(t)).

Note that when H+(x) 6= ∅,
(60) ρ′i(x) > ρi for all i ∈ H+(x).

That is, all prioritized classes receive a fraction of effort strictly greater
than the respective traffic intensity. Also note that

∑
iB

n
i = 1 whenever

X̂n is nonzero. This is therefore a work conserving policy. See Figure 6 for
an example of how the class with low priority and the served classes are
determined.

Remark 4.1. The only properties from the structure (58)–(59) that are
actually used in the proof are (60) and

∑
iB

n
i = 1 if X̂n 6= 0; in other

words we could have allowed other choices of ρ′ as long as (60) and the work
conserving property hold.
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Remark 4.2. Although we have assumed ε > 0, the policy is well-
defined even for ε = 0, in which case a = b, a∗ = x∗ and γa = γ. This policy
is not used here but it is used in the next section.

Arguing by induction on the times when the driving processes An and Sn

jump, it is clear that there exists a unique solution to the set of equations
(7)–(10), (59) along with the verbal description of the rejection mechanism.
Thus the policy is well-defined.

Theorem 4.1. For each ε > 0 and n, denote the policy constructed above
by Un(ε). Then lim supn→∞ Jn(Un(ε)) ≤ V (x0) + α(ε), where α(ε) → 0 as
ε→ 0.

Remark 4.3. i. By a usual diagonalization argument one can extract
from (Un(ε), ε) an AO sequence Un, i.e., one with lim supn→∞ Jn(Un) =
V (x0).
ii. The combination of Theorems 3.1 and 4.1 gives V = V (x0).

Proof. We fix ε and write Un = (Zn, Bn) for Un(ε). We denote by τn

the time of the first forced rejection. A crucial point about the proof idea is
that most of the analysis is performed on the processes up to the first forced
rejection. It is established that the target state is asymptotically achieved
by the proposed policy, in the sense of weak convergence as n→ ∞. This is
done in two steps: First, the workload process θn · X̂n is shown to converge
to a RBM, and then it is shown that X̂n lies close to the minimizing curve
at all times. Once these elements are established, it follows that in any finite
time, τn is not reached, and as a result one has that (i) only rejections from
class i∗ occur, and only when θn ·X̂n ≈ a∗; (ii) the running cost is minimized
locally. These elements are then combined with some integrability conditions
at the last step of the proof.

We begin with the case where the system starts with initial condition
close to the minimizing curve. More precisely,
(61)
X̂n(0)−γa(θ ·X̂n(0)) → 0 as n→ ∞, and θn ·X̂n(0) ∈ [0, a∗] for all n large.

At the last step of the proof we relax this assumption.
Step 1. C-tightness for the workload and related processes. We multiply

equation (18) by the vector θn = (1/µni )i∈I and denote

(62) W#,n = θn·Ŵ n, X#,n = θn·X̂n, Y #,n = θn·Ŷ n, Z#,n = θn·Ẑn.

We have

(63) X#,n = X#,n(0) +W#,n + Y #,n − Z#,n.
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LetW ◦,n :=W#,n(·∧τn) denote the processW#,n when stopped at the time
τn. Define similarly X◦,n, Y ◦,n and Z◦,n. Our goal in the step is to show that
the sequence (W ◦,n,X◦,n, Y ◦,n, Z◦,n) is C-tight, and that any subsequential
limit (W̃ , X̃, Ỹ , Z̃) satisfies a.s.,

(64) (X̃, Ỹ , Z̃) = Γ[0,a∗][x̄0 + W̃ ].

To this end, note first that the argument for C-tightness of the processes
Ŵ n, given in the proof of the lower bound, is valid here. As a result, W#,n

are C-tight. Hence so are W ◦,n.
By construction (see (59)), the policy is work conserving, namely one

has
∑

iB
n
i (t) = 1 whenever X̂n(t) is nonzero. By the relations (8) and

(21), it follows that the nondecreasing process Ŷ #,n does not increase when
X#,n > 0. A similar property then holds for the stopped processes, and this
can be expressed as

(65)

∫
1{X◦,n(t)>0}dY

◦,n(t) = 0.

Fix T > 0. We show next that, as n→ ∞,

(66)
(

sup
t∈[0,T ]

X◦,n(t)− a∗
)+

⇒ 0.

For ε′ > 0 consider the event Ωn
1 := {supt∈[0,T ]X

◦,n(t) > a∗ + ε′}. On this

event there exist random times 0 ≤ τn1 < τn2 ≤ τn such that X#,n(τn1 ) ≤
a∗ + ε′/2, X#,n(τn2 ) ≥ a∗ + ε′ and X#,n(t) > a∗ for all t ∈ [τn1 , τ

n
2 ]. Thus

by (63) and the fact that Y #,n does not increase on an interval where the
system is not empty, denoting here and in the sequel A[s, t] = A(t) − A(s)
for any process A,

(a∗ + ε′)− (a∗ + ε′/2) ≤ X#,n[τn1 , τ
n
2 ]

=W#,n[τn1 , τ
n
2 ]− Z#,n[τn1 , τ

n
2 ]

=W#,n[τn1 , τ
n
2 ]−

An
i∗ [τ

n
1 , τ

n
2 ]√

n

where we used the fact that the policy rejects all class-i∗ jobs when X#,n >
a∗. Fix a sequence rn > 0, rn → 0, such that

√
nrn → ∞. In case τn2 − τn1 <

rn, the above implies

ε′/2 ≤W#,n[τn1 , τ
n
2 ] ≤ w̄T (W

#,n; rn).
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In case τn2 − τn1 ≥ rn,

2‖W#,n‖T ≥ An
i∗ [τ

n
1 , τ

n
2 ]√

n
= Ân

i∗ [τ
n
1 , τ

n
2 ]+

λni∗√
n
(τn2 −τn1 ) ≥ −2‖Ân

i∗‖T +c
√
nrn,

for some positive constant c. Combining the two cases, the C-tightness of
W#,n and the tightness of Ân shows that P(Ωn

1 ) → 0 as n→ ∞. Since ε′ > 0
is arbitrary, (66) follows.

Since rejections occur only when X◦,n ≥ a∗, we have

∫
1{X◦,n(t)<a∗}dZ

◦,n(t) = 0.

Moreover, we can use (63) to write

X◦,n∧a∗ = X#,n(0)+W ◦,n+Y ◦,n−Z◦,n+En, En = (X◦,n∧a∗)−X◦,n.

Combining these relations with (65) shows that the defining relations of the
Skorohod problem, namely (42)–(43), are valid here, implying

(a∗ ∧X◦,n, Y ◦,n, Z◦,n) = Γ[0,a∗](X
#,n(0) +W ◦,n + En).

By (66), En ⇒ 0 uniformly on compacts. Recall thatW ◦,n are C-tight. If W̃
denotes a subsequential limit of it, then using the continuity of Γ[0,a∗] and,
once again, (66), shows that along that subsequence, (W ◦,n,X◦,n, Y ◦,n, Z◦,n)
converges, and that its limit satisfies (64), as claimed. The Skorohod map
maps continuous paths starting in [0, a∗] to continuous paths. Hence it fol-
lows that (W̃ , X̃, Ỹ , Z̃) have continuous paths a.s. This proves the claimed
C-tightness of these processes.

Step 2. State space collapse. The next major step is to show that the mul-
tidimensional process X̂n lies close to the minimizing curve. More precisely,
we will show that, as n→ ∞,

(67) ∆n(t) := X̂n(t)− γa(X#,n(t)) ⇒ 0,

uniformly on compacts.
Denote by G = {x ∈ X : θ ·x ≤ a∗, x = γa(θ ·x)} the set of points lying on

the minimizing curve, and recall the set ∂+X = {x ∈ X : xi = bi for some i}
corresponding to the buffer limit boundary. These two compact sets do not
intersect. As a result, there exists ε0 > 0 such that for any 0 < ε′ < ε0, Gε′

and (∂+X )ε
′

do not intersect, where for a set A ∈ R
I we denote

Aε′ = {x : dist(x,A) ≤ ε′}.
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In what follows, it is always assumed that ε′ < ε0. Forced rejections occur
only at times when X̂n lies in (∂+X )ε

′

(for all n large). As a result, as long
as the process X̂n lies in Gε′ , no forced rejections occur. This observation
can be used to deduce that σn ≤ τn, where

σn = ζ̂n ∧ ζn,
ζ̂n = inf{t : X#,n ≥ a∗ + ε′}, ζn = inf{t : max

i≤I
|∆n

i (t)| ≥ ε′}.

Note carefully that σn is not precisely given as inf{t : X̂n(t) /∈ Gε′}, because
X#,n is defined using θn while γa and G are defined with θ. However, since
θn → θ and X̂n remains bounded, the conclusion that σn ≤ τn, provided
that n is sufficiently large, is valid.

We turn to proving (67). It suffices to show that P(σn < T ) → 0, for any
small ε′ > 0 and any T . Fix ε′ and T . Thanks to the fact that σn ≤ τn,

P(σn < T ) = P(σn < T, σn ≤ τn)

≤ P(ζ̂n ∧ ζn ≤ T ∧ τn)(68)

≤ P(ζ̂n ≤ T ∧ τn) + P(ζn ≤ T ∧ τn).
We have established in Step 1 the convergence (66), from which it follows
that P(ζ̂n ≤ T ∧ τn) → 0 as n → ∞. It therefore suffices to prove the
following.

Lemma 4.1. P(ζn ≤ T ∧ τn) → 0 as n→ ∞.

Proof. On ζn ≤ T ∧ τn let xn := X#,n(ζn) = X◦,n(ζn) and let j = jn

and ξn be the corresponding components from the representation (j, ξ) of xn

(with w = xn).
Fix a positive integer K = K(ε′) = [c0/ε

′], where c0 is a constant de-
pending only on θ, whose value will be specified at a later stage of the
proof. Consider the covering of [0,x] by the K−1 intervals Ξk = B(kε1, ε1),
k = 1, 2, . . . ,K − 1, where B(x, a) denotes [x− a, x+ a] and ε1 = x/K. Let
also Ξ̃k = B(kε1, 2ε1).

Recall that X◦,n are C-tight. Invoking the characterization of C-tightness
(53)–(54), given δ > 0 there exists δ′ = δ′(δ, T, ε1) > 0 such that for all
sufficiently large n, with probability at least 1− δ,

|X◦,n(s)−X◦,n(t)| ≤ ε1 for all s, t ∈ [0, T ], |s − t| ≤ δ′.

Fix such δ and δ′. Then for all large n,

(69) P(ζn ≤ T ∧ τn) ≤ δ +
∑

k

P(Ωn,k),
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where, denoting by Tn the interval [(ζn − δ′ ∨ 0), ζn],

Ωn,k = {ζn ≤ T ∧ τn, xn ∈ Ξk,X
#,n(t) ∈ Ξ̃k for all t ∈ Tn}.

Note that we have used the identity X#,n = X◦,n on [0, τn]. We fix k and
analyze Ωn,k, by an argument similar to (but somewhat more complicated
than) that used in Step 1 to treat Ωn

1 .
The value assigned by the policy to Bn (see (59)) remains fixed as X̂n

varies within any of the intervals (âj , âj+1). Aiming at showing that one has,
for each k, P(Ωn,k) → 0 as n→ ∞, we will first consider the case where X̂n

remains in one of these intervals during the time window Tn; that is,

(I) Ξ̃k ⊂ (0, a∗) and for all j, âj /∈ Ξ̃k. Then we consider the cases
(II) Ξ̃k ⊂ (0, a∗) but âj ∈ Ξ̃k for some j ∈ {1, 2, . . . , I − 1}.
(III) 0 ∈ Ξ̃k.
(IV) a∗ ∈ Ξ̃k.

There may be additional intervals Ξ̃k, but they are all subsets of (a∗,∞)
and therefore not important for our purpose.

(I) Ξ̃k ⊂ (0, a∗) and for all j, âj /∈ Ξ̃k. Note that this means that all
points x in Ξ̃k lead to the same j in the representation (j, ξ) of x given by
(56). Note that j = j(k) depends on k only, and in particular does not vary
with n. Also, j = jn under Ωn,k. In what follows, j = j(k).

Fix i ∈ {j+1, . . . , I} (unless i = I). We estimate the probability that, on
Ωn,k, ζn ≤ T ∧ τn occurs by having ∆n(ζn) ≥ ε′. More precisely, note that
γai (x

n) = ai (because i > j). Then we will show that
(70)
for every ε′′ ∈ (0, ε′), P(Ωn,k ∩ {X̂n

i (ζ
n) > ai + ε′′}) → 0 as n→ ∞.

Note that γa is continuous and that ∆n(0) → 0 as n → ∞, by (61). Using
the fact that the jumps of X̂n are of size n−1/2, on the event indicated in
(70) there must exist ηn ∈ [0, ζn] with the properties that

(71) X̂n
i (η

n) < ai + ε′′/2, Xn
i (t) > ai for all t ∈ [ηn, ζn].

On this event, during the time interval [ηn, ζn], i is always a member of
H(X̂n), and therefore by (59)–(60), Bn

i (t) = ρ′i(X̂
n(t)) > ρi + c, for some

constant c > 0. Thus by (21), d
dt Ŷ

n
i ≤ − µn

i√
n
c. Moreover, if we define η̂n =

ηn ∨ (ζn − δ′) then for all t ∈ [η̂n, ζn] one has X̂n(t) ∈ Ξ̃k ⊂ (0, a∗) and
therefore no rejections occur. Using these facts in (18), we have

(72) X̂n
i [η̂

n, ζn] = Ŵ n
i [η̂

n, ζn]− c
µni√
n
(ζn − η̂n).
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Again, fix a sequence rn > 0 with rn → 0 and rn
√
n → ∞. If ζn − ηn < rn

and n is sufficiently large then η̂n = ηn, thus by (70) and the definition of
ηn, X̂n

i [η̂
n, ζn] ≥ ε′′/2. As a result,

w̄T (Ŵ
n
i ; rn) ≥ Ŵ n

i [η
n, ζn] ≥ ε′′/2

must hold. If, on the other hand, ζn − ηn ≥ rn then by (72),

2‖Ŵ n
i ‖T ≥ Ŵ n

i [η̂
n, ζn] ≥ c

µni√
n
rn ≥ crn

√
n,

for some constant c > 0. Hence the probability in (70) is bounded by

(73) P(w̄T (Ŵ
n
i ; rn) ≥ ε′′/2) + P(2‖Ŵ n

i ‖T ≥ crn
√
n),

which converges to zero as n→ ∞, by C-tightness of Ŵ n. This proves (70).
Next, if we fix i < j (provided j 6= 1) then whenever X̂n

i > 0, i is a
member of the high priority set H(X̂n). Hence the same argument gives

(74) for every ε′′ ∈ (0, ε′), P(Ωn,k ∩ {X̂n
i (ζ

n) > ε′′}) → 0 as n→ ∞.

Consider now j itself. We will show, for the case j < I,

(75) for every ε′′ ∈ (0, ε′), P(Ωn,k ∩ {∆n
j (ζ

n) > ε′′}) → 0 as n→ ∞.

Suppose that we show (except in the case j = I) for any fixed ε′′ and all
large n that on the event indicated in (75),

(76) j ∈ H(X̂n(t)) whenever, prior to ζn, one has ∆n
j (t) ∈ (ε′′/2, ε′′).

Then we can argue as in the case of i > j, with the following modifications.
Let Cn(t) = γaj (X

◦,n(t)). Then ∆n
j = X̂n

j − Cn, and similarly to (71), there
exists ηn ≤ ζn such that

∆n
j (η

n) < ε′′/2, ∆n
j (t) > 0 for all t ∈ [ηn, ζn].

Since by (76) j is high priority during this interval we will still have identity
(72) valid. Arguing separately for the cases ζn − ηn < rn and ζn − ηn ≥ rn,
leads, in analogy to (73), to the conclusion that the probability in (75) is
bounded by

(77) P(w̄T (Ŵ
n
i ; rn)+w̄T (C

n; rn) ≥ ε′′/2)+P(2‖Ŵ n
i ‖T+2‖Cn‖T ≥ crn

√
n).

In addition to the C-tightness of Ŵ , we now invoke that of Cn, which follows
from the continuity of γa and the C-tightness of X◦,n. This shows (73).
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Now, since θ · γa(θ · x) = θ · x for all x ∈ X , θn → θ, and γa uniformly
continuous and X bounded, we have

(78) qn := sup
x∈X

|θ · γa(θn · x)− θ · x| → 0, as n→ ∞.

To show that (76) holds (except in the case j = I), note by (78) that
|θ · X̂n(t)− θ · γa(X◦,n(t))| ≤ qn → 0. If ∆n

j (t) ≥ ε′′/2 then

−θjε′′/2 ≥
∑

i 6=j

θi(X̂
n
i − γai )− ‖θ‖qn ≥

∑

i>j

θi(X̂
n
i − ai)− ‖θ‖qn,

where we used γai = γai (X
◦,n) = 0 for i < j and γai = ai for i > j. For all

large n, this implies X̂n
i < ai for at least one i > j, by which j ∈ H(X̂n).

We can now show that P(Ωn,k) → 0 as n→ ∞. Indeed, in the case j = I,
we have by (74), using γai = 0, P(Ωn,k ∩ {maxi<I |∆n

i (ζ
n)| > ε′′}) → 0. By

(78), |θ ·∆n(ζn)| ≤ qn. Since θ ∈ (0,∞)I and qn → 0, this shows that

(79) P(Ωn,k ∩ {max
i≤I

|∆n
i (ζ

n)| > ε′′}) → 0.

In the case j < I, combining (70), (74), (75), we have

P(Ωn,k ∩ {max
i≤I

∆n
i (ζ

n) > ε′′}) → 0.

Using again the fact |θ · ∆n(ζn)| ≤ qn → 0 gives that (79) is valid in this
case as well.

Since ε′′ is arbitrarily small, it follows from the definition of ζn that
P(Ωn,k) → 0 as n→ ∞.

(II) Ξ̃k ⊂ (0, a∗) but âj ∈ Ξ̃k for some j ∈ {1, 2, . . . , I−1}. Let (jn(t), ξn(t))
denote the representation (56) for X#,n(t). The difficulty here is that in the
time window Tn, jn varies between two values, namely j and j + 1, and it
is no longer true that γaj+1(X

#,n) = aj+1 on that time interval. The way we
treat this is by bounding ∆n from above by a quantity that depends on ε1,
rather than by an arbitrarily small ε′′. To this end, let us show that on Ωn,k,

(80) γaj+1(X
#,n(t)) ≥ aj+1 − c1ε1, t ∈ Tn,

where c1 = 4/θmin and θmin = mini θi. Indeed, we have for any w ∈ Ξ̃k,
|w − âj| ≤ 4ε1, since âj is also in Ξ̃k. Now, if w ≥ âj then γaj+1(w) = aj+1.
Otherwise,

w = âj+1 + θj+1ξ = âj − θj+1aj+1 + θj+1ξ,

thus |aj+1 − ξ| ≤ 4θ−1
j+1ε1, whence follows (80).
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Now, (70) is valid for all i > j + 1, by the proof given in case (I). For
i = j +1 it is also valid, even though γaj+1(X

#,n(t)) is not necessarily equal
to aj+1. For i < j, (74) is valid with the same proof. As for i = j, (75) is
valid with same proof (the fact that γaj may assume the value zero does not
affect this proof).

Combining all the estimates except for i = j + 1 gives, for all small ε′′,

P(Ωn,k ∩ {max
i 6=j+1

∆n
i (ζ

n) > ε′′}) → 0.

For i = j + 1, the estimate (70) and the bound (80) give

P(Ωn,k ∩ {∆n
j+1(ζ

n) > 2c1ε1}) → 0,

as n→ ∞. Along with |θ ·∆n(ζn)| ≤ qn, this gives

P(Ωn,k ∩ {max
i≤I

|∆n
i (ζ

n)| > 3c1ε1}) → 0,

as n → ∞. We now determine the constant c0 used to define K. We do so
in such a way that 3c1ε1 < ε′/2. In particular, any constant c0 > 6c1x =
24x/θmin will do. This way we obtain P(Ωn,k) → 0 as n→ ∞.

(III) 0 ∈ Ξ̃k. The only difference of this case from case (I) is that during
Tn, X̂n may hit zero, and so by (58) and (59), Bn will be zero. However,
the analysis in case (I) is performed only on intervals where X̂n 6= 0, and as
a result gives rise to the same conclusion, namely P(Ωn,k) → 0 as n→ ∞.

(IV) a∗ ∈ Ξ̃k. In this case, during Tn, θ · X̂n may exceed a∗, and so
rejections of class i∗ customers may occur. The only way it affects the proof
of case (I) is by adding a negative term to the r.h.s. of (72). However, the
consequences of (72) remain valid with this addition. (Note that for all
sufficiently small ε one has âi 6= a∗ for all i, hence assuming ε is sufficiently
small, we do not need to check case (II) here.)

Having shown that P(Ωn,k) → 0 in all cases, using (69) and the fact that
δ > 0 is arbitrary completes the proof of the lemma.

As a consequence of the lemma and (68), we have P(σn < T ) → 0 as
n→ ∞. Since ε′ is arbitrary, (67) is established.

Step 3. Weak convergence. Having shown that P(σn < T ) → 0, we have,
using σn ≤ τn, that P(τn < T ) → 0. As a result, the conclusion of Step 1
regarding the stopped processes holds also for the unstopped ones. That is,
(W#,n,X#,n, Y #,n, Z#,n) are C-tight, and any subsequential limit satisfies
(64) a.s.
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Let W be an (m,σ)-BM (of dimension I) and set W̄ = θ ·W . Denote by
(X̄, Ȳ , Z̄) the triple from Proposition 2.2, i.e., (X̄, Ȳ , Z̄) = Γ[0,x∗](x̄0 + W̄ )
(note that W̄ is a (m̄, σ̄)-BM). Also let (X̄a, Ȳ a, Z̄a) = Γ[0,a∗](x̄0 + W̄ ).

For any finite T , the sequence Z#,n(T ) is tight. On the event τn > T ,
which has overwhelming probability,

(81) Ẑn(T ) = Ẑn
i∗(T )e

(i∗),

hence ‖Ẑn(T )‖ is a tight sequence. The bound (55) thus gives the tight-
ness of ‖Ŷ n(T )‖. The argument from the lower bound in the paragraph
following (55) shows that Ŵ n ⇒ W as n → ∞. Thus (64) determines the
limit of the one-dimensional processes, namely (W#,n,X#,n, Y #,n, Z#,n) ⇒
(W̄ , X̄a, Ȳ a, Z̄a). Moreover, (Ŵ n, X̂n, Ŷ n, Ẑn) ⇒ (W,X, Y,Z) where θ ·X =
X̄a and γa(X̄a) (by (67)) Z = ζ∗Z̄a (by (81)) and Y = X − x0 −W + Z,
by (18). We obtain precisely the relations from Proposition 2.1, except that
the reflection interval is [0, a∗] rather than [0,x∗].

We have shown that, as n→ ∞,

∫ ∞

0
e−αt[h · X̂n(t) + αr · Ẑn(t)]dt] ⇒

∫ ∞

0
e−αt[h · γa(X̄a(t)) + αr̄Z̄a(t)]dt.

Step 4. Convergence of costs. Since X̂n are uniformly bounded, we im-
mediately obtain E

∫∞
0 e−αth · X̂n(t)dt → E

∫∞
0 e−αth · γa(X̄a(t))dt. As for

the second term, we borrow an argument from [11]. Consider the probability
space (R+ × Ω,B(R+) × F ,m × P), where dm = αe−αtdt. Then the result
of the previous step can be expressed as the convergence in law,

r · Ẑn → r̄Z̄a,

w.r.t. the probability measure m×P. Thus to obtain E
∫∞
0 e−αtr · Ẑn(t)dt →

E
∫∞
0 e−αtr̄Z̄a(t)dt, it suffices to show the m× P-uniform integrability (UI)

of r · Ẑn. For this, it suffices that

(82) lim sup
n

E

∫ ∞

0
e−αt‖Ẑn(t)‖2dt <∞.

It is established in equation (172) of [11] that

(83) E[(‖Ŝn‖t)2] ≤ c(1 + t)

for a constant c independent of n and t, with the same estimate holding for
Ân. In what follows, we show that we can deduce (82) from (83).
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To this end, recall that rejections occur only when either θ·X̂n ≥ a∗ or, for
some i, X̂n

i ≥ ai − n−1/2. In particular, if we let ā = a∗ ∧mini(aiθi/2), then
using the convergence θn → θ, we have, for all large n, that no rejections
take place whenX#,n = θn ·X̂n < ā. Consider the truncated version X1,n :=
ā ∧X#,n of X#,n. Then by (63),

(84) X1,n(t) =W 1,n + Y #,n − Z#,n,

where we denote

W 1,n =W#,n + En, En = X#,n(0) +X1,n −X#,n.

By the above discussion,

∫ ∞

0
1{X1,n<ā}dZ

#,n = 0,

and by the work conservation property,

∫ ∞

0
1{X1,n>0}dY

#,n = 0.

Moreover, the initial value W 1,n(0) lies in [0, ā]. These facts dictate that
(X1,n, Y #,n, Z#,n) solves the SP on [0, ā] for W 1,n. That is,

(X1,n, Y #,n, Z#,n) = Γ[0,ā](W
1,n).

It is well-known (see e.g., [32]) that Γ[0,ā] is uniformly Lipschitz in the follow-
ing strong sense: There exists a constant L depending only on ā, such that
for every w1, w2 ∈ D([0, t],R), one has ‖x1−x2‖t+‖y1− y2‖t+‖z1− z2‖t ≤
L‖w1 − w2‖t, where (xi, yi, zi) = Γ[0,ā](wi), i = 1, 2. Since the response to 0
is (0, 0, 0), it follows that

Z#,n(t) ≤ L‖W 1,n‖t ≤ c(‖W#,n‖t + 2x), t ≥ 0,

where we used the bound |En| ≤ 2x. Since θn converge to θ ∈ (0,∞)I , this
and the definitions (62) imply

‖Ẑn(t)‖ ≤ c(1 + ‖Ŵ n‖t).

Going back to (20) and using the fact that T n
i (t) ≤ t for each i, and the

convergence of mn
i (see (19)),

‖Ẑn(t)‖ ≤ c(1 + t+ ‖Ân‖t + ‖Ŝn‖t), t ≥ 0,
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where c is independent of n and t. Combining this with (83) gives (82).
Hence follows the required UI.

We have thus proved that, with Un = Un(ε),

lim
n
Jn(Un) = lim

n
E

[ ∫ ∞

0
e−αt[h · X̂n(t) + αr · Ẑn(t)]dt

]

= E

[ ∫ ∞

0
e−αt[h · γa(X̄a(t)) + r̄Z̄a(t)]dt

]
.

Denoting the right member above by V (x0; ε), the result will follow once
we prove that V (x0, ε) → V (x0) as ε → 0. Now, as ε → 0, one has a →
b, a∗ → x∗ and γa → γ uniformly. Moreover, the process (X̄a, Ȳ a, Z̄a)
converges to (X̄, Ȳ , Z̄) in law, as can be deduced, for example, from the
explicit representation of Γ|[0,a] provided in [32]. Thus

h · γa(X̄a) + αr̄Z̄a → h · γ(X̄) + αr̄Z̄ = h̄(X̄) + αr̄Z̄,

in law w.r.t. m× P. Now, γa is bounded; hence to prove the convergence

V (x0, ε) → V̌ (x0) := E

∫ ∞

0
e−αt(h̄(X̄) + αr̄Z̄)dt,

it suffices to show the corresponding UI, and in particular, that

(85) lim sup
a∗→x

∗

E

∫ ∞

0
e−αt‖Z̄a(t)‖2dt <∞.

To see that (85) holds, an application of Ito’s formula to (X̄a(t))2, and a use
of the facts

∫ t
0 X̄

a(s)dȲ a(s) = 0 and
∫ t
0 X̄

a(s)dZ̄a(s) = aZa(t), shows

Za(t) =
1

2a

{
(X̄a(0))2 − (X̄a(t))2 + 2

∫ t

0
X̄a(s)dW̄ (s) + σ̄2t

}
.

Since X̄a is bounded by a, (85) follows easily. As a result we have V (x0, ε) →
V̌ (x0) as ε → 0. Using integration by parts, V̌ (x0) = E

∫∞
0 e−αt(h̄(X̄)dt +

r̄dZ̄(t)). According to Proposition 2.2, this is precisely V̄ (x̄0), because (Ȳ , Z̄)
is optimal for V̄ (x̄0). By Proposition 2.1, V̄ (x̄0) = V (x0). This proves the
statement of the theorem.

Step 5. General initial condition. Finally, we relax the assumption (61)
on the initial condition. Here we do not give the proof in full detail, but
only a brief sketch. Let ε be given and let a, a∗ be as before. Let τn0 denote
the first time when a condition analogous to (61) holds; more precisely, let
αn > 0, αn → 0 and

τn0 = inf{t : ‖X̂n(t)− γa(θ · X̂n(t))‖ ≤ αn and θn · X̂n(t) ∈ [0, a∗]}.
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The idea is to show that (i) with a suitable choice of αn, one has τn0 → 0
in probability, and (ii) starting from (τn0 , X̂

n(τn)) in place of (0, X̂n(0)),
the arguments in all the proof can be repeated without additional effort.
While (ii) follows in a straightforward manner, but notationally heavy, (i) is
a consequence of similar to the proof of (67). We omit the details.

5. On Reiman’s snapshot principle and throughput time con-

straints. This section is motivated by the the work of Plambeck et al.
[33], where cumulative rejection costs are minimized subject to throughput
time constraints in heavy traffic. Reiman’s snapshot principle [35] implies
that throughput time, regarded as a process, multiplied by the arrival rate
is asymptotically equal to the queuelength process in the heavy traffic limit
(Proposition 5.1 below provides a precise statement for the present model).
It is thus natural to expect that the solution to the problem with finite
buffers that we have given can be transformed into one where throughput
times are constrained, and rejection and holding costs are incurred. Our re-
sults in this direction are only partial. The main purpose of this section is
to propose this problem setting and comment on relations to the main body
of the paper, leaving the main question open.

Some additional notation is necessary in order to formulate the through-
put time constraint problem. Recall that An

i and Zn
i denote the arrival and

rejection counting processes, and let ADn
i = An

i − Zn
i denote the admission

counting processes. Given t ≥ 0 and i ∈ I we denote by AT n
i (t) (where AT

is mnemonic for arrival time) the first time after t when a customer of class
i arrives and is admitted into the system, namely

AT n
i (t) = inf{s > t : ADn

i (s) > ADn
i (t)}, t ≥ 0.

Let DT n
i (t) denote the departure time of that customer. This process can

be recovered from the other processes we have defined, as follows

(86) DT n
i (t) = inf{s : Dn

i (s) ≥ Dn
i (AT

n
i (t)) +Xn

i (AT
n
i (t))}.

To see this, note that the time of departure of a given customer equals the
time when all customers of its class present in the system at the time of its
arrival (including the given customer) have departed the system. This gives
the identity

(87) Dn
i (DT

n
i (t))−Dn

i (AT
n
i (t)) = Dn

i [AT
n
i (t),DT

n
i (t)] = Xn

i (AT
n
i (t)),

by which (86) follows. (Note, by right continuity, that indeed Xn
i (AT

n
i (t))

equals the number of class-i customers in the system at the time of arrival
AT n

i (t), which includes that customer).
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The time the customer spends in the system, that we will call the through-
put time, is given by

(88) Θn
i (t) = DT n

i (t)−AT n
i (t).

Denote a diffusion scale version of the throughput time by

Θ̂n
i (t) =

√
nΘn

i (t).

Recall the distinction between an admissible control and an admissible con-
trol satisfying the buffer constraints (Definition 2.1) and the corresponding
classes Ũn and Un. In this section we replace the buffer constraint by an
asymptotic requirement on the throughput times. Following [33], we fix con-
stants di > 0, i ∈ I, and introduce

Definition 5.1 (Asymptotic compliance). A sequence {Un}n∈N taking
values in Ũn, of admissible controls, satisfying

(89) for every T , max
i

sup
t∈[0,T ]

(Θ̂n
i (t)− di)

+ ⇒ 0,

is said to be asymptotically compliant. Denote by AC the set of all
asymptotically compliant sequences of admissible controls.

Plambeck et al. [33] study AO in presence of rejection costs. In what
seems to be a natural extension of their problem to include holding costs,
we consider minimizing Jn among all policies satisfying (89) instead of the
buffer constraints. Thus we set

V AC = inf
{Un}∈AC

lim inf
n→∞

Jn(Un).

We address this problem by comparing it to the problem with buffer con-
straints via a conditional version of Reiman’s snapshot principle, presented
next. Its proof is deferred to the end of the section.

Proposition 5.1. Fix T > 0. Given any sequence of admissible controls
Un ∈ Ũn, if Ŷ n are C-tight and ‖X̂n‖T are tight then En ⇒ 0 uniformly
over [0, T ], where

En
i (t) = X̂n

i (AT
n
i (t))− λiΘ̂

n
i (t).

If, in addition, X̂n are C-tight then also Ẽn ⇒ 0, where

(90) Ẽn
i (t) = X̂n

i (t)− λiΘ̂
n
i (t).
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This suggests that a constraint di on θ̂ni should be similar a constraint
bi = λidi on X̂n, as in the formulation with finite buffers. Recall that V
denotes the value function for the RBCP. This definition depends upon the
choice of the set X , which we take to be rectangular as in (45), with bi = λidi.
Recall the policies defined before, and in particular, Remark 4.2 by which
the policy with ε = 0 makes perfect sense. Here we do not have strict buffer
constraints, only the requirement to meet the asymptotic constraint (89),
therefore we can work with simply ε = 0. We denote the resulting policy
by Un

∗ .

Theorem 5.1. The sequence {Un
∗ } is asymptotically compliant. More-

over, lim supn→∞ Jn(Un
∗ ) ≤ V (x0).

Proof. Step 4 in the proof of Theorem 4.1 gives the upper bound on the
cost. Thus it suffices to show asymptotic compliance. Now, it follows from
the proof of Theorem 4.1 that the controls under consideration satisfy the
assumptions of Proposition 5.1. Using this proposition along with the fact
that P(σn < T ) → 0 (see the proof of Theorem 4.1), gives the result.

Conjecture 5.1. One has V AC ≥ V (x0).

If the above is true then, by Theorem 5.1, {Un
∗ } are AO for the problem

under consideration. One might approach the conjecture by using Proposi-
tion 5.1 to connect to the lower bound of Theorem 3.1. The difficulty here
is that one must consider an arbitrary sequence of controls, and there is
no guarantee that the assumptions of Proposition 5.1, particularly the C-
tightness of Ŷ n, hold in such generality. We are able to show a partial result.

We address only policies that give rise to state space collapse. More pre-
cisely, consider a sequence {Un}n∈N ∈ AC, and write {Un} ∈ ÂC if it satis-
fies the following. (i) Each Un is work conserving; (ii) for some x̂ ∈ [0, x̂),
rejections occur only when the scaled workload exceeds x̂, and only from
one particular class (save forced rejections); and (iii) for some continuous
γ̂ : [0,x] → X satisfying

(91) {x ∈ X : θ · x ≤ x̂, x = γ̂(θ · x)} ∩ ∂+X = ∅,

one has X̂n − γ̂(θ · X̂n) ⇒ 0 as n→ ∞. Set

V ÂC = inf
{Un}∈ÂC

lim inf
n→∞

Jn(Un).

Proposition 5.2. One has V ÂC ≥ V (x0).
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This result is far from being satisfactory. However, it shows that the two
formulations are equivalent at least for this restricted class of policies. The
proof is based on various elements of the proofs of the finite buffer results.

Proof. Assume, without loss of generality, that V ÂC <∞, and consider
{Un} ∈ ÂC with lim inf Jn(Un) <∞. Finiteness of this quantity gives, along
the lines of the proof of Theorem 3.1, that Ŵ n are C-tight. The assumptions
on {Un} as a sequence in ÂC imply, by arguments as in the proof of Theorem
4.1, that the one-dimensional processes (W ◦,n,X◦,n, Y ◦,n, Z◦,n) are C-tight,
and any subsequential limit (W̃ , X̃, Ỹ , Z̃) satisfies a.s., (64). The state space
collapse assumption, along with (91) imply that, for any T , P(τn < T ) → 0,
and that the un-stopped processes (X#,n, Y #,n, Z#,n) as well as X̂n are C-
tight. Finally, C-tightness of Ẑn follows from that of Z#,n by arguments as
in the same proof, and that of the processes Ŷ n follows equation (18) now
that we have C-tightness of all the other processes involved. This verifies
the assumptions of Proposition 5.1.

As a result Ẽn ⇒ 0 (where Ẽn are defined in (90)). The asymptotic
compliance of the sequence of controls along with the convergence Ẽn ⇒ 0
imply the validity of the relaxed assumption (51) under which the lower
bound, Theorem 3.1, is proved. Thus we conclude from Theorem 3.1 that
lim inf Jn(Un) ≥ V (x0) for any {Un} ∈ ÂC.

Proof of Proposition 5.1. This proof is close to that of Lemma A.4
in the e-companion [5] of [4]. By (87) and (88),

X̂n
i (AT

n
i (t)) = n−1/2Dn

i [AT
n
i (t), AT

n
i (t) +Θn

i (t)].

Now, by (9) and (11)

Dn
i (t) = Sn

i (T
n
i (t)), Ṽ n

i (t) := Ŝn
i (T

n
i (t)) =

Sn
i (T

n
i (t))− µni T

n
i (t)√

n
,

and n−1/2Dn
i =

√
nµ̄ni T

n
i + Ṽ n

i . By (21), recalling that µ̄ni = µni /n, we have

√
nµ̄ni T

n
i (t) =

√
nµ̄ni ρit− Ŷ n

i (t).

Hence
Dn

i (t)√
n

=
√
nµ̄ni ρit− Ŷ n

i (t) + Ṽ n
i (t),

and therefore

(92) X̂n
i (AT

n
i (t)) = µ̄ni ρiΘ̂

n
i (t) + e1,ni (t)− e2,ni (t),
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where

e1,ni (t) = Ṽ n
i [AT n

i (t), AT
n
i (t)+Θ

n
i (t)], e

2,n
i (t) = Ŷ n

i [AT n
i (t), AT

n
i (t)+Θ

n
i (t)].

Now, Ṽ n is C-tight by C-tightness of Ŝn
i and the uniform Lipschitz property

of T n
i . The processes Ŷ

n are assumed to be C-tight. Thus by the assumption
on ‖X̂n‖T , it follows that ‖Θ̂n‖T =

√
n‖Θn‖T are tight r.v.s, and thus that

e1,ni and e2,ni all converge to zero uniformly. Since µ̄ni ρi → λi, this shows
the first statement of the result. The second statement now follows by the
uniform convergence of AT n

i (t) → t.
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