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We consider scheduling and routing control problems for queueing models with I customer classes and J server pools, each
consisting of many statistically identical, exponential servers. Customers require a single service that can be performed by
a server from one of the pools; the service rate is �ij ≥ 0, which depends on the customer’s class i and the server’s pool j ,
and customers can abandon the system while waiting to be served. In the heavy traffic regime of Halfin and Whitt, these
problems are formally equivalent to I-dimensional diffusion control problems. We analyze the diffusion control problems is
two special cases. First, when the service rates depend only on the pool (�ij =�j ), the diffusion control problem is shown to
be similar to (but distinct from) the diffusion control problem for a single class model, which greatly reduces the complexity
of the problem. Second, when the service rates depend only on the class (�ij = �i), the diffusion control problem is shown
to be equivalent to a diffusion control problem for a single pool model, a problem that has previously been studied. In the
first case, we also establish a rigorous relation between the queueing control problem and the diffusion control problem,
showing that a policy for the queueing model, based on an ordinary differential equation of Hamilton-Jacobi-Bellman type,
is asymptotically optimal.
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1. Introduction. A queueing system has I customer classes and J server pools. Customer arrivals for each
class follow a renewal process and each pool has many statistically identical, exponential servers. These servers
work independently, offering service to different classes of customers at rates �ij , which depend on the class i
and the pool j . Customers may abandon while waiting to be served, according to exponential clocks with
class dependent rates (see Figure 1). We consider a routing and scheduling control (RSC) problem in which
customers are to be routed to pools in a way that performance measures, such as average queue-lengths, are
minimized. As often occurs, exact analysis of the RSC problem is unavailable, and an asymptotic approach,
where the queueing model is considered in a heavy traffic regime, simplifies the problem considerably. Halfin
and Whitt [13] proposed a parametrization under which the arrival rates and the number of servers increase to
infinity while keeping a critically loaded system. Taking formal limits under this parametrization results in an
I-dimensional diffusion model and an associated diffusion control (DC) problem. The queueing model described
above and the heavy traffic regime of Halfin and Whitt [13] have recently enjoyed much attention, because
they capture the operational characteristics of large telephone call centers (Gans et al. [10]). The regime is now
referred to in the literature as the quality- and efficiency-driven (QED) regime (Atar et al. [4]). The DC problem
and its rigorous relation to the RSC problem have been analyzed by several authors (for a review see Aksin
et al. [1]).
In this paper we study the DC problem alluded to above, focusing on two special cases of the model, namely

where the service rates are class dependent (�ij = �i for all i and j) or pool dependent (�ij = �j for all i
and j). These cases have been considered by several authors. In Atar [2], these conditions were shown to be
sufficient for a Hamilton-Jacobi-Bellman (HJB) partial differential equation in I variables, associated with the
DC problem, to be uniquely solvable, as well as for a rigorous relation with the RSC problem to be valid.
Tezcan and Dai [18] first noticed that the problem degenerates to a one-dimensional problem when the rates
depend only on the pools, in a setting with I = J = 2. This result was extended in Dai and Tezcan [8] to general
I and J under the assumption that class-1 customers have the most inexpensive holding cost and the highest
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Figure 1. (a) A system with two buffers and three pools. (b) A corresponding graph with basic and nonbasic activities (solid and dashed
lines, respectively).

abandonment rate. A static priority policy was constructed under which it was shown, using methods from Dai
and Tezcan [7], that the diffusion scaled processes representing queue-lengths all converge to zero, except the
one that corresponds to class-1 customers. Similarly, the processes representing idleness of servers from all
pools converge to zero, except the one that corresponds to the pool that has the slowest service rate. This static
policy was proved to be asymptotically optimal. Gurvich and Whitt [11] treated the pool dependent case without
abandonments; using results from Gurvich and Whitt [12], asymptotically optimal policies were obtained for
minimizing linear and convex holding costs. In the latter case, the routing policy is a many-server analogue of
the generalized-c� rule of Mandelbaum and Stolyar [16].
The asymptotic results of Gurvich and Whitt [11] and Dai and Tezcan [8] are related to our Examples 3.2

and 3.3 about the DC problem, where reduction from I dimensions to a single dimension is demonstrated.
In both cases, the dimensionality reduction is obtained via pathwise solutions, in the sense that a specific control
policy minimizes the diffusion limit of the weighted sum of queue-lengths, at all times, with probability 1.
The existence of a pathwise minimum, however, stems from the restrictive assumptions made in Gurvich and
Whitt [11] and Dai and Tezcan [8], and is not representative in general.
The first main contribution of our paper is to show that in the pool dependent case, the general DC problem is

equivalent to a 1-dimensional DC problem (that need not have pathwise solutions in general). To underscore the
importance of the 1-dimensional form of the problem, we show, in Example 3.4, that the DC problem is solved
via a 1-dimensional HJB equation for which, unlike in the multidimensional case with possibly large values
of I , efficient schemes of numerical solution are well known. Also, in the case of class dependent service rates,
we show that the DC problem is equivalent to one with a single pool (J = 1), an I-dimensional DC problem
that has been treated in Atar et al. [4].
Coming back to the pool dependent case, the dimensionality reduction provides some answers to issues raised

in Atar [2] about optimality of jointly work conserving (JWC) policies. (While a plain work conserving policy
allows a server to idle only when no customer that it can serve is waiting in the queue, a JWC policy allows only
arrangements of customers in the system in which no server idles when a customer of any class is waiting in the
queue.) Indeed, the reduction to one dimension is performed by first establishing a reduction to a DC problem
in which the processes, that represent scaling limits of queue-length and idleness, satisfy JWC. In Atar [2], a
JWC condition is assumed and shown to considerably simplify the model, but it is justified only by a heuristic
discussion. The reduction of the DC problem to one in which a JWC condition holds justifies this heuristic in
the case of pool dependent service rates. In the case of class dependent service rates, we also expect the question
of JWC optimality to be answered affirmatively, but we were unable to prove this claim (Conjecture 4.1).
The second main contribution of this paper is the establishment of a rigorous relation between the queueing

control problem and the DC problem for the pool dependent case. This result is largely based on the methods
developed in Atar [3]. In a setting where the service rates may depend on both the class and the pool, Atar [3]
finds such a relation between the two problems, based on an I-dimensional HJB equation. The tools developed
there are applicable in the current setting as well. The rigorous relation established in the current paper is
twofold. First, it is shown that under any (admissible) policy for the RSC problem, the expected discounted
cost associated with weighted queue-lengths is, in the scaling limit, bounded below by the value function of
a DC problem. Second, a sequence of (nonpreemptive, admissible) policies, constructed via the corresponding
HJB equation, is proved to be asymptotically optimal. Adaptations of large time estimates from Atar [3], and
estimates for policies that are not JWC are required to conclude the result.
We do not carry out an analogous program for class dependent services. Although the DC model obtained

in this case is simpler than the general DC model derived in Atar [3], it resides in the same dimension as this
general model (namely I), for which a rigorous relation has already been established (Atar [3]), and so such a
result would, perhaps, be less significant.
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There is potentially a third contribution, that has to do with the value of our results in supporting future
research. Specifically, there are important research themes in which optimal control is only part of the overall
problem. e.g., staffing (see Gans et al. [10]), and pooling design (see §4.2 in Aksin et al. [1]). In such cases,
a simplified DC problem could render tractable and insightful, at least asymptotically, a problem to which a
solution of its raw form seems infeasible (Gurvich and Whitt [12] is a case in point).
We introduce the DC model in §2. Sections 3 and 4 specialize this model to the pool dependent and class

dependent cases, respectively. Finally, §5 is devoted to the rigorous relation between the RSC and the DC
problems in the case of pool dependent service rates.

2. The diffusion model. For the queueing model described in the introduction, let � = �1� 	 	 	 � I
 and
� = �I + 1� 	 	 	 � I + J 
 denote index sets for customer classes and server pools, respectively. Denote by � the
graph with vertex set � ∪ � , and with an edge between i ∈� and j ∈ � if and only if the pair �i� j� forms an
activity, in the sense that class-i can be served by pool-j servers. The edge set of � is denoted by �a, where
“a” is mnemonic for activity. We write i ∼ j if �i� j� is an activity. The graph � is assumed to be connected.
The model parameters i and �i represent arrival and individual abandonment rates for class-i customers, and
�ij represent service rate of class-i customers by pool-j servers, with the convention that �ij = 0 whenever
�i� j� ∈� ×� is not an activity (and, of course, �ij > 0 when �i� j� is an activity). Throughout, we will assume

�min ≥ �max� (1)

where
�min =min��ij � �i� j� ∈�a
� �max =max��i� i ∈�
�

Allowing some mean service time to exceed some mean patience would render attractive the option of “no ser-
vice,” in which case our approach, which requires work conservation, does not apply, and a different approach
might be required (see (38) for the use of (1) in the proof).
A corresponding diffusion model representing heavy traffic limits in the regime of Halfin and Whitt has been

derived in Atar [3] from the queueing model equations. This entails a number of steps that include scaling up of
the arrival rates and number of servers at each pool, in such a way that an underlying static planning problem
is, in an appropriate sense, critically loaded. Also, scaling and centering were applied to the processes involved
in the description of the system’s dynamics, in such a way that they exhibit diffusive fluctuations. While the
probabilistic model is fully described in §5, we do not provide here the details of the derivation, and refer
the reader to the above citation Atar [3] and to Atar et al. [5]. We reiterate that rigorous connections between
the DC problem and the asymptotics of the RSC problem have been established in various settings (Atar [3],
Atar et al. [4, 5], and additional references in Aksin et al. [1]).
To describe the DC problem we need to introduce additional structure. This includes the notion of basic

activities. Roughly speaking, an activity �i� j� is basic if the proportion of the number of servers from pool j
allocated to class i customers is nontrivial in the scaling limit. The precise definition is via an underlying static
planning problem, and is not provided in this section (for details see §5 and Atar [3]). To formulate the diffusion
model, it suffices to say that some of the activities are regarded as basic. Activities that are not basic are said
to be nonbasic. We denote by �ba and �nba the subsets of �a of basic and nonbasic activities, respectively. A
principal assumption of Atar [3], Atar et al. [5], and assumed throughout this paper, is that the graph with vertex
set � ∪� and edge set �ba is a tree, i.e., a graph with no cycles, connecting each pair of vertices from � ∪� by
a path of edges from �ba. This assumption corresponds to the complete resource pooling condition of Harrison
and López [14] (i.e., it is equivalent to the complete resource pooling conditions, provided that the underlying
fluid model is critically loaded, in an appropriate sense; see §5 and Atar [3]). Figure 2(a–b) depicts examples
where our assumption is satisfied, and Figure 2(c) where it is not satisfied.
The process representing, for all i ∈ � , the number of class-i customers present in the queueing system at

each time, gives rise in the scaling limit to an �I -valued process, which we denote by X = �Xi�i∈� . Similarly, the

Buffer

Pool

(a) Buffer

Pool

(b) Buffer

Pool

(c)

Figure 2. Graphs with basic and nonbasic activities (solid and dashed lines, respectively) in the case I = J = 2.
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processes denoted by �Yi�i∈� , and �Zj�j∈� , correspond to queue-length of class i and the number of idle servers
at pool j , respectively, and � = ��ij�i∈�� j∈� corresponds to the number of class-i customers in service at pool j .
Finally, �Wi�i∈� is an I-dimensional Brownian motion with drift b and nondegenerate, diagonal covariance
matrix � that represents the effect of fluctuations in arrival and service times. We refer to such a process, in the
sequel, as a �b���-Brownian motion. Here b and � are fixed parameters that depend on �ij , �i, i, and second
moments of the interarrival times (such as the constants ��� r� defined on the line following (33) of Atar [3]).
The equations satisfied by the processes �X�Y �Z���, referred to below as the diffusion equations, are as

follows (see Atar [3] for a derivation of the equations from the queueing model):

Xi�t�= xi+Wi�t�−
∑
j∈�
�ij

∫ t

0
�ij�s�ds− �i

∫ t

0
Yi�s�ds� i ∈�� (2)

∑
j∈�
�ij =Xi− Yi� i ∈�� (3)

∑
i∈�
�ij =−Zj� j ∈ � � (4)

�ij = 0� i 
∼ j� �ij ≥ 0� �i� j� ∈�nba� (5)

Yi ≥ 0� Zj ≥ 0 i ∈�� j ∈ � � (6)

We need a precise definition of a diffusion model. To this end, let a complete filtered probability
space ���� � ��t
��
 and an (I-dimensional) �b���-Brownian motion W be given, where W�t� − bt is an
��t
-martingale. We denote by � the set of all processes M= �X�Y �Z��� on the given probability space that
satisfy
• M is ��t
-progressively measurable,
• The diffusion Equations (2)–(6) are satisfied � -a.s.

Any nonempty subset of � is said to be a diffusion model.
To minimize queue-length related costs, we define a subset of a given diffusion model as its reduction if

for each member of the original model one can find, in the reduced model, a member for which the processes
representing queue-length are all smaller. (See Remark 5.1 for a relation to delay costs.)
The precise definition is as follows. Throughout, we write “≤” for the usual partial order on �I (or �J ), and,

if A and B are �I -valued processes, interpret A≤ B as A�t�≤ B�t� for all t ≥ 0, � -a.s.
Let �1 and �2 be diffusion models. Then �2 is said to be a reduction of �1, if �2 ⊂ �1, and for any

�X1� Y 1�Z1�� 1� ∈�1 there exists �X2� Y 2�Z2�� 2� ∈�2, such that Y 2 ≤ Y 1.
If, for example, a cost C�M� of the form

E

[∫ �
0
e−tf �Y �t��dt

]
(7)

is to be minimized, where f � �I
+ → �+ is nondecreasing (with respect to the usual partial order on �I

+), then
the problem of minimizing the cost over �1 can be reduced to that over �2.

3. Simplified model in the case of pool dependent service rates. In this section we show that when the
service rates are pool dependent, the diffusion model reduces to one governed by a 1-dimensional stochastic
differential equation (SDE). To this end, we will assume throughout the section that there are constants �j > 0,
j ∈ � , such that for every �i� j� ∈�,

�ij =�j� (8)

Under (8), using (5), Equation (2) can be written as

Xi�t�= xi+Wi�t�−
∑
j∈�
�j

∫ t

0
�ij�s�ds− �i

∫ t

0
Yi�s�ds� i ∈� � (9)

We will write ei ∈ �I (or �J ) for the ith coordinate vector, and e ∈ �I (or �J ) for the vector with all entries
being one. Throughout, for any I- (or J -) dimensional process A, we denote by Ae the process e ·A, where “·”
denotes the usual scalar product on �I (or �J ). For y� z ∈�, we write y∧ z for min�y� z
.
Recall that a JWC policy for the queueing system allows only arrangements of customers in the system in

which no server idles when a customer of any class is waiting in the queue (a precise definition of a JWC
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policy for the queueing system appears in §5). This can be expressed by saying that the minimum between the
total queue-length and the total number of idle servers is zero at all times. In the diffusion model, this condition
corresponds to Ye�t� ∧ Ze�t� = 0, t ≥ 0. The result below, the proof of which is deferred to the end of the
section, provides a two-step reduction of the diffusion model �. The first reduces � to a model �1 in which the
JWC condition holds and nonbasic activities are not used. The second step provides a further reduction to �2,
in which only servers in the pool with the slowest service rate may idle.
To state the following result, let a j0 ∈ � satisfying

�j0 =�min
be fixed.

Proposition 3.1.
(i) Let �1 be the set of all processes M ∈�, that satisfy � -a.s.
(a) Ye�t�∧Ze�t�= 0, t ≥ 0,
(b) �ij�t�= 0 for �i� j� ∈�nba, t ≥ 0.

Then �1 is a reduction of �.
(ii) Let �2 be the set of all processes M ∈�1 that satisfy Z�t�= Ze�t�ej0 for all t ≥ 0, � -a.s. Then �2 is a

reduction of �1.

Because of the tree structure of the basic activities it is not hard to see that JWC policies exist. Furthermore,
one can ensure that all idle servers belong to a fixed pool. The above result states the intuitively clear claim that
it is best to maintain all idleness at the slowest pool.
To state the main result we need some further notation. Denote

	=
{
u ∈�I � ui ≥ 0�

∑
i

ui = 1
}
� (10)

and let 
 be the set of all 	-valued progressively measurable processes. We shall later also need the analogous
notation

� =
{
v ∈�J � vj ≥ 0�

∑
j

vj = 1
}
�

and � for the set of all � -valued progressively measurable processes. For y ∈ �, denote y+ =max�y�0
 and
y− =max�−y�0
. Let � and � denote the vectors ��j�j∈� and ��i�i∈� , respectively. For u ∈
 it is well known
that there exists a unique solution X̆ to the following equation (see, for example, Theorem V.3.7 (p. 197) of
Protter [17]), namely,

X̆�t�= xe+We�t�+�min
∫ t

0
X̆−�s�ds−

∫ t

0
� · u�s� X̆+�s�ds� t ≥ 0� (11)

Owing to the tree structure of �ba, the system of equations in the unknown ,,


∑
j∈�
,ij = ai� i ∈��

∑
i∈�
,ij = bj� j ∈ � �

,ij = 0� �i� j� ∈� ×�\�ba�

(12)

has a unique solution, whenever a and b satisfy
∑

i ai =
∑

j bj ; see Proposition A.2 of Atar [2]. With

DG =
{
�a� b� ∈�I ×�J �

∑
i∈�
ai =

∑
j∈�
bj

}
�

denote by G� DG→�I×J the solution map, namely,

,ij =Gij�a� b�� �i� j� ∈� ×� � (13)

and note that this map is linear. Note also that when the relation � =G�X − Y �−Z� holds, Equations (3)–(5)
are satisfied and, in addition, �ij = 0 for all �i� j� 
∈�ba. Define

Hi�x�u�=−
∑
j

�jGij�x− x+e u�−x−e ej0�− �ix+e u� i ∈� (14)
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and H = �Hi�i∈� . Given a process u ∈
, let ��u� denote the set of all processes �X�Y �Z��� for which

X�t�= x+W�t�+
∫ t

0
H�X�s��u�s��ds� (15)

Y �t�=X+e �t�u�t�� (16)

Z�t�=X−e �t�ej0� (17)

�ij�t�=Gij�X�t�−X+e �t�u�t��−X−e �t�ej0�� i ∈�� j ∈ � � (18)

holds for all t ≥ 0, � -a.s. Let
�0 = ⋃

u∈

��u��

Recall the notation �2 from Proposition 3.1.

Theorem 3.1. One has
(i) �0 =�2, and consequently �0 is a reduction of �.
(ii) For any u ∈ 
, a corresponding solution X̆ of (11) and a process �X�Y �Z��� ∈ ��u�, the equality

Xe = X̆ holds � -a.s.

This result, proved at the end of this section, establishes a reduction of the diffusion model to a one-
dimensional model. To see this, let us consider again a cost C�M� of the form (7) where f is nondecreasing.
Given a process u ∈
, let X̆ be the solution to (11) and set

C̆�u�=E
[∫ �
0
e−tf �Y̆ �t��dt

]
�

where Y̆ �t�= X̆+�t�u�t�. Suppose u minimizes C̆ over 
, and let M= �X�Y �Z��� be defined via (15)–(18).
Then by Theorem 3.1, �X�Y �Z��� ∈ � and Y̆ = Y . Consequently, C�M� = C̆�u�. Moreover, because by
construction M ∈�0, and because by Theorem 3.1 �0 is a reduction of �, we have C�M� ≤ C� �M� for any
�M ∈ �. Therefore, solving the problem of minimizing C̆ suffices for solving the original problem. In some
cases, a pathwise solution to the problem exists, that is, there is M = �X�Y �Z��� ∈ � such that for every
� �X� �Y � �Z� ��� ∈� one has f �Y �t��≤ f ��Y �t��, t ≥ 0, � -a.s. By a similar reasoning as above, to find the pathwise
minimizer (if it exists), it suffices to find the u which minimizes f �Y̆ �t�� for all t ≥ 0, where, again, Y̆ �t� =
X̆+�t�u�t� and X̆ is the corresponding solution to (11).
As mentioned in the introduction, there is similarity between the 1-dimensional equation and the case of a

single class (i.e., (11) with � · u replaced by �1). In both cases the term �min
∫ t
0 X̆

−�s�ds arises for the same
reason, namely that under the optimal policy, only servers from the slowest pool idle at any time. In fact, when
�i = �1 and ci = c1 for all i, the multiclass model and the cost are identical to the single class one. However,
for general ��i
 and �ci
, the multiclass model is more complicated, and how to optimally distribute workload
among the classes depends on these parameters. This is demonstrated in the examples below, which show how
Theorem 3.1 can be applied. The first three describe cases in which the one dimensional model �0 can be
solved pathwise. To begin with, the case where �i = �1 for all i ∈� is particularly simple because the dynamics
(11) are not affected by the control (� · u�s�= �1). This is demonstrated in the first two examples. Throughout,
let c= �c1� 	 	 	 � cI �′, ci > 0, be a constant vector.
Example 3.1 (Linear Costs). Assume �i = �1 for all i ∈� . Consider the stochastic process

c̃�M��t�= c · Y �t�� M ∈�� (19)

By the discussion following Theorem 3.1, the problem of pathwise minimizing c̃�M� (provided that a pathwise
minimum exists) can be reduced to that of pathwise minimizing

c̆�u��t�= X̆+�t�c · u�t�� u ∈
� (20)

where X̆ is given by (11). Since X̆ is not affected by u, the process c̆ is clearly minimized by selecting u�t�= ei0 ,
for all t, where i0 is such that ci0 =min ci. Hence, as follows from Theorem 3.1, defining M via (15)–(18), with
the above value for u, results with pathwise minimizing the process c̃�M� over �. As a result, the process M
identified above clearly minimizes a cost such as E0

∫ �
0 e

−tc · Y �t�dt1 over �. �
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The next example is related to the generalized c� rule of Mandelbaum and Stolyar [16].
Example 3.2 (Convex Costs). Assume �i = �1 for all i ∈� , and let

c̃�M��t�=
I∑
i=1
Ci�Yi�� M ∈��

We check whether c̃ can be minimized pathwise. Here the functions Ci are assumed to be strictly convex and
continuously differentiable with C ′i �0� = 0 for all i. By Theorem 3.1, the problem can be reduced to that of
pathwise minimizing the process c̆ over 
, where

c̆�u��t�=
I∑
i=1
Ci�X̆

+�t�ui�t��� u ∈
�

Since X̆ is again not affected by the control u, the reduced minimization problem is solved by finding the
minimum over u�t� ∈	, for each t ≥ 0. For y ∈�+, consider the problem

min
y1� 	 	 	 � yI

∑
i

Ci�yi�� s.t. y1+ · · ·+ yI = y� yi ≥ 0� i ∈� �

Let C ′i denote the derivative of Ci. Because of the assumptions on Ci, the unique solution �y
∗
1� 	 	 	 � y

∗
I 
 =

�y∗1�y�� 	 	 	 � y
∗
I �y�
 satisfies

C ′1�y
∗
1�= · · · =C ′I �y∗I �� and

∑
i

y∗i = y�

This is translated into a solution to the reduced DC problem by letting ui�t�= y∗i �X̆�t��/
∑

k y
∗
k�X̆�t��, for every

t ≥ 0. In turn, the solution to the original DC problem is found by defining M via (15)–(18). �

Next, we consider an example with slightly more general �i’s, where pathwise minimum can still be obtained.
Example 3.3 (Special Ordering of Parameters). Consider the problem of minimizing the linear cost

(19) and assume that
�1 ≥ �i� c1 ≤ ci� for all i≥ 2�

Then the control u�t� = e1 achieves the minimum of c̆ of (20). Consequently, M defined via the transforma-
tion (15)–(18) minimizes pathwise c̃�M� of (19). This claim is proved at the end of this section. �

Finally, we consider general �i and ci, where a solution to the DC problem can be obtained via control
theoretic tools. This example is the basis for our asymptotic analysis in §5.
Example 3.4 (Hamilton-Jacobi-Bellman Ordinary Differential (ODE)). Let

�V �x�= inf
M∈�

E

[∫ �
0
e−tc · Y �t�dt

]
� (21)

By Theorem 3.1,
�V �x�= V �5�� (22)

where 5 = xe, and
V �5�= inf

u∈

E

[∫ �
0
e−tX̆�t�+c · u�t�dt

]
� (23)

Let us denote by � and 62 the drift and, respectively, diffusion coefficient of the 1-dimensional Brownian motion
We (cf. (11)). Let

L�5�u�= 5+c · u� 5 ∈�� u ∈	�
8�5�u�=�min5− − � · u5+ + �� 5 ∈�� u ∈	� (24)

and note that (11) can be written as

X̆�t�= 5+6WS�t�+
∫ t

0
8�X̆�s�� u�s��ds� t ≥ 0� (25)

where WS is a standard Brownian motion. With

�H�5� q�u�= 8�5�u�q+L�5�u�� 5 ∈�� q ∈�� u ∈	�
H�5� q�= inf

u∈	
�H�5� q�u�� 5 ∈�� q ∈��
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the HJB equation for V associated with the controlled diffusion (25) is given as

�1/2�62V ′′�5�+H�5�V ′�5��−V �5�= 0� 5 ∈�� (26)

where V ′ and V ′′ denote first and second derivatives (see Fleming and Soner [9, §IV.5]). Moreover, when
considered with the growth condition

∃C� �V �5�� ≤C�1+ �5�C�� 5 ∈�� (27)

V is the only solution of Equation (26). This unique solvability statement is a standard fact, given a subexpo-
nential large time estimate on E0X̆�t�1. Such an estimate is provided by Lemma A.1(i) in the appendix. For an
existence and uniqueness proof (based on large time estimate), see Atar [2]. Moreover, it is known (Atar [2])
that there exists a measurable function h� �→	 such that

�H�5�V ′�5��h�5��=H�5�V ′�5��� 5 ∈�� u ∈	�
This function is the “optimal feedback” from state to control, in the sense that the unique solution �X̆� u� to
Equation (11), in conjunction with the equation u�t�= h�X̆�t��, achieves the infimum (23). �

Remark 3.1. The following two points will be important for §5.
(i) The function h can be approximated by Lipschitz functions in the following sense. For every k ∈ there

exists a globally Lipschitz function hk� �→	, such that

�H�5�V ′�5��hk�5��≤H�5�V ′�5��+ 1/k� 5 ∈ 0−k�k1� u ∈	� (28)

This claim follows from the proof of Theorem 2(iv) of Atar [3].
(ii) Let

�8�5�u� v�=� · v 5− − � · u5+ + �� (29)

�H�5� q�= inf
�u� v�∈	×�

0 �8�5�u� v�q+L�5�u�1� (30)

Then the equation obtained from (26) by replacing H with �H, considered with (27), has a unique solution; this
solution is identical to that of Equation (26), as follows from the optimality of controls that keep v�t� = ej0 ,
stated in Proposition 3.1(ii). �

We now proceed with the proofs of the results stated earlier in this section.
Proof of Proposition 3.1. (i) Let �X�Y �Z��� ∈� be given. We will construct � �X� �Y � �Z� ��� ∈�1 such

that �Y ≤ Y , � -a.s.
By summing up Equations (9) over all i’s and using (4) we obtain

Xe�t�= xe+We�t�+
∑
j∈�
�j

∫ t

0
Zj�s�ds−

∑
i∈�
�i

∫ t

0
Yi�s�ds� (31)

Define

M�t�= Ye�t�∧Ze�t�� t ≥ 0� (32)

Observe that M�t� ≥ 0, as follows from (6). From (3) and (4) we have Xe = Ye − Ze. Therefore, by (32),
Ye =X+e +M and Ze =X−e +M . Hence there exists a process �u� v� ∈
×� such that, for all i ∈� and j ∈ � ,

Yi = �X+e +M�ui� Zj = �X−e +M�vj � (33)

Rewrite (31) as

Xe�t� = xe+We�t�+
∫ t

0
� · v�s�X−e �s�ds−

∫ t

0
� · u�s�X+e �s�ds+

∫ t

0
�� · v�s�− � · u�s��M�s�ds� (34)

We define �X as the solution to (9) with
�Y = �X+e u� �Z= �X−e v� (35)

�� =G� �X− �Y �−�Z�� (36)
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This �X exists and is uniquely defined, because the integrand in (9) is Lipschitz as a function of �X. Once �X is well
defined, ��Y � �Z� ��� are defined via (35)–(36). By construction, �M = � �X� �Y � �Z� ��� is progressively measurable
and satisfies the diffusion Equations (9) and (3)–(6). By (35), �Ye ∧ �Ze = 0, and by (36) and the properties of
G (12), we also have �ij = 0 for �i� j� ∈�nba. Hence �M ∈�1. By construction,

�Xe�t�= xe+We�t�+
∫ t

0
� · v�s��X−e �s�ds−

∫ t

0
� · u�s��X+e �s�ds� (37)

Let == �Xe−Xe. It follows from (1) that
� · v�t�≥ � · u�t�� t ≥ 0� (38)

Hence, by (34) and (37),

d

dt
=�t� ≤ � · v�t�� �X−e �t�−X−e �t��+ � · u�t��X+e �t�− �X+e �t��

≤ � · v�t�=−�t�+ � · u�t�=−�t�
≤ c=−�t�� (39)

where we used the inequalities

a− − b− ≤ �a− b�−� a+ − b+ ≤ �a− b�+ = �b− a�−�
and where c = max�j +max�i. The equation �d/dt�>�t� = c>−�t� with the initial condition >�0� = 0 has a
unique solution >= 0. By a standard comparison theorem for ODE (Theorem 7, p. 22, Birkhoff and Rota [6]),
we obtain �Xe�t�≤Xe�t� for all t. Thus, by (33), (35) and the positivity of M , �Y ≤ Y . This proves part (i).
(ii) Let �X�Y �Z��� ∈ �1 be given. An argument similar to the one in part (i) shows that there exists a

process �u� v� ∈
×� such that
Y =X+e u� Z=X−e v� (40)

and

Xe�t�= xe+We�t�+
∫ t

0
� · v�s�X−e �s�ds−

∫ t

0
� · u�s�X+e �s�ds� (41)

Set ũ�t�= u�t� and ṽ�t�= ej0 , t ≥ 0. Let �X be defined as the unique solution to (9) with
�Y = �X+e ũ� �Z= �X−e ṽ� �� =G� �X− �Y �−�Z�� (42)

Let ��Y � �Z� ��� be defined by the above display. By an argument as in part (i), the process �M = � �X� �Y � �Z� ���
thus constructed is in �1. By (42), �Z= �X−e ej0 hence �Z= �Zeej0 and thus �M ∈�2. Since

� · v�t�≥� · ṽ�t�=�min�
we have, with == �Xe−Xe,

d

dt
=�t� ≤ � · v�t�� �X−e �t�−X−e �t��+ � · u�t��X+e �t�− �X+e �t��

≤ � · v�t�=−�t�+ � · u�t�=−�t�
≤ c=−�t��

A comparison argument as in part (i) yields �Xe ≤ Xe. Hence, for every i ∈ � , �Yi = �X+e ui ≤ X+e ui = Yi. This
proves the result. �

Proof of Theorem 3.1. (i) Let M= �X�Y �Z��� ∈�2. In particular, M ∈�1, and by the proof of Propo-
sition 3.1(ii), (40) and (41) hold for some �u� v� ∈
×� . Since Z must satisfy Z=Zeej0 , we have that v= ej0 .
We show that M satisfies Equations (15)–(18). Equations (16) and (17) follow from (40) and the fact v = ej0 .
As a member of �2, M satisfies the diffusion equations, and in particular � , X, and Y satisfy (3)–(5). Recalling
the definition of G as the solution map of (12), it follows that (18) holds. Finally, the validity of (15) follows
from (9) and (14). This shows �2 ⊂�0.
Now let M = �X�Y �Z��� ∈ �0. Then (15)–(18) hold. To see that M ∈ �, note that (16)–(18) and the

definition of G imply (3)–(6). Equation (9) follows from (15) and (14). Thus M ∈�. The properties Ye∧Ze = 0,
�ij = 0 for �i� j� ∈ �nba and Z = Zeej0 are obvious from Equations (16)–(18) and the definition of G, and
thereforeM ∈�2. We conclude that �0 =�2. By Proposition 3.1 we therefore have that �0 is a reduction of �.
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(ii) Given u ∈
 let �X�Y �Z��� ∈��u�. It follows from (15)–(18) and the definition of G that Xe satisfies
Equation (11). By uniqueness of solutions it follows that Xe = X̆ � -a.s. �

Proof of Claim Made in Example 3.3. Let ũ�t� be any control and denote by �X the corresponding con-
trolled process (11). Let u�t� = e1, t ≥ 0, and denote the corresponding controlled process by X. Using the
relation �1 = � ·u≥ � · ũ and repeating the comparison argument from the proof of Proposition 3.1(ii), we obtain
that X ≤ �X. In conjunction with the inequality c1 = c · u≤ c · ũ this yields �c · u�X+ ≤ �c · ũ��X+. Therefore the
cost (20) is pathwise minimized by u. �

4. Simplified model in the case of class dependent service rates. In this section, we assume that there
are constants �i > 0, i ∈� , such that for every �i� j� ∈�,

�ij =�i� (43)

We fix a model �, with general I and J . We will relate it to a model with a single pool, which we will denote
by �sp for which I sp = I and J sp = 1. The diffusion equations for �sp are given by

Xi�t�= xi+Wi�t�−�i
∫ t

0
�i�s�ds− �i

∫ t

0
Yi�s�ds� i ∈�� (44)

�i�t�=Xi�t�− Yi�t�� i ∈�� (45)∑
i∈�
�i�t�=−Z�t�� (46)

Yi�t�≥ 0� i ∈�? Z�t�≥ 0� (47)

The following result shows that the model � is equivalent to �sp. Although �sp is an I-dimensional model,
it is seen to be simpler than the (I-dimensional) model � (compare (2)–(6) to (44)–(47)). The model �sp was
analyzed in Atar et al. [4].

Proposition 4.1. (i) For every process �X�Y �Z��� ∈� there exists a process � �X� �Y � �Z� ��� ∈�sp, satis-
fying � -a.s., for all t ≥ 0,

�X�t�=X�t�� �Y �t�= Y �t�� �Z�t�=Ze�t� (48)

and
��i�t�=

∑
j∈�
�ij�t�� i ∈� �

(ii) For every process � �X� �Y � �Z� ��� ∈�sp there exists �X�Y �Z��� ∈�, such that � -a.s., for all t ≥ 0, the
Equations (48), Z�t�= �Z�t�e1, and

��t�=G� �X�t�− �Y �t��−�Z�t�e1��
hold.

Proof. Part (i) follows directly from (2)–(6) and (44)–(47). Part (ii) is immediate from the same two sets
of equations along with the definition of the map G. �

The question of optimality of JWC policies appears to be harder under the current setting than under that of
the previous section.

Conjecture 4.1. Let �sp� jwc denote the set of all M= �X�Y �Z��� ∈�sp satisfying the JWC condition
Ye�t�∧Z�t�= 0�

Then �sp� jwc is a reduction of �sp.

Intuitively, given an arbitraryM one should be able to modify it so that the JWC condition holds, by allocating
idle servers to classes where the queue length is positive, and since �max ≤ �min, the cost would only improve.
However, one must take into account how this modification affects the future of these processes, and we were
unable to handle this difficulty. This open problem seems to be related to open problems of Atar et al. [4, §5.1].
We comment that if the above conjecture holds true then Proposition 4.1 can be used to lift the result to the

model �jwc, namely, the set of all M= �X�Y �Z��� ∈� satisfying the JWC condition
Ye�t�∧Ze�t�= 0

is a reduction of �sp.
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5. Pool dependent service rates: Asymptotic optimality. In this section we consider a queueing model
for which the corresponding diffusion model satisfies the assumptions of §3. The notation of that section and
particularly of Example 3.4 will be used throughout. As in Atar [3], we will assume throughout the section that
� = �ba, and thus, that the graph � is a tree. We begin by describing the model and its parametrization, and
formulate a routing-scheduling control policy based on the HJB ODE (26). We then state and prove that this
policy is asymptotically optimal in the scaling limit. The proof relies on the methods developed in Atar [3], and
on the reduction of the diffusion model to a JWC model (Proposition 3.1).
We describe the probabilistic queueing model. The processes and parameters will be indexed by n ∈ . For

j ∈ � , we denote by Nn
j the number of servers at pool j . We denote by X

n
i �t� the total number of class-i

customers in the system at time t, by Y ni �t� the number of class-i customers in the queue at time t, and by Z
n
j �t�

the number of idle servers in pool j at time t. We also denote by �n
ij �t� the number of class-i customers in

pool j at time t. Let Xn = �Xn
i �i∈� , Y

n = �Y ni �i∈� , Zn = �Znj �j∈� , �n = ��n
ij �i∈�� i∈� .

To define arrival processes let, for each i ∈� , �Ǔi�k�� k ∈
 be a sequence of strictly positive i.i.d. random
variables with E0Ǔi�1�1= 1 and Var�Ǔi�1��=C2i ∈ 00���. Assume also that the sequences are independent. Let
Un
i �k�= Ǔi�k�/ni , where ni > 0. With

∑0
1 = 0, define

Ani �t�= sup
{
l≥ 0�

l∑
k=1
Un
i �k�≤ t

}
� t ≥ 0� (49)

It is assumed that the number of arrivals up to time t is Ani �t�.
To model service times as exponential independent random variables, let Snij , i ∈�� j ∈ � , be Poisson processes

with rate �nij ∈ 00��� (where a zero rate Poisson process is the zero process). These processes are assumed to
be mutually independent, and independent of the arrival processes. Let T nij �t� denote the time up to t devoted
to a class-i customer by a server, summed over all type-j servers; note that T nij �t�=

∫ t
0 �

n
ij �s�ds, i ∈�� j ∈ � �

t ≥ 0. The number of service completions of class-i customers by all type-j servers up to time t is given as
Snij �T

n
ij �t��. Similarly, let R

n
i �t� be Poisson processes of rate �

n
i ∈ 00��� and let

�
T ni �t�denote the time up to t that

a class-i customer spends in the queue, summed over all customers. Then
�
T ni �t�=

∫ t
0 Y

n
i �s�ds, and we assume

that Rni �
�
T ni �t�� class-i customers have abandoned up to time t. With initial conditions X

0� n
i �= Xn

i �0�, assumed
to be deterministic, we have for i ∈� , t ≥ 0,

Xn
i �t�=X0� ni +Ani �t�−

∑
j

Snij

(∫ t

0
�n
ij �s�ds

)
−Rni

(∫ t

0
Y ni �s�ds

)
� (50)

Routing and scheduling decisions are made by continuously selecting �n, subject to appropriate constraints.
The policy is regarded as preemptive if service to a customer can be stopped and resumed at a later time, possibly
in a different pool. In other words, customers can be moved instantaneously not only between a service pool
and the buffer, but also between different service pools that are capable of offering service to the corresponding
class. For consistency with Atar et al. [4], we abbreviate the term Preemptive Routing/Scheduling Control Policy
as P-SCP. A policy is regarded nonpreemptive (abbreviated N-SCP) if every customer completes service with
the server it is first assigned to. We collectively refer to P-SCPs and N-SCPs as Routing and Scheduling Control
Policies (RSCPs).
Let E = �X0� n? n ∈� and p= ��n�n ∈� denote a sequence of initial conditions and SCPs, respectively. We

denote by PpE the measure under which, for each n, X
n is the controlled process associated with X0� n and �n.

Expectation under PpE is denoted by E
p
E .

We need a notion of SCPs that do not anticipate the future. Denote

Hni �t�= inf
{
u≥ t� Ani �u�−Ani �u−� > 0

}
� i ∈��

� n
t = I

{
Ani �s�� S

n
ij �T

n
ij �s���R

n
i �
�
T ni �s����

n
ij �s��X

n
i �s�� Yi�s��Zj�s�� i ∈�� j ∈ � � s ≤ t

}
�

�n
t =I

{
Ani �H

n
i �t�+u�−Ani �Hni �t���Snij �T nij �t�+u�−Snij �T nij �t���Rni �

�
T ni �t�+u�−Rni �

�
T ni �t��� i∈��j ∈� �u≥0

}
�

We say that a scheduling control policy is admissible if Atar et al. [4], Atar [3]
• for every t, � n

t is independent of �
n
t ;

• for every i, j , and t, the process Snij �T nij �t�+ ·�− Snij �T nij �t�� [resp., Rni �
�
T ni �t�+ ·�−Rni �

�
T ni �t��] is equal in

law to Snij �·� [Rni �·�].
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Recall that we write i∼ j if i and j are neighbors in �. By assumption,
�n
ij = 0� i 
∼ j� (51)

We assume that there are constants i > 0, Jj > 0, �i ≥ 0, and �j > 0, such that, as n→�, n−1ni → i,
n−1Nn

j → Jj� j ∈ � ; furthermore,
�ni = �i� i ∈�� �nij =�j� i∼ j� n ∈� (52)

We set �ij = 0 for i 
∼ j . The assumption that �nij depend only on j , imposed above, will enable us to use the
results of §3. (We could have allowed for an O�n−1/2�, �i� j�-dependent term added to �nij , but this would have
slightly complicated the proof, which we try to keep simple.) We also denote �̄j = Jj�j , j ∈ � . We further
assume

̂ni �= n1/2�n−1ni −i�→ ̂i� n1/2�n−1Nn
j − Jj�→ 0�

where ̂i ∈� are constants. To state a principal assumption on the limit parameters, that indicates that the system
is critically loaded, consider the linear program of minimizing L ∈� subject to

∑
j∈�
�̄j5ij = i� i ∈�? ∑

i∈�
5ij ≤ L� j ∈ �? 5ij ≥ 0� i ∈�� j ∈ � � (53)

The heavy traffic and complete resource pooling conditions (Harrison and López [14]) will be assumed, namely
• There exists a unique optimal solution �5∗� L∗� to (53).
• ∑

i∈� 5∗ij = 1 for all j ∈ � (and, consequently, L∗ = 1).
• 5∗ij > 0, i∼ j .

In what follows, 5∗ij will denote the quantities from the above condition, and x
∗ = �x∗i �, M∗ = �M∗ij �, where

x∗i =
∑

j 5
∗
ijJj � M

∗
ij = 5∗ijJj . We refer to the quantities 5∗ij , x∗i , and M∗ij as the static fluid model (Atar et al. [4],

Atar [2]).
The initial conditions are assumed to satisfy the following. There are constants xi� yi� zj �Mij satisfying

yi+
∑

j Mij = xi, zj +
∑

i Mij = 0, yi ≥ 0, and zj ≥ 0, i ∈� , j ∈ � , such that the initial conditions satisfy
�X0� ni �= n−1/2�X0� ni − nx∗i �→ xi� �Y 0� ni �= n−1/2Y 0� ni → yi� (54)

�Z0� nj �= n−1/2Z0� nj → zj� �� 0� nij �= n−1/2�� 0� nij −M∗ijn�→ Mij � (55)

The processes are centered around the static fluid model and rescaled so that they exhibit diffusive fluctuations,
as follows:

Âni �t�= n−1/2�Ani �t�−ni t�� �Snij �t�= n−1/2�Snij �nt�− n�nij t�� (56)

�Rni �t�= n−1/2�Rni �nt�− n�ni t��
�Xn
i �t�= n−1/2�Xn

i �t�− nx∗i �� (57)

�Y ni �t�= n−1/2Y ni �t�� �Znj �t�= n−1/2Znj �t�� (58)

��n
ij �t�= n−1/2��n

ij �t�−M∗ijn�� (59)

Our goal is to show that, given ci > 0, i ∈ � , a sequence of admissible N-SCPs can be constructed that,
in an asymptotic sense, performs optimally with respect to the queue-length cost with weights ci, in the class
of all sequences of admissible SCPs, and that the optimal cost, properly scaled, converges to that of the DC
problem from Example 3.4 (see also Remark 5.1 below about delay cost). The proposed sequence of N-SCP is
based on Equation (26) from that example, and is defined via the functions hk (28). The Equations (24)–(26)
are considered with the constants � and 6 given by

�=∑
i

̂i� 62 =∑
i

�iC
2
i +i��

Let a subsequence k�n� be given. Recall from (13) the definition of G, and let

Y̌ n�t�= �Xn
e �t�

+hk�n�� �Xn
e �t��� Žn�t�= �Xn

e �t�
−ej0 (60)

�̌ n�t�=G� �Xn�t�− Y̌ n�t��−Žn�t��� (61)
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The policy attempts to keep ��n close to �̌ n, and it does so by blocking activities for which ��n
ij �t� > �̌

n
ij �t�.

That is, given an activity �i� j� and a time interval 0s� t�, if ��n
ij > �̌ n

ij holds on 0s� t� then no routings take
place on the activity �i� j� throughout this interval. When a class-i customer is in the queue and there are pools
j ∼ i with idle servers, and �i� j� is not blocked, the customer is instantaneously routed to the pool with the
lowest index j among these pools. If there are no such pools, the customer stays in the queue. For a technical
reason, that has to do with estimating the large time behavior (in Lemma 5.3 below), we modify the definition
of Y̌ n (60) for large values of t, by replacing hk�n� by ei0 , where i0 ∈ � is arbitrary and fixed, for all t ≥ Nn,
where Nn is a random time (such that Nn→� in probability) which we now define. (The processes Žn and
�̌ n are still defined via (60) and (61).) For x ∈ �I , let F ∗�x� =G�x − x+e hk�n��x��−x−e ej0�, let b0 denote the
constant 2+maxi∼j supn� ��n

ij �0�− �̌ n
ij �0��

+, and define

Nn = inf
{
t� max

i∼j
0 ��n

ij �t−�− F ∗ij � �Xn�t−��1≥ b0
}
�

The resulting sequence of admissible N-SCPs will be denoted by p∗��k�n�
�.
For a sequence E of initial conditions and a sequence p of SCPs, denote

V �E�p�= lim inf
n→� E

p
E

[∫ �
0
e−tc · �Y n�t�dt

]
�

�V �E�p�= lim sup
n→�

E
p
E

[∫ �
0
e−tc · �Y n�t�dt

]
�

Recall from Example 3.4 that V is given as the value function of the 1-dimensional DC problem (23), or
equivalently as the unique solution to the ODE (26)–(27). The main result of this section relates V and �V to V .
Theorem 5.1. Let E be a sequence of initial conditions �X0� n? n ∈
 such that

�X0� n = n−1/2�X0� n− nx∗�→ x ∈�I �

Recall that xe =
∑

i∈� xi. Then we have the following.
(i) For any sequence p of admissible SCPs, one has V �E�p�≥ V �xe�.
(ii) Provided that E0Ǔi�1�

K1 <�, i ∈� , where K is a finite constant which depends only on the deterministic
parameters introduced earlier in this section, there exists a sequence �k�n�
 such that, with p∗ = p∗��k�n�
�,
the sequence p∗ of admissible N-SCPs satisfies �V �E�p∗�≤ V �xe�.
Remark 5.1 (Delay Costs). As observed in Atar et al. [4], the treatment of queue-length costs covers also

delay-related costs. More precisely, for each of the customers l ever present in the system, let cl�l� denote the
class to which l belongs, and let J�l� denote the set of times at which customer l is in the queue. Clearly,
�Y ni �t�= n−1/2

∑
1�t∈J�l�
, where the sum extends over all class-i customers l. Then the cost

n−1/2E
[∑

l

ccl�l�

∫
J�l�
e−tdt

]

equals

E

[∫ �
0
e−t c · �Y n�t�dt

]
�

The latter is a cost of the form treated in this paper. �

The two main ingredients of the proof are tightness of the diffusively scaled processes, and large time estimates
under the policy p∗. The tightness and some related properties are stated in Lemma 5.1, and follow entirely
from Atar [3]. On the other hand, the large time estimates from Atar [3] on �Xn�t�, that are subexponential in t,
are not valid in the current setting. Subexponential estimates on the 1-dimensional process �Xn

e �t�, that are rather
easy (cf. Lemma A.1(ii) in the appendix) are not sufficient. (Note that this stands in contrast to the situation
dealt with in §3 where the estimate on the 1-dimensional controlled diffusion X̆, namely Lemma A.1(i), suffices
for the analysis of Equation (26) and the polynomial bound (27).) The reason for this is technical, and has to
do with a crucial estimate on P�Rn < t�, where Rn is a random time defined by (71). While bounds on �Xn�t�
that are uniform in n and polynomial in t imply bounds on P�Rn < t� of the form on�1��1+ t�c, that is not the
case with bounds on �Xn

e �t�. This issue is dealt with by an argument that combines worse bounds on P�Rn < t�,
namely (72), and the polynomial estimates on just �Xn

e �t� (Lemma 5.3).
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Finally, the results of Atar [3] imply only that admissible SCPs that are JWC (as defined later in this section)
satisfy the conclusion of Theorem 5.1(i). The extension to general admissible SCPs is made possible via the
results of §3, that establish a reduction of the general diffusion model to one that satisfies a JWC condition. The
argument is carried out at the end of this section (see the proof of Theorem 5.1).
We fix some notation. Given a positive integer d, denote by � the space of functions from �+ to �d that are

right continuous on �+ and have finite left limits on �0��� (RCLL), endowed with the Skorohod J1 topology.
If Xn, n ∈ and X are processes with sample paths in � (respectively, real-valued random variables) we write
Xn⇒X to denote weak convergence of the measures induced by Xn on � (respectively, on �) to the measure
induced by X, as n→�. For X ∈�, we write !X!∗t �= sup0≤s≤t !X�s�!, and, if d= 1, we write !X!∗t as �X�∗t .
The fluid scale processes are defined as

�Xn
i �t�= n−1Xn

i �t�� �Y ni �t�= n−1Y ni �t��
�Znj �t�= n−1Znj �t�� ��n

ij �t�= n−1�n
i �t��

Denote ri = �iC2i +i�1/2. Let

ri �Wn
i �t�= Âni �t�−

∑
j

�Snij
(∫ t

0

��n
ij �s�ds

)
− �Rni

(∫ t

0

�Y ni �s�ds
)
� (62)

�Wn�t�= ri �Wn
i �t�+ ̂ni t� (63)

�Mn�t�= �Y ne �t�∧ �Zne �t�≥ 0� (64)

and let �un� vn� take values in 	×� and be defined via the equations

Y n = Y ne un� Zn =Zne vn� (65)

With this notation, it is shown in Atar [3, Equations (27)–(30)] that

�Y ni +
∑
j

��n
ij = �Xn

i � i ∈�� �Znj +
∑
i

��n
ij = 0� j ∈ � � (66)

�Xn
i �t�= �X0� ni + �Wn

i �t�−
∑
j

�ij

∫ t

0

��n
ij �s�ds− �i

∫ t

0

�Y ni �s�ds� (67)

Recall the notation �8 (29) from Remark 3.1(ii). It follows from equation Atar [3, (65)] along with the assump-
tion (52), that the service rates are pool dependent, that

�Xn
e �t�= �Xn

e �0�+ �Wn
e �t�+

∫ t

0
0 �8� �Xn

e �s�� u
n�s�� vn�s��+ �Mn�s��� · vn�s�− � · un�s��1ds� (68)

We have Xn
e −Y ne =Nn

e −Zne by the definition of these processes. Consequently, the diffusion scaled processes
satisfy �Xn

e − �Y ne =−�Zne . Along with (64), this implies
�Y ne = �Mn+ � �Xn

e �
+� (69)

Next, the proof of inequality Atar [3, (134)] is valid here. It states that

E0�! �Wn!∗t �K1≤ a1�1+ t�a1� (70)

where K is the constant from the statement of Theorem 5.1, and a1 is a constant that does not depend on t or n.
Define Tn

ij = ��n
ij − �̌ n

ij and

Rn = inf
{
t� max

i∼j
Tn
ij ≥ b1

}
� (71)

where b1 = �2b0�∨ 13. It is shown in the proof of Atar [3, Proposition 2, part (ii), p. 2647] that one has the
estimate ! �Xn!∗t ≤ a2ea2t�1+! �Wn!∗t +� �M �∗t �, holding for all t and n, where a2 is a constant. Using this estimate,
in place of the polynomial estimate on �Xn used to prove Atar [3, (140)], one obtains

P�Rn ≤ t�≤ a3n1/4−K/8eUt� (72)

where a3 and U are constants not depending on n or t.
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We now introduce formally the notion of JWC policies. Fix n. Let �n denote the set of all possible values
of Xn�t� (for fixed t) for which there is a rearrangement of customers with the property: Either there are no
customers in queue, or no server in the system is idle, i.e.,

Y ne �t�∧Zne �t�= 0� (73)

A work conserving policy is said to be JWC if for every t, Xn�t� ∈�n implies (73). A useful property of the set
�n (required for the proof of Lemma 5.1 below), proved in Atar [3, Lemma 3], is that there exists a constant
V0 > 0 such that

!Xn�t�− nx∗! ≤ V0n implies Xn�t� ∈�n� (74)

More details on JWC policies can be found in Atar [3].
Finally, the proof of Lemma 5.2 below is based on properties of the process

Kn�t� = �8(�Xn
e �t�� u

n�t�� vn�t�
)
V ′� �Xn

e �t��+ c · un�t��Xn
e �t�− �H

(�Xn
e �t��V

′� �Xn
e �t��

)
� (75)

Note that by the definition of �H (30) we have that Kn ≥ 0.
The proof of Theorem 5.1 requires the following three lemmas.

Lemma 5.1. Let the assumptions of Theorem 5.1 hold. Let

J n = !�Y n− Y̌ n!+!�Zn− Žn!
and

Qn
1 =

∫ �

0

�8� �Xn�s�� un�s�� vn�s��ds� Qn
2 =

∫ �

0
e−sc · �Y n�s�ds�

Then items (i)–(iii) below hold under any admissible JWC SCP and under the N-SCP p∗, namely
(i) ��Xn� �Y n� �Zn� ��n�⇒ �x∗�0�0�M∗�;
(ii) � �Wn�

∫ �
0
�Mn� �Xn�Qn

1�Q
n
2� are tight;

(iii) � �Wn�
∫ �
0
�Mn�⇒ �W�0�, where W is a standard I-dimensional Brownian motion.

In addition,
(iv) Under p∗ one has sup0s� t1�J

n ∨ �Mn�⇒ 0, for every 0< s < t <�;
(v) Let p be any admissible SCP (that is not necessarily JWC). Then, along any subsequence on which the

cost

E
p
E

[∫ �
0
e−tc · �Y n�t�dt

]

is bounded, we have that item (i) above holds, �Wn⇒W , and the processes � �Wn� �Xn�
∫ ·
0
�Mn� are tight.

Proof. For items (i)–(iv), the proof of Proposition 1 of Atar [3] holds verbatim. To prove item (v), note
that, since ci > 0 for all i, and since by (64) �Mn ≤ �Y ne , we have that

∫ �
0 e

−tE0 �Mn�t�1dt ≤ a1, where a1 is a
constant independent of n. Hence for any fixed T ,

∫ T
0
�Mn are tight. Reviewing the proof of Proposition 1 of

Atar [3], with H̃n� k �= inf�t�
∫ t
0
�Mn ≥ k
 in place of Hn, and using boundedness of un and vn, one obtains that

the processes Xn �= ��Xn� �Y n� �Zn� ��n� �Wn� �Xn�
∫ ·
0
�Mn�

∫ ·
0 u

n
i �
∫ ·
0 v

n
j �, when stopped at H̃n� k are tight in n for each

fixed k, on obvious modifications of the proof of that proposition. Because, as mentioned above, the random
variables

∫ T
0
�Mn are tight in n (for fixed T ), we have that the processes Xn themselves are tight. The limit results

(namely item (i) and �Wn⇒W ) follow precisely as in Atar [3]. �

Lemma 5.2. Under the policy p∗, with an appropriate choice of the sequence �k�n�
,

lim sup
n→�

E
p∗
E

[∫ T∧Rn

0
e−tc · �Y n�t�dt

]
≤ V �xe�� (76)

Proof. We refer to Lemma 5.1 and denote by �W�X�Q1�Q2� a subsequential limit of � �Wn� �Xn�Qn
1�Q

n
2�

under p∗.
For the policy p∗ = p∗��k�n�
�, with an appropriate choice of �k�n�
, one has ∫ t0 e−sKn�s�ds→ 0 in proba-

bility, for every t, by the proof of Theorem 2 of Atar [3], pp. 2633–2636.
We follow the proof of Atar et al. [4, Theorem 4]. Using the smoothness of the function V (cf. Example 3.4),

Ito’s Lemma, Lemma 5.1, and the convergence of
∫
e−sKn�s�ds→ 0 we obtain, along the lines of the proof of

Atar et al. [4, Theorem 4, part (i)],

e−tV �Xe�t��= V �xe�+
∫ t

0
e−sV ′�Xe�s��dW�s�−Q2�t�� (77)
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As is Atar et al. [4, Lemma 6], X is adapted to a filtration on which W is a martingale. Thus E0Q2�t�1≤ V �xe�.
Since Qn

2 ⇒ Q2 and Q
n
2�t ∧ Rn� ≤ Qn

2�t�, to prove (76) it suffices to show that, for every t, Q
n
2�t ∧ Rn� are

uniformly integrable. It is shown in Atar [3, the second display below (138)] that, under this policy,

�Mn ≤ a1 max
i∼j
�Tn

ij �
+� (78)

where a1 is a constant. Fix t. It follows from the above plus (63), (68), (70), (71) and Gronwall’s Lemma, that

E0�� �Xn
e �∗t∧Rn�K1≤ a�

where a= a�t� <� does not depend on n. Since by (69), c · �Y n ≤ !c!�Y ne = !c!�� �Xn
e �
+ + �Mn� and by (71), (78)∫ t∧Rn

0
�Mn�s�ds ≤ b1t, we obtain

E

[(∫ t∧Rn

0
c · �Y n�s�ds

)K]
≤ a2�

where the constant a2 <� does not depend on n. Assuming without loss that K > 1, the uniform integrability
alluded to above follows, and so does (76). �

Lemma 5.3. Under the hypotheses of Theorem 5.1,

lim
T→�

lim sup
n→�

E
p∗
E

[∫ �
T∧Rn

e−t!�Y n�t�!dt
]
= 0� (79)

Proof. By (71) and (78), we have, for t ≤Rn, that �Mn�t�≤ a1, where a1 is a constant that does not depend
on t or n. Hence by (69), for t ≤Rn,

!�Y n�t�! = �Y ne �t�≤ a1+ ��Xn
e �t�� ≤ a2�1+ t�+ 2� �Wn�∗t �

for some finite constant a2, where we used Lemma A.1(ii) in the last inequality. As a result,

E
p∗
E

[∫ Rn

T∧Rn
e−t!�Y n�t�!dt

]
≤Ep∗E

[∫ �
T
e−t�a2�1+ t�+ 2! �Wn!∗t � dt

]

≤
∫ �
T
e−ta3�1+ t�a3dt (80)

where the last inequality follows (63) and (70), and a3 denotes a constant.
Next, for t > Rn we do not have a good estimate on �Y n, and we use a crude bound. We bound !Y n�t�! by

the initial number of customers in the system plus the total number of arrivals up to time t. This gives

!Y n�t�! ≤ a4n+!An�t�!�

and thus
E0!�Y n�t�!21= n−1E0!Y n�t�!21≤ a5n�1+ t�2� (81)

By Cauchy-Schwartz,

E
p∗
E

[∫ �
Rn

e−t!�Y n�t�!dt
]
≤ a5n1/2

∫ �
0
e−tP �t > Rn�

1/2�1+ t�dt�

By (72), this is bounded above by

a5n
1/2

∫ �
0
e−t01∧ �n−8eUt/2�1�1+ t�dt�

where 8=K/16− 1/8. It is a straightforward calculation to show that the expression in the last display tends
to zero as n→�, provided that the constant 8 is sufficiently large. This can be ensured by selecting K to be
sufficiently large. Along with (80) this establishes (79). �
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Proof of Theorem 5.1. (i) For an integrable function f let If = ∫ ·
0 f . This notation is used in this

proof only, and there will be no confusion with the parameter representing number of classes. We will use
Lemma 5.1(v). Fix a subsequence on which the cost alluded to in that lemma is bounded (there is nothing to
prove in case V �p� E� = +�). Denote by �W�X�MI� a weak limit of � �Wn� �Xn� I �Mn� along a further subse-
quence.
By (65) and (69), �Y ni ≥ 0 and, for 0≤ s < t ≤ T ,

I �Y ni �t�− I �Y ni �s�≤ �t− s�0! �Xn!∗T + � �Mn�∗T 1�
The tightness of the random variables inside the square brackets above implies that the processes I �Y ni are
tight, and that their subsequential limits are Lipschitz. A similar argument holds for I �Znj . Fix a further subse-
quence along which I �Y ni and I �Znj converge, and denote by Y Ii , ZIj their respective limits. As in the proof of
Atar et al. [4, Lemma 6], the admissibility of the policy p implies that X, Y I , and ZI are adapted to a filtration,
denoted �Ft�, on which W is a martingale.
Denote by Yi and Zj RCLL versions of the derivatives of Y

I
i and Z

I
j . The process �Y �Z� may, and will, be

chosen progressively measurable with respect to �Ft� (as follows e.g., from Jacod and Shiryaev [15, Proposi-
tion I.3.5]). Because the limits have Lipschitz sample paths, they are given as integrals of their derivatives, and
so �I �Y ni � I �Znj �⇒ �IYi� IZj�.
Next, by (66) and linearity of G, I ��n = G�I �Xn − I �Y n�−I �Zn�, and therefore I ��n ⇒ I� , where � �=

G�X− Y �−Z�. By (67) we conclude that
Xi = xi+Wi−

∑
j

�ij I�ij − �iIYi�

Hence (2) holds. Also, (3)–(5) follow from the definition of G, and (6) from the positivity of �Y ni � �Znj . With the
notation of §2, this shows that �X�Y �Z��� ∈�. Hence by (21) and (22),

E

[∫ �
0
e−tc · Y �t�dt

]
≥ �V �x�= V �xe��

Given > > 0, let T < � be such that E0
∫ T
0 e
−tc · Y �t�dt1 ≥ V �xe� − >. By Fatou’s Lemma,

lim inf EpE 0
∫ T
0 e
−tc · �Y n�t�dt1≥E0lim inf ∫ T0 e−tc · �Y n�t�dt1. Using integration by parts, the integral on the right

hand side (r.h.s.) of the above inequality can be seen to depend continuously on
∫ ·
0 c · �Y n�t�dt, and therefore

the lim inf on the r.h.s. equals
∫ T
0 e
−tc · Y �t�dt. This shows that V �E�p�≥ V �xe�− >. Since > > 0 is arbitrary

it can be dropped, and this completes the proof of (i).
(ii) This part is immediate from Lemmas 5.2 and 5.3. �

Appendix A.

Lemma A.1. (i) If (11) holds, then

�X̆�∗t ≤ �xe� + 2�We�∗t � t ≥ 0� (82)

More generally, (82) holds provided that X̆ is a continuous process satisfying

X̆�t�− X̆�s�≤We�t�−We�s�+ a
∫ t

s
X̆�u�− ds� (83)

X̆�t�− X̆�s�≥We�t�−We�s�− a
∫ t

s
X̆�u�+ ds� (84)

for all 0< s < t, a.s., where a> 0 is a finite constant.
(ii) Let (68) hold. Let �̄=maxj �j . Then

� �Xn
e �t�� ≤ � �Xn

e �0�� + 2� �Wn�∗t + 2t�̄� �Mn�∗t � t > 0�

Proof. We begin with item (i). Because (11) implies (83) and (84), it suffices to prove the second part of
this item. Let y be a constant such that y > �xe�. If max00� T 1 X̆ > y then there exist 0 ≤ s < t ≤ T for which
X̆�s�= �xe�, X̆�s′�≥ 0, s′ ∈ �s� t�, and X̆�t� > y. Hence by (83),

X̆�t�− X̆�s�≤We�t�−We�s��

and therefore y− �xe� ≤ 2�We�∗T . If min00� T 1 X̆ <−y then similarly, by (84), y− �xe� ≤ 2�We�∗T . Item (i) follows.
The argument for (ii) is similar and thus omitted. �
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