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Abstract

A multi-class many-server system is considered, in which customers are served according to
a non-preemptive priority policy and may renege while waiting to enter service. The service
and reneging time distributions satisfy mild conditions. Building on an approach developed by
Kaspi and Ramanan, the Law-of-Large-Numbers many-server asymptotics are characterized as
the unique solution to a set of differential equations in a measure space, regarded as fluid model
equations. In stationarity, convergence to the explicitly solved invariant state of the fluid model
equations is established. An immediate consequence of the results in the case of exponential
reneging is the asymptotic optimality of an index policy, called the cµ/θ rule, for the problem of
minimizing linear queue-length and reneging costs. A certain Skorohod map plays an important
role in obtaining both uniqueness of solutions to the fluid model equations, and convergence.
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1 Introduction

A multi-class system with many servers is studied under a Law-of-Large-Numbers (LLN) scaling.
In this system, customers of various classes are served according to a fixed non-preemptive priority
policy; they may leave the system while waiting to enter service. The goal is to study the scaling
limit of the queue-length and other processes of the model, via the approach of Kaspi and Ramanan
[14] and Kang and Ramanan [12], [13]. In this approach, developed in [14] for the G/G/N queue,
and extended in [12] to include customer reneging, the scaling limit is described in terms of a fluid
model, comprising a system of differential equations in measure space. The relation to the fluid
model equations (FME) is then used to show convergence of stationary laws of the queueing model
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to the invariant state of the FME, and is applied to prove the asymptotic optimality of the so-called
cµ/θ rule for linear abandonment and queue-length costs, in the case of exponential reneging.

While multi-server queues are important as they arise in many applications, they are harder to
analyze than single server queues. As was first observed by Halfin and Whitt [9], letting the number
of servers increase to infinity may sometimes simplify the system description. In particular, in [9],
a G/M/N queue was studied with scaled-up number of servers and arrival rate, and a central limit
theorem (CLT) was established in which the limiting dynamics was identified as a one-dimensional
diffusion process. It is well-understood that, whether in LLN or CLT scale, it is the exponential
distribution assumption on the service time that enables to describe the limiting dynamics in terms
of a (deterministic or stochastic) ordinary differential equation in one real variable. In Kaspi
and Ramanan [14], the G/G/N queue was analyzed in a many-server LLN scaling, and the limit
behavior was shown to be governed by a (deterministic) differential equation in measure space.
In this approach, the Markovian state descriptor of the queueing model consists of the number-in-
system process and a measure-valued process that records the age-in-service of each of the customers
being served. The FME characterize the dynamics of the limits of a properly scaled version of these
quantities. The extension by Kang and Ramanan [12] to a setting with reneging has an additional
ingredient in the state descriptor, that accounts for the age-in-system of customers prior to reneging,
and accordingly an extended set of FME. The limiting behavior, in LLN and CLT scales, was also
identified by a different approach by Reed [17] and Puhalskii and Reed [16] (see [14], [12] for further
references on many-server limit results).

This paper extends the results of [14] and [12] to the setting of multi-class systems with reneging,
where the service allocation adheres to a fixed non-preemptive priority among the customer classes.
Convergence of the scaled queueing model processes to a suitable set of FME is established, on a
finite time interval, and in stationarity. The approach and much of the technique build on [14], [12]
and [13], including the Markovian formulation, representation formulas for solutions to the FME,
tightness of various processes, and the analysis of stationary measures and their convergence. In
fact, this paper can be viewed as an attempt to demonstrate the applicability and versatility of the
approach.

Yet, the techniques developed in the above papers alone fall short of covering the model under
consideration; particularly, the uniqueness of solutions to the FME and the convergence of the
queueing model processes to the FME solution do not follow directly from these treatments. As we
show, a certain Skorohod map (SM) can be used to represent some of the model’s processes (queue-
length, idleness, arrival into service) as images of others (exogenous arrivals, departure, reneging).
This representation turns out to capture a useful property of the priority policy. Indeed, continuity
and other properties of the SM play a key role in the proofs of uniqueness and convergence alluded
to above. While this is a simple example of a SM, to the best of our knowledge it has not been
used before in a queueing setting.

A major motivation for this study arises from a natural dynamic control problem, in which
scheduling is to be determined so as to (asymptotically) minimize a linear abandonment/queue-
length cost in stationarity. While the problem is interesting under any reneging time distribution,
we focus in this part of the paper on the relatively simple case of the (class-dependent) exponential
distribution. Under this assumption, the cost can be expressed solely as a queue-length cost. This
problem was considered in [1] and [2] in the case where also the service times are (class-dependent)

2



exponential, in which the Markovian state descriptor is finite-dimensional. Denoting by ci, µi and
θi > 0, respectively, the cost per customer per unit time, the rate of service, and the rate of reneging
for a class-i customer, it was shown that a policy that prioritizes classes in the order of the index
ciµi/θi (with highest priority to the largest index) achieves asymptotic optimality. In addition, a
lower bound on the cost was established in [2] for general service time distributions. It was proposed
in [1] to refer to this policy as the cµ/θ rule, as it is reminiscent of the well-known cµ rule (which
is, under suitable assumptions, optimal for multi-class scheduling in systems without reneging). It
follows from the main results of the present paper that the aforementioned lower bound is achieved,
in an asymptotic sense, by the cµ/θ rule for a general service time distribution. Here, µi now stands
for the reciprocal mean class-i service time. Although the priority rule is simple to state, the proof
of the asymptotic optimality result is not so simple, and in fact uses the main results of this paper
to their full strength.

In summary, the main contribution of this paper is the treatment of a multi-class many-server
queueing system with non-preemptive priorities, with general service and reneging distribution,
based on the approach of [12]–[14] and significantly extending it. This extension, that we believe
may be of broader interest in the analysis of priority queues, includes the following:

• The formulation of a set of FME for the multi-class many-server system with reneging, under
a non-preemptive priority policy. We establish uniqueness of solutions to this set of equations
(Theorem 3.1), and identify their invariant state (Theorem 3.3). While the formulation
of the FME follows the approach of [12]–[14], and several tools are borrowed from these
works (Proposition 3.2), a crucial new tool is a certain two-dimensional Skorohod map, that
effectively captures the nature of the priority discipline (Section 3.2).

• Convergence analysis: We establish convergence in law of the scaled queueing processes to
the FME solution (Theorem 4.3), and consequently the convergence of any invariant state
distribution of the scaled queueing processes to the invariant state of the FME (Theorem
4.4). Here, the methodology follows closely the framework of [12]–[14]. Continuity properties
of the Skorohod map alluded to above play a role here.

As a corollary of the convergence results, we obtain

• Asymptotic optimality of the cµ/θ priority rule for exponential reneging and general ser-
vice time distribution (Theorem 5.1), significantly extending a known result for the case of
exponential service.

We use the following notation. For x ∈ R, x± = max(±x, 0). For x ∈ R
k, ‖x‖ =

∑k
i=1 |xi|. For

y : R+ → R
k and t > 0, ‖y‖t = sups∈[0,t] ‖y(s)‖. The modulus of continuity of y is defined as

w(y, θ, t) = sup{‖y(s)− y(u)‖ : s, u ∈ [0, t], |s − u| ≤ θ}, θ, t > 0.

If y : R+ → R is locally of bounded variation, we write |y|t for the variation of y over [0, t]. Note
that we sometimes use y(t) and yt interchangeably as convenient.

Given a non-decreasing, right-continuous function f : [0,∞) → [0,∞), denote f∗ = supt≥0 f(t)
and, in the case when f∗ = ∞, define f−1 : [0,∞) → [0,∞) by f−1(t) = inf{s ≥ 0 : f(s) ≥ t} for
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t ∈ [0,∞). When f∗ < ∞, let f−1 : [0,∞) → [0,∞] be defined as above for t ∈ [0, f∗], and set
f−1(t) = ∞ for t ∈ (f∗,∞). This is the left-continuous inverse of f . For a measure m over [0,H)
(some H ∈ (0,∞]), we will write m[a, b) as shorthand for m([a, b)) and m[a, b] for m([a, b]). We
write Fm(x) for m[0, x] and denote

〈f,m〉 =
∫

[0,H)
fdm, f : [0,H) → R. (1)

Note that
(Fm)−1(y) = inf{x ≥ 0 : m[0, x] ≥ y}. (2)

For a ∈ R, δa denotes the unit mass at a. For an event A ∈ F , 1A denotes the indicator of A.

Given a Polish space E, its Borel σ-field E , and an E-valued random variable X on the prob-
ability space (Ω,F ,P), the probability measure L(X) on (E, E), defined as P ◦X−1, is referred to
as the law of X. Given random variables X,X1,X2, . . . taking values in E, we write Xn ⇒ X for
convergence in law defined as the weak convergence of the laws, L(Xn) → L(X), as probability
measures over (E, E). The sequence {Xn} is said to be tight if the corresponding laws form a tight
sequence in P(E, E). Denote by DE [0,H) the space of RCLL paths from [0,H) to E, equipped
with the usual Skorohod topology. A sequence Xn of random variables taking values in this space
is said to be C-tight if it is tight and every subsequential limit has continuous paths w.p.1.

We write MF [0,H) for the space of finite measures on [0,H), and endow it with the topology of
weak convergence. All stochastic processes in this paper are assumed to have RCLL sample paths.

Finally, the dependence on t ∈ [0,∞) of a process, say Xi, will be denoted by Xi,t and Xi(t)
interchangeably, whichever notation is more convenient.

The paper is organized as follows. The queueing model is introduced in Section 2. Section 3
describes the FME, establishes their uniqueness and identifies the invariant state. In Section 4 the
convergence results are stated and proved. The results are then applied in Section 5 to prove the
asymptotic optimality of the cµ/θ rule under exponential reneging. Finally, certain properties of
the SM are proved in the appendix.

2 The N-server system

In this section we give a precise description of the model. The system has N identical servers that
serve customers of J classes. Each customer has a single service requirement, and leaves the system
once his service is completed. Another possibility for a customer to leave the system is by reneging
while waiting to be served. The system is considered under a work conserving, non-preemptive
priority policy. Thus, customers that arrive into the system when one of the servers is idle are
immediately assigned a server. Otherwise they are queued in a buffer (with infinite room), and
are sent to the service as soon as a server becomes available. The order in which the customers
are assigned to service follows a priority rule, where each class i has priority over all the classes
i+ 1, . . . , J . Within the class, customers are sent to servers in a first-come-first-served manner.

The model is defined on a probability space (Ω,F ,P). For the j-th customer of class i to enter
the system we let
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• ri,j be the patience time of the customer,

• vi,j be the service time requirement of the customer.

This means that the customer reneges if he waits in the queue ri,j units of time, and if the customer
is assigned a server, he keeps the server busy for vi,j units of time. We assume that the patience
times of class-i customers, {ri,j : j = 1, 2, . . .}, are i.i.d. random variables with distribution Gri ,
density gri , finite mean θ−1

i , and hazard rate function hri (x) = (1 − Gri (x))
−1gri (x), where, by

convention, 0/0 = 0. We denote Hr
i = inf{x : Gri (x) = 1}. Similarly, the service times of class-i

customers, {vi,j : j = 1, 2, . . .}, are i.i.d. random variables with distribution Gsi , density g
s
i , finite

mean µ−1
i , and hazard rate function hsi (x) = (1−Gsi (x))

−1gsi (x). Also, H
s
i = inf{x : Gsi (x) = 1}.

We refer to the system containing N servers as the N -server system, or simply the N -th system.
For each fixed N we consider the following arrival processes associated with the N -th system:

• (eNi,j), where e
N
i,j is the time of arrival into the system of the j-th customer of class i,

• ENi , the corresponding counting process of class-i arrivals into the system for t ≥ 0, so that
ENi (t) is the number of class-i arrivals in [0, t].

We further denote by ENi,0 the number of class-i customers that have arrived before t = 0. We assign

to these customers negative indices between −ENi,0 + 1 and 0, and to those that arrive at or after

time 0 positive indices from 1 to ∞. Hence eNi,j = (ENi )−1(j) for j ≥ 1.

We assume that the arrival processes {ENi : i = 1, . . . , J} are mutually independent renewal
processes with mean inter-arrival times (λNi )

−1, respectively. It is further assumed that the collec-
tions ri,·, vi,· and eNi,· (equivalently, E

N
i ), i = 1, . . . , J , are mutually independent for each N . At

this point of the article we are interested in the evolution of the systems for t ≥ 0 starting from
a given initial state, a term that refers to quantities associated with customers that are present
in the system at time 0 (including their number, arrival time, and time already spent in service).
Therefore, the distribution of the initial state is not specified Starting at Section 4, the initial
state will be considered with a (generic) distribution. We will assume that, given the ages of the
customers in service (as part of the initial state), their residual service time distribution is that of

independent random variables with densities
gsi (x+y)
1−Gs

i (x)
for a customer of class i with age x in service.

A similar statement holds for ages in queue, with gri and Gri replacing gsi and Gsi .

We proceed to define some additional processes for the N -th system that depend on the above
primitive variables, starting with

• sNi,j, the time of entrance into service of the j-th customer of class i. If the customer reneges

before entering service we set sNi,j = ∞.

• KN
i , the counting process of class-i customers that enter service for t ≥ 0.

Define next the age-in-service measures, denoted by νNi,t(dx). For class i and t ∈ [0,∞), νNi,t puts
a unit mass at every x ∈ [0,∞) for which a class-i customer, that is in service, has been there x
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units of time at time t. More precisely,

νNi,t(dx) =

EN
i (t)
∑

j=−EN
i,0+1

δaNi,j (t)
(dx)1{0≤t−sNi,j<vi,j}

, (3)

where {0 ≤ t− sNi,j < vi,j} indicates that the customer entered service but has not completed it yet,
and

aNi,j(t) = ((t− sNi,j) ∨ 0) ∧ vi,j (4)

represents the age in service of the respective customer at time t. Next, consider the potential queue
measures, ηNi,t(dx). These measures represent the age-in-queue, under a policy that never assigns
servers to any customers (this policy is not actually implemented in our model, and is mentioned
only as a means of describing the potential queue measures). Therefore, these measures encode
information about arrival and reneging, but not service. Specifically,

ηNi,t(dx) =

EN
i (t)
∑

j=−EN
i,0+1

δwN
i,j(t)

(dx)1{0≤t−eNi,j<ri,j}
, (5)

where {0 ≤ t− eNi,j < ri,j} indicates a customer that has arrived prior to t but not reneged yet, and

wNi,j are the potential waiting times, defined by

wNi,j(t) = ((t− eNi,j) ∨ 0) ∧ ri,j . (6)

Although ηNi,t encodes the age-in-queue under a fictitious policy, the information about the ages of
customers in queue under the actual policy can be recovered from it, using additional ingredients
of the system description, as we shall see below.

Let BN
i (t) = 〈1, νNi,t〉 denote the total mass of νNi,t, representing the number of class-i customers

that are in service at time t, or equivalently, the number of servers busy with class-i customers.
Let QNi (t) denote the number of class-i customers in the queue at time t. Let

XN
i (t) = QNi (t) +BN

i (t) (7)

denote the total number of class-i customers in the system at time t. Then we require that

N −
J
∑

i=1

BN
i (t) =

(

N −
J
∑

i=1

XN
i (t)

)+
, t ≥ 0. (8)

This relation asserts that servers do not idle when there are customers waiting in the queue. It
thus expresses the work conservation property.

Introduce the process χNi (t) representing the waiting time of the “oldest” class-i customer in
the queue, and set it equal zero when the class-i queue is empty. Namely,

χNi (t) = inf{x ≥ 0 : ηNi,t[0, x] ≥ QNi (t)} = (F η
N
i,t)−1(QNi (t)), (9)
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where we recall the definition of the inverse in (2). Evidently,

QNi (t) = ηNi,t[0, χ
N
i (t)].

The cumulative class-i departure-from-service process, denoted DN
i , is given by

DN
i (t) =

EN
i (t)
∑

j=−EN
i,0+1

∑

s∈[0,t]

1
{
daN

i,j

dt
(s−)>0,

daN
i,j

dt
(s+)=0}

, (10)

where we denote by (df/dt)(t+) and (df/dt)(t−) the right- and, resp., left-derivative of f at t. The
cumulative potential reneging of class-i customers in [0, t], denoted SNi (t), is equal to

SNi (t) =

EN
i (t)
∑

j=−EN
i,0+1

∑

s∈[0,t]

1
{
dwN

i,j

dt
(s−)>0,

dwN
i,j

dt
(s+)=0}

. (11)

The cumulative reneging of class-i customers in [0, t], denoted RNi (t), is equal to

RNi (t) =

EN
i (t)
∑

j=−EN
i,0+1

∑

s∈[0,t]

1
{wN

i,j(s)<χ
N
i (s−),

dwN
i,j

dt
(s−)>0,

dwN
i,j

dt
(s+)=0}

. (12)

Additional relations satisfied by these processes are the so-called balance equations, obtained by
counting customers in the system (13), in the potential queue (14) and in service (15). Namely,

XN
i = XN

i,0 + ENi −DN
i −RNi , (13)

〈1, ηNi 〉 = 〈1, ηNi,0〉+ ENi − SNi , (14)

BN
i = BN

i,0 +KN
i −DN

i . (15)

The non-preemptive priority rule is expressed as

KN
i (t) =

∫

[0,t]
1{

∑i−1

k=1
QN

k
(s)=0}dK

N
i (s), i ≥ 2, t ≥ 0. (16)

This relation imposes a necessary condition for a class-i customer to be sent to service at time s,
namely that at time s no class-k customers are present in the queue, for k < i.

Remark 2.1. While (16) captures precisely the nature of the priority rule, it may seem that the
following variant is also a valid condition, namely

KN
i (t) =

∫

[0,t]
1{

∑i−1

k=1
QN

k
(s−)=0}dK

N
i (s), i ≥ 2, t ≥ 0. (17)

Here the respective queues are observed just before time s. However, as we explain below, (16) and
(17) are not equivalent, and (17) is not the right condition.
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(a) Condition (17) does not agree with the priority policy. Fix k < i. Consider a scenario
when two arrivals, of class k and class i, occur at the same time. Assume that just prior to this
time the queues are all empty, and there is exactly one free server. The policy should assign the
server to the new class-k customer. However, condition (17) allows for the class-i customer to be
sent to service rather than k. Condition (16) prohibits this behavior.

(b) Condition (17) contradicts work conservation. Suppose two servers become idle at the same
time, and just before that time there are one class-k customer and one class-i customer in the
queue. Both should enter service. However, (17) prohibits this.

We further consider the departure-from-service marked point processes, defined for bounded
measurable ϕ on [0,Hs

i )× R+ via

DN
i,ϕ(t) =

EN
i (t)
∑

j=−EN
i,0+1

∑

s∈[0,t]

1
{
daN

i,j

ds
(s−)>0,

daN
i,j

ds
(s)=0}

ϕ(aNi,j(s), s), (18)

and similarly the potential reneging marked point processes, defined for bounded measurable ψ on
[0,Hr

i )×R+ via

SNi,ψ(t) =

EN
i (t)
∑

j=−EN
i,0+1

∑

s∈[0,t]

1
{
dwN

i,j

ds
(s−)>0,

dwN
i,j

ds
(s)=0}

ψ(wNi,j(s), s). (19)

Let
RNi,ψ(t) = SNi,θN

i
ψ(t), (20)

where (θNi ψ)(x, s) = θNi (x, s)ψ(x, s), and

θNi (x, s) = 1(x,∞)(χ
N
i (s−)). (21)

Then, the reneging process RNi is given by

RNi (t) = RNi,1 = SN
i,θNi

(t). (22)

For h ∈ (0,∞], we denote by C1,1
c ([0, h) × R+) the space of compactly supported functions ϕ

for which the directional derivative lim∆→0
ϕ(x+∆,t+∆)−ϕ(x,t)

∆ exists for all x ∈ [0, h), t ∈ R+, and
lies in Cc([0, h) × R+). We shall abuse the notation slightly and denote this directional derivative
by ϕx + ϕt whether the partial derivatives ϕx and ϕt exist or not. For ϕ ∈ C1,1

c ([0,Hs
i )× R+), the

measure-valued processes satisfy the following relations:

〈ϕ(·, t), νNi,t〉 = 〈ϕ(·, 0), νNi,0〉+
∫ t

0
〈ϕx(·, s) + ϕt(·, s), νNi,s〉ds −DN

i,ϕ(t) +

∫ t

0
ϕ(0, s)dKN

i (s), (23)

where ϕx + ϕt is the directional derivative alluded to above. Similarly, for ψ ∈ C1,1
c ([0,Hr

i )× R+),

〈ψ(·, t), ηNi,t〉 = 〈ψ(·, 0), ηNi,0〉+
∫ t

0
〈ψx(·, s) + ψt(·, s), ηNi,s〉ds − SNi,ψ(t) +

∫ t

0
ψ(0, s)dENi (s). (24)
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The proof that, given KN
i and ENi , (23)–(24) are satisfied by the measure valued processes, is

identical to that of Theorem 5.1 of [14]. The construction of collection of processes satisfying the
N -server system equations (3)–(16), (18)–(22) is very similar to that in Appendix A of [12], with
obvious adaptations to address the priority policy.

While the detailed proofs appear in [12] and [14], it is in order to give an explanation of the
various terms in the above equations. First, θNi (x, s) is the indicator of the event that the waiting
time of the customer at the head of the queue, just before s, is larger than x. Hence SN

i,θNi
(t) is

the potential reneging applied to the function θNi , which counts all reneging of customers while
they are in queue, that is, the actual reneging in [0, t]. Equations (23)–(24) describe the evolution
of the measures νNi and ηNi , where the second, third and fourth terms on the right correspond
to three different causes of evolution. The second term is due to the fact that ages of customers
in service (resp., waiting times of customers in queue) increase at rate 1. The variables (x, t) for
the test functions ϕ (resp., ψ) correspond to age (resp., waiting time) and time. Since both these
elements are affected by the flow of time, the directional derivative as defined above appears in
these expressions. Clearly, in the special case when ϕ (resp., ψ) is a function of the space variable
x alone, only the term 〈ϕx(·), νNi,s〉 (resp., 〈ψx, ηNi,s〉) will appear. Next, those customers that have
left the system in [0, t] due to end of service in (23) and because of reneging in (24), should be
subtracted, resulting in the third term on the r.h.s. Finally, the last term represents entrance to
the service (resp., the system) during [0, t]. The test functions appear here as ϕ(0, s) (resp., ψ(0, s))
due to the fact that at the time customers enter, their age (resp., waiting time) is equal to 0.

3 The fluid model

In this section we analyze a deterministic fluid model that will be shown, in later sections, to govern
the LLN behavior of the N -server system, as N → ∞. It consists of a set of equations derived from
the equations satisfied by the N -server model. The main issue addressed here is showing that the
solution of the fluid-model equations is unique. We also provide here some additional properties of
the fluid model and characterize its invariant state.

3.1 The fluid model equations

Write D+
RJ (R+) for the set of members of DRJ (R+) that are nonnegative and nondecreasing (compo-

nentwise). We are given data E ∈ D+
RJ (R+) and initial conditions Xi,0 ∈ [0,∞), νi,0 ∈ MF [0,H

s
i )

and ηi,0 ∈ MF [0,H
r
i ), for i = 1, . . . , J . Set Bi,0 = 〈1, νi,0〉. We consider equations satisfied by

(B,X,Q,D,K,R, ν, η), where B = (Bi)i=1,...,J , etc., and, for each i, Bi,Xi, Qi,Di,Ki, Ri are mem-
bers of DR(R+), and νi and ηi are members of DMF [0,Hs

i )
(R+) and DMF [0,Hr

i )
(R+), respectively.

The measures νi and ηi are assumed to satisfy

∫ t

0
〈hsi , νi,τ 〉dτ <∞,

∫ t

0
〈hri , ηi,τ 〉dτ <∞, t ≥ 0. (25)
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Balance equations and basic relations (in analogy with (7), (13), (14), (15)) are expressed by

Bi = Bi,0 −Di +Ki, (26)

Xi = Xi,0 −Di +Ei −Ri, (27)

Qi = Xi −Bi, (28)

Qi and Bi are nonnegative (29)

Work conservation and non-preemptive priority (8), (16), correspond to

I := 1−
J
∑

i=1

Bi =
(

1−
J
∑

i=1

Xi

)+
, (30)

Ki are nonnegative, nondecreasing (31)

Ki,t =

∫

[0,t]
1{

∑i−1

j=1
Qj,s=0}dKi,s, i ≥ 2, t ≥ 0. (32)

Note that one can deduce that Xi are nonnegative from the nonnegativity of Qi and Bi, and that
∑

Bi ≤ 1 from (30). Also note that (30) imposes an assumption on the initial condition.

Further, in analogy with (23) and (24), we write the following integral equations. Namely, for
ϕ ∈ C1

c ([0,H
s
i )× R+) and ψ ∈ C1

c ([0,H
r
i )× R+),

〈ϕ(·, t), νi,t〉 = 〈ϕ(·, 0), νi,0〉+
∫ t

0
〈ϕx(·, s) + ϕt(·, s), νi,s〉ds

−
∫ t

0
〈hsi (·)ϕ(·, s), νi,s〉ds+

∫ t

0
ϕ(0, s)dKi,s, (33)

〈ψ(·, t), ηi,t〉 = 〈ψ(·, 0), ηi,0〉+
∫ t

0
〈ψx(·, s) + ψt(·, s), ηi,s〉ds

−
∫ t

0
〈hri (·)ψ(·, s), ηi,s〉ds +

∫ t

0
ψ(0, s)dEi,s. (34)

Finally,

Bi,t = 〈1, νi,t〉, (35)

Di,t =

∫ t

0

∫ ∞

0
hsi (x)νi,s(dx)ds, (36)

Ri,t =

∫ t

0

∫ ∞

0
hri (x)1{ηi,s [0,x]<Qi,s}ηi,s(dx)ds. (37)

Equations (25)–(37) are called the fluid model equations (FME). A tuple (B,X,Q,D,K,R, ν, η)
satisfying these equations is said to be a solution to the FME with initial conditions (X0, ν0, η0)
and data E.

Remark 3.1.

(a) Uniqueness of solutions to the FME is established in the next subsection. We do not address
existence of solutions in this section. However, we will show (in Theorem 4.3 below), under suitable
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assumptions, that fluid-scaled versions of the processes associated with the N -server system do
converge weakly to solutions to the FME, by which existence follows.

(b) As in the case of the N -server system equations, the evolution of the fluid measures νi,t
and ηi,t is due to three sources. First is the motion resulting from the age (resp., waiting times)
increasing at unit rate. This accounts for the second term of (33) (resp., (34)). The second is
due to departures (resp., potential reneging) which correspond to the third term, and finally the last
term is due to beginning of new service (resp., new arrivals into the system).

(c) Equation (36) describes the fluid departure process. Note that νi,s(dx) represents the fluid
mass of customers with ages in [x, x + dx) at time s and hsi (x) represents the rate at which mass
with age x departs from the system. Thus 〈hsi , νi〉 gives the departure rate, which explains (36).
A similar explanation holds for the reneging process equation (37), except that in this case the
indicator of {ηi,s[0, x] < Qi,s} appears. This factor corrects for the fact that η corresponds to the
potential, not the actual queue. Fluid mass of customers with waiting time within [x, x+dx), where
ηi[0, x] > Qi, does not appear in the actual queue, and therefore its fictitious reneging must be
deleted.

We next recall Theorem 4.1 and Remark 4.3 of [14] which we state here as Proposition 3.1.
This result establishes a representation of the solution to equations of the form (33) and (34).

Proposition 3.1. (Theorem 4.1 and Remark 4.3 of [14]) Let G be a cumulative distribution
function on R+ with density function g and hazard rate h = g

1−G . Let H = sup{x : G(x) < 1}.
suppose that {ν̄t}t≥0 ∈ DMF [0,H)[0,∞) has the property that for every m ∈ [0,H) and T ∈ [0,∞)
there exists C(m,T ) <∞ such that

∫ ∞

0
〈ϕ(·, s)h(·), ν̄s〉ds ≤ C(m,T )‖ϕ‖∞,

for every ϕ on [0,H) × R+ continuous with support contained in [0,m] × [0, T ], where ‖ϕ‖∞ =
sup[0,H)×R+

|ϕ|. Then given any ν0 ∈ MF [0,H), z that is locally of bounded variation on [0,∞)
with z(0) = 0, one has that {ν̄t}t≥0 satisfies the integral equation

〈ϕ(·, t), ν̄t〉 = 〈ϕ(·, 0), ν0〉+
∫ t

0
〈ϕx(·, s) + ϕs(·, s), ν̄s〉ds−

∫ t

0
〈h(·)ϕ(·, s), ν̄s〉ds +

∫ t

0
ϕ(0, s)dz(s),

for every ϕ ∈ C1,1([0,H) × R+) and t ∈ [0,∞), if and only if {ν̄t}t≥0 satisfies

∫

[0,H)
f(x)ν̄t(dx) =

∫

[0,H)
f(x+ t)

1−G(x+ t)

1−G(x)
ν0(dx) +

∫ t

0
f(t− s)(1−G(t− s))dz(s),

for every bounded, continuous function f on [0,H) and t ≥ 0. Moreover, for any bounded differen-
tiable function f on [0,H) and t ≥ 0,

∫ t

0
f(t−s)(1−G(t−s))dz(s) = f(0)z(t)+

∫ t

0
f ′(t−s)(1−G(t−s))dz(s)−

∫ t

0
f(t−s)g(t−s)z(s)ds.

Applying the above results to (Gsi , h
s
i , νi,0, νi,Ki) and (33) and to (Gri , h

r
i , ηi,0, ηi, Ei) and (34)

and Di in (37) we obtain the following.
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Proposition 3.2. Any solution to the FME satisfies the following for ϕ ∈ C1
c ([0,H

s
i ) × R+) and

ψ ∈ C1
c ([0,H

r
i )× R+),

〈ϕ(·, t), νi,t〉 =
∫

[0,∞)

1−Gsi (x+ t)

1−Gsi (x)
ϕ(x+ t, t)νi,0(dx) +

∫ t

0
(1−Gsi (t− s))ϕ(t− s, t)dKi,s, (38)

〈ψ(·, t), ηi,t〉 =
∫

[0,∞)

1−Gri (x+ t)

1−Gri (x)
ψ(x+ t, t)ηi,0(dx) +

∫ t

0
(1−Gri (t− s))ψ(t− s, t)dEi,s, (39)

Di,t =

∫

[0,∞)

Gsi (x+ t)−Gsi (x)

1−Gsi (x)
νi,0(dx) +

∫ t

0
gsi (t− s)Ki,sds. (40)

Proof. Identical to the proof for the case of one class, from [12], [14]. See Theorem 4.2 and
Corollary 4.4 in [14] for their proofs.

Equation (39) uniquely determines η. Indeed ηi,0 is part of the system initial conditions and E
is the data. Clearly, a similar statement cannot be made about ν and (38), since K is a part of the
solution, rather than the data.

3.2 Uniqueness of solutions

In this subsection we prove uniqueness of solutions to the FME. The proof is based on a rep-
resentation of Q and K as images of (E,D,R) under a certain continuous mapping involving a
two-dimensional Skorohod map. The crux of the argument shows up in the case of two classes
(J = 2) and no reneging, that is presented first. The continuity property is lifted to a general num-
ber of classes, by using essentially the same, two-dimensional argument. Uniqueness is addressed
(for the full model, including reneging) by combining the continuity property with Proposition 3.2.
An additional property (42) regarding the modulus of continuity is proved along the way; it is used
in the next section.

The Skorohod problem (SP) of interest is concerned with constraining paths that reside in R
2

to
G = {x ∈ R

2 : x1 ≥ 0 or x2 ≤ 0},
via the fixed constraint direction d = e1 − e2. Here, x = (x1, x2) ∈ R

2, e1 = (1, 0), e2 = (0, 1).
Denote the interior of the set G by Go.

Definition 3.1. (The SP (G, d)) Let β ∈ DR2(R+). Then (γ, η), γ ∈ DR2(R+), η ∈ DR+
(R+) are

said to solve the SP for β if

• γ = β + (e1 − e2)η,

• γt ∈ G for all t ≥ 0,

• η is nondecreasing, and
∫

[0,∞) 1{γs∈Go}dηs = 0.

As shown in the appendix, this problem is uniquely solvable. The solution map β 7→ γ is denoted
throughout by Γ . The solution map β 7→ (γ, η) is denoted by Γ̂ . The following two properties,
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G

E2

Q1 − I

E1

Q2

−D1 − D2

Figure 1: The dynamics of Q̃ = (Q1−I,Q2). The boundary of the set G is shown (thick line) along
with the constraint direction e1 − e2. When Q1 > 0 (equivalently, Q1 − I > 0), an increase in E1

(E2) contributes to an increase in Q1 (Q2), while an increase in either D1 or D2 decreases Q1.

crucial to our treatment, are shown in Proposition A.1 in the appendix:

There exists a constant c such that

‖γ − γ̄‖t ≤ c‖β − β̄‖t, t ≥ 0, whenever γ = Γ (β) and γ̄ = Γ (β̄), (41)

w(γ, θ, t) ≤ cw(β, θ, t), θ, t > 0, whenever γ = Γ (β). (42)

The model without reneging is obtained by setting hri and Ri to zero (of course, equation (34)
then becomes redundant). Consider the model without reneging, with two classes (J = 2). Given
a solution to the FME, denote

Q̃ = (Q1 − I,Q2). (43)

Note, as an immediate consequence of (28) and (30), that

Q = Q̃+, (44)

where for x = (x1, x2) ∈ R
2 we write x+ for (x+1 , x

+
2 ). The main observation regarding the SP is

the following fact, involving only equations (26)–(32). As a convention, for H = B,X,Q,D or K
and H̄ = B̄, X̄, Q̄, D̄ or K̄, respectively, (possibly corresponding to solutions with different data,
say E and Ē), we write ∆H for H − H̄ (as well as ∆E = E − Ē).

Lemma 3.1. Consider the model without reneging, with J = 2. Given E ∈ D+
R2(R+), let the tuple

(B,X,Q,D,K) satisfy equations (26)–(32). Then (Q̃,K2) solve the SP for

Ẽ := Q̃0 + E − (D1 +D2, 0). (45)

As a consequence, given E and Ē, the corresponding solutions (with common initial conditions)
satisfy

‖∆Q‖t ≤ c(‖∆E‖t + ‖∆D‖t), t > 0. (46)
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Moreover,
w(Q, θ, t) ≤ c(w(E, θ, t) + w(D, θ, t)), t, θ > 0. (47)

Proof. Verifying the first bullet in the definition of the SP amounts to showing

Q1 − I = Q1,0 − I0 + E1 −D1 −D2 +K2, and Q2 = Q2,0 + E2 −K2. (48)

For the first equality, note by (26)–(28) (recalling we have set R = 0), that

Q1,0− I0+E1−D1−D2+K2 = Q1,0− 1+B1,0+B2,0+X1−X1,0+B2−B2,0 = Q1− 1+B1+B2.

The second statement in (48) follows similarly.

That Q̃ resides in G will be shown by arguing that, for all t ≥ 0,

Q̃t ∈ G̃ ⊂ G, t ≥ 0,

where
G̃ = {(x1, x2) ∈ G : x2 ≥ 0}.

Since Q̃2 is nonnegative (see (43) and (29)), it suffices to show that Q̃2(t) = Q2(t) > 0 implies
Q̃1(t) = Q1(t) − It ≥ 0. By (28) and (30), if Q2(t) > 0 then indeed It = 1 − ∑

iBi,t = 0. This
shows Q̃t ∈ G̃ for all t.

Finally, K2 is clearly nonnegative and nondecreasing by (31). Moreover, since Q̃t ∈ G̃, the
condition Q̃t ∈ Go implies Q̃1(t) > 0, and, in turn, Q1(t) > 0. Hence

∫

1{Q̃s∈Go}dK2,s ≤
∫

1{Q1,s>0}dK2,s = 0,

by (32). This completes the proof of the first assertion.

The second and third assertions follow from the first on using (41), (42) and (44).

Remark 3.2. A review of the proof shows that the nonnegativity and the nondecreasing property
of E are not used. Thus the result continues to hold when E, Ē ∈ DR2(R+). This observation will
be used when the model with reneging is considered.

We next argue that for general number of classes J , results similar to Lemma 3.1 continue to
hold. To this end, fix i0 ∈ {2, 3, . . . , J} and write

B(1) =

i0−1
∑

j=1

Bj , B(2) =

J
∑

j=i0

Bj, (49)

with a similar convention for X,Q,D,K and E. The key point that allows reducing the problem
to a two-dimensional one is this. Given any solution (Bi,Xi, Qi,Di,Ki, Ei), i = 1, 2, . . . , J to (26)–
(32), the quantities (B(i),X(i), Q(i),D(i),K(i), E(i)), i = 1, 2 satisfy precisely the same relations. As
a result, Lemma 3.1 is applicable. Since i0 is arbitrary, we conclude that there exists a constant c1,
such that whenever (B,X,Q,D,K) and (B̄, X̄, Q̄, D̄, K̄) are two solutions corresponding to some
E and Ē,

‖Q− Q̄‖t ≤ c1(‖E − Ē‖t + ‖D − D̄‖t), t > 0, (50)
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and
w(Q, θ, t) ≤ c1(w(E, θ, t) + w(D, θ, t)), t, θ > 0. (51)

Finally, for the full model (J ≥ 2, with reneging) we have

Proposition 3.3. Given E and Ē in D+
RJ (R+), let

S = (B,X,Q,D,K,R) and S̄ = (B̄, X̄, Q̄, D̄, K̄, R̄)

be corresponding solutions (with common initial conditions) to equations (26)–(32). Then

‖∆Q‖t ≤ c1(‖∆E‖t + ‖∆D‖t + ‖∆R‖t), t > 0, (52)

and
w(Q, θ, t) ≤ c1(w(E, θ, t) + w(D, θ, t) + w(R, θ, t)), t, θ > 0. (53)

Proof. This follows from (50) and (51) upon replacing E by E − R, and recalling Remark 3.2 by
which the data need not be nondecreasing.

We can now prove

Theorem 3.1. Assume hri are bounded. Let S and S̄ be two solutions to the FME (25)–(37),
corresponding to the same initial conditions and the same data E. Then S = S̄.

Proof. The structure of the FME is such that given any T > 0 and a solution {St}t≥0 corre-
sponding to data {Et}t≥0 (and some initial condition), {ST+t}t≥0 is a solution corresponding to
the data {ET+t − ET }t≥0 and initial condition (XT , νT , ηT ). Therefore, by the usual argument by
contradiction, it suffices to prove that uniqueness holds over [0, T ] for however small T > 0.

By (26)–(28), ∆K = −∆Q−∆R. Thus by Proposition 3.3, with c2 = c1 + 1,

‖∆K‖t ≤ c2(‖∆D‖t + ‖∆R‖t), t ≥ 0. (54)

By (40),

∆Di,t =

∫ t

0
gsi (t− s)∆Ki,sds,

so

‖∆D‖t ≤
∑

i

∫ t

0
gsi (s)ds ‖∆Ki‖t ≤

1

4c2
‖∆K‖t,

provided t > 0 is sufficiently small. Hence

‖∆D‖t ≤
1

4
(‖∆D‖t + ‖∆R‖t).

Next, by (37), if c3 is an upper bound on hri ,

|∆Ri,t| ≤ c3

∫ t

0
|∆Qi,s|ds.
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Thus, making t > 0 even smaller if necessary, we have

‖∆R‖t ≤
1

4
(‖∆D‖t + ‖∆R‖t).

As a result, for some t > 0,

‖∆D‖t + ‖∆R‖t ≤
1

2
(‖∆D‖t + ‖∆R‖t).

Thus ∆D = ∆R = 0 on [0, t]; by (52) and (54) a similar conclusion holds for ∆Q and ∆K. Finally,
by (38), ν = ν̄ on [0, t]. This completes the proof.

We end this subsection with two properties of the FME not directly related to uniqueness (but
used later in Section 4), regarding the two-dimensional versions of the form (49). Recall the map
Γ̂ defined in the paragraph following Definition 3.1.

Lemma 3.2. Let data E ∈ D+
RJ (R+) be given.

i. Let S = (B,X,Q,D,K,R) be the corresponding solution to (26)–(32). Fix i0 ∈ {2, 3, . . . , J}
and consider

(B(i),X(i), Q(i),D(i),K(i), R(i), E(i)), i = 1, 2,

defined as in (49) and in the discussion that follows (with the additional component R(i)

defined similarly). Define
Q̂ = (Q(1) − I,Q(2))

(in analogy with (43)). Define

Ê := Q̂(0) + (E(1), E(2))− (R(1), R(2))− (D(1) +D(2), 0)

(in analogy with (45), but taking into account R). Then (Q̂,K(2)) = Γ̂ [Ê], namely, (Q̂,K(2))
solve the SP for Ê. (The transformation we have just defined from (B,X,Q,D,K,R) to
(Q̂,K(2), Ê) will be denoted by Θ.)

ii. Let now S = (B,X,Q,D,K,R) satisfy (26)–(31) (i.e., not including relation (32)). Assume,
moreover, that for every i0 ∈ {2, 3, . . . , J},

J
∑

i=i0

Ki,t =

∫

[0,t]
1
{
∑i0−1

j=1
Qj,s=0}

d
(

J
∑

i=i0

Ki,s

)

, t ≥ 0. (55)

Then S satisfies (32).

Proof. i. This follows from Lemma 3.1, the discussion following Remark 3.2 and considering E−R
in place of E.

ii. Owing to the nonnegativity of Qj, the assumed condition (55) is equivalent to

∫

[0,t]
1
{
∑i0−1

j=1
Qj,s>0}

d
(

J
∑

i=i0

Ki,s

)

= 0, t ≥ 0.

Thus
∫

[0,t]
1
{
∑i0−1

j=1
Qj,s>0}

dKi0,s = 0, t ≥ 0.

Since this holds for every i0 ∈ {2, 3, . . . , J}, (32) follows.
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3.3 Some properties of the solution

We show that the entrance-into-service can be represented in terms of the entrance and departure
(processes) in a way that reflects the priority discipline.

Theorem 3.2. Assume that for every i, Ei is nondecreasing and absolutely continuous, and denote
λi(t) = d

dtEi(t). Denote δ(t) = d
dt

∑J
i=1Di,t =

∑J
i=1〈hsi , νi,t〉 (see (36)). Then Ki are absolutely

continuous, and the derivatives κi satisfy a.e., for j = 1, 2, . . . , J ,

j
∑

i=1

κi(t) =































δ(t) if
∑j

i=1Qi,t > 0,

δ(t) ∧∑j
i=1 λi(t) if

∑j
i=1Qi,t = 0,

∑J
i=1Bi,t = 1,

∑j
i=1 λi(t) if

∑J
i=1Bi,t < 1.

The second entry in the above formula corresponds to the case where the system is critically
loaded, namely all servers are busy and all queues are empty. The rate at which mass is sent
to service is then the minimum between the rate of arrival and the rate at which servers become
available, as one intuitively might guess. However, as shown in the proof below, it is legitimate to
replace the expression δ(t) ∧∑j

i=1 λi(t) by the simpler one
∑j

i=1 λi(t).

Proof. Since Ei are absolutely continuous, so are Xi by (27), (36) and (37). As a result, so
is (1 − ∑J

i=1Xi)
+. In view of (30) and (26), one has that

∑J
i=1Bi, and, in turn,

∑J
i=1Ki are

absolutely continuous. But since Ki are nondecreasing (31), it follows that each Ki must be
absolutely continuous. Denote by κi the corresponding densities.

If
∑J

i=1Bi,t < 1 for some t, then by the work conservation condition (30),
∑J

i=1Xi,t < 1, and
by the continuity of the latter in t, this holds on a neighborhood of t. In such a neighborhood, it is
seen, by combining (28) and (30), that Qi = 0, and by (37), that Ri do not increase. Hence using
(26), (27) and (28), for s in a neighborhood of t,

Ki,s −Ki,t = Qi,s −Qi,t + Ei,s −Ei,t = Ei,s − Ei,t.

This shows κi(t) = λi(t), for all i.

On the other hand, if
∑j

i=1Qi,t > 0, then the same is true in a neighborhood, by continuity of
Qi (which follows from (26), (27) and (28), using the continuity of Ki, Ei and Ri). By (32), Ki

remains constant on any such interval, for all i ≥ j + 1. Moreover, using (28) and (30),
∑J

i=1Bi is
equal to one. Hence for s in a neighborhood of t,

j
∑

i=1

(Ki,s −Ki,t) =

J
∑

i=1

(Ki,s −Ki,t) =

J
∑

i=1

(Bi,s −Bi,t +Di,s −Di,t)

=

J
∑

i=1

(Di,s −Di,t),

where we used (26) for the second equality. This shows
∑j

i=1 κi(t) = δ(t) if
∑j

i=1Qi,t > 0.
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Finally, since
∑J

i=1Bi and
∑j

i=1Qi are absolutely continuous, it follows that d
dt

∑J
i=1Bi = 0

a.e. on A1 := {t : ∑J
i=1Bi,t = 1} and d

dt

∑j
i=1Qi,t = 0 a.e. on A2 := {t : ∑j

i=1Qi,t = 0} [8, Theorem
A.6.3]. But

d

dt

J
∑

i=1

Bi =
J
∑

i=1

κi − δ,

and

d

dt

j
∑

i=1

Qi =

j
∑

i=1

(λi − κi −
d

dt
Ri).

Note by (37), that a.e. on {t : Qi(t) = 0}, d
dtRi = 0. Thus a.e. on A = A1 ∩ A2, we have

∑j
i=1 κi =

∑j
i=1 λi and

∑J
i=1 κi = δ. Hence a.e. on A,

∑j
i=1 κi =

∑j
i=1 λi = δ ∧∑j

i=1 λi.

3.4 Characterization of the invariant state

We now consider the case where, for all i, Ei(t) = λit for t ≥ 0, where λi > 0 are constants. Recall
that µi ∈ (0,∞) denote the reciprocal expected service times, that is,

1

µi
=

∫ ∞

0
(1−Gsi (x))dx, i = 1, . . . , J.

For each i, let ρi = λi/µi.

A tuple Σ0 = (X0, ν0, η0) is said to be an invariant state if any solution

S = (B,X,Q,D,K,R, ν, η)

to the FME with initial condition Σ0, satisfies (X(t), ν(t), η(t)) = (X0, ν0, η0) for all t ≥ 0. If
Σ0 is an invariant state and S is the corresponding solution then Bi,0 := Bi(0) = 〈1, νi,0〉 and
Qi,0 := Qi(0) = Xi,0 −Bi,0, as dictated by (35) and (28).

Denote

L = inf
{

j :

j
∑

i=1

ρi ≥ 1
}

. (56)

Theorem 3.3. Let the hypotheses of Theorems 3.1 and 3.2 hold, and suppose that GrL is strictly
increasing in [0,Hr

L). Then there exists a unique invariant, given as follows.

i. ηi,0(dx) = λi(1−Gri (x))dx =: ηi,∗(dx).

ii. If
∑J

i=1 ρi ≤ 1 then νi,0(dx) = λi(1−Gsi (x))dx, Xi,0 = 〈1, νi,0〉, Qi,0 = 0 for all i.

iii. If
∑J

i=1 ρi > 1, let ρ̂ =
∑L−1

i=1 ρi < 1 (note that L ≤ J in this case). Then

νi,0(dx) = λi(1−Gsi (x))dx, i = 1, 2, . . . , L− 1, (57)

νL,0(dx) = µL(1− ρ̂)(1 −GsL(x))dx, (58)

νi,0(dx) = 0, i > L. (59)
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Xi,0 = 〈1, νi,0〉 = ρi for i ≤ L− 1. XL,0 = 〈1, νL,0〉+QL,0 = 1− ρ̂+ b, where b > 0 is uniquely
determined (owing to the strict monotonicity of GrL) by

GrL(χL(b)) =

∑L
i=1 ρi − 1

ρL
, (60)

χL(y) = inf{x : ηL,∗[0, x] ≥ y}.
Finally, for i > L, one has Xi,0 = Qi,0 ≥ 0, Ri(t) = λit, Ki(t) = 0, and

Qi,0 = λi

∫ ∞

0
(1−Gri (x))dx. (61)

Proof. First we show that any invariant state satisfies assertions (i)–(iii) above. Suppose that
(X0, ν0, η0) is an invariant state. Since X(t) = X0, ν(t) = ν0, it follows that B(t) = B0 and
Q(t) = Q0, t ≥ 0. In addition, by Proposition 3.2, for f ∈ Cb[0,∞), 〈f, ηi,0〉 <∞,

〈f, ηi,0〉 =
∫

[0,∞)

1−Gri (x+ t)

1−Gri (x)
f(x+ t)ηi,0(dx) + λi

∫ t

0
(1−Gri (t− s))f(t− s)ds, t ≥ 0.

As t→ ∞, the first integral converges to zero by dominated convergence, and the second converges
to λi

∫∞
0 (1−Gri (u))f(u)du. Thus

ηi,0(dx) = λi(1−Gri (x))dx = ηi,∗(dx).

In addition,

∫ ∞

0
hri (x)1{ηi,s [0,x]<Qi,s}ηi,s(dx) =

∫ ∞

0
hri (x)1{ηi,0 [0,x]<Qi,0}ηi,0(dx) =: pi, (62)

so that, by (37),
Ri(t) = pit.

Owing to the strict monotonicity of GrL on [0,Hr
L),

QL,0 > 0 implies pL > 0. (63)

By (26), (27) and (28),

Ki,t = Qi,0 −Qi,t + Ei,t −Ri,t = (λi − pi)t.

It follows, again by Proposition 3.2, that

〈f, νi,0〉 =
∫

[0,∞)

1−Gsi (x+ t)

1−Gsi (x)
f(x+ t)νi,0(dx) + (λi − pi)

∫ t

0
(1−Gsi (t− s))f(t− s)ds,

which converges, as t→ ∞, to (λi − pi)
∫∞
0 f(u)(1−Gsi (u))du. Hence

νi,0(dx) = (λi − pi)(1 −Gsi (x))dx = (λi − pi)νi,∗(dx).
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Let us show that for all j < L, Qj,0 = 0. Arguing by contradiction, assume Q1,0+ · · ·+Qj,0 > 0,
for some j < L. Then by Theorem 3.2,

κ1(t) + · · · + κj(t) = δ(t) =

J
∑

i=1

〈hsi , νi,∗〉 =
J
∑

i=1

(λi − pi),

and κj+1(t) = · · · = κJ(t) = 0. This implies that for i > j, λi = pi, so that νi,0 = 0. But

J
∑

i=1

Bi,0 =
J
∑

i=1

〈1, νi,0〉 =
j

∑

i=1

〈1, νi,0〉 =
j

∑

i=1

λi − pi
µi

≤
j

∑

i=1

λi
µi
< 1.

Due to the work conservation condition (30), this contradicts the assumption
∑j

i=1Qi,0 > 0. This

shows Qj,0 = 0 for all j < L. If
∑L

j=1 ρj = 1 and QL,0 > 0, then by (63) pL > 0, and this, together
with κL+1(t) = · · · = κJ(t) = 0, implies that

J
∑

i=1

Bi,0 =

J
∑

i=1

〈1, νi,0〉 =
L
∑

i=1

λi − pi
µi

<

L
∑

i=1

λi
µi

= 1,

which, again, contradicts the work conservation assumption.

As a result, for j < L, Rj(t) = 0, pj = 0, and thus κj(t) = λj , and if
∑L

j=1 ρj = 1 then also
QL,0 = 0, RL(t) = 0, pL = 0 and κL(t) = λL.

So assume from now on that
∑L

j=1 ρj > 1. Suppose that QL,0 = 0. Then RL(t) = 0 and pL = 0
so that νL,0 = λLνL,∗ and

J
∑

i=1

〈1, νi,0〉 ≥
L
∑

i=1

〈1, νi,0〉 =
L
∑

i=1

λi

∫ ∞

0
(1−Gsi (x))dx =

L
∑

i=1

λi
µi

> 1,

which is impossible. Thus QL,0 > 0 so that
∑J

i=1〈1, νi,0〉 = 1. It follows by Theorem 3.2 that
Ki(t) = 0 for i ≥ L+ 1 and therefore νi,0 = 0 for i ≥ L+ 1 and

1 =

J
∑

i=1

〈1, νi,0〉 =
L
∑

i=1

〈1, νi,0〉 =
L−1
∑

i=1

λi

∫ ∞

0
(1−Gsi (x))dx+ (λL − pL)

∫ ∞

0
(1−GsL(x))dx

=

L−1
∑

i=1

λi
µi

+
λL − pL
µL

.

Hence

pL =
(

L
∑

i=1

λi
µi

− 1
)

µL.

Since by its definition in (62) for all j, pj = λjG
r
j(χj(Qj,0)), it follows that QL,0 = b where b is such

that GrL(χL(b)) =
∑L

i=1
ρi−1

ρL
.

For j ≥ L+ 1, since νj,0 = 0, we have Xj,0 = Qj,0. But pj = λjG
r
j(χj(Qj,0)) so that

χj(Qj,0) = inf{x : Grj(x) = 1} = Hr
j .
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That is

inf
{

y : λj

∫ y

0
(1−Grj(u))du ≥ Qj,0

}

= Hr
j .

Hence Qj,0 = λj
∫ Hr

j

0 (1−Grj(u))du.

We have thus shown that any invariant state satisfies (i)–(iii) above. It can be easily checked
using similar calculations that the tuple (X0, ν0, η0) specified by (i)–(iii) is an invariant state for
the FME.

4 Convergence of scaled processes

The goal of this section is to argue that the processes underlying the N -server model, normalized
in fluid scale, converge to the corresponding quantities of the fluid model, both on a finite time
interval and in stationarity. Given our treatment from Section 3, the main results presented here
follow almost immediately from those of [14], [12], [13].

4.1 The N-server system as a Markov process

For i = 1, . . . , J let
αNi (t) = inf{s > t : ENi (s) > ENi (t)} − t,

be the forward recurrence time at time t of the arrival process of class-i customers. Consider

Y N = (αN ,XN , νN , ηN ) = {αNi (t),XN
i (t), νNi (t), ηNi (t) : i = 1, . . . , J, t ≥ 0}.

This process takes values in Y = R
J
+ ×N

J ×
J
×
i=1

MD[0,H
s
i )×

J
×
i=1

MD[0,H
r
i ), where we recall that,

for 0 ≤ a < b ≤ ∞, MF [a, b) is the space of finite measures on the measurable sets of [a, b) and let
MD be the subset of MF which consists of measures of the form

∑l
1=1 δxi where δx is a point mass

at x (x ∈ [a, b)). If we endow R+ with the Euclidean topology, N with the discrete topology, and
MD[a, b) with the weak topology, then Y, endowed with the product topology, is a Polish space.

We hereafter consider Y N as a stochastic process over t ≥ 0, with initial conditions Y N (0).
As implied by the system description in Section 2, it is assumed that Y N (0) is independent of
{ri,j , vi,j, eNi,j+1 − eNi,j , i = 1, . . . , J, j ≥ 1}, namely the patience and service times of future arrivals,
as well as their inter-arrival times.

Theorem 4.1. Y N is a strong Markov process on the state space Y.

Proof. The proof of this theorem follows along the lines of Appendices A and B of [12] for the
one-class model, relying on the process being a piecewise deterministic Markov process (as defined,
eg., in [10]). The construction of the process from the model primitives in our case is slightly more
involved because of the priority classes, and differs due to the component αN being the forward
rather than backward recurrence time, but is quite straightforward, and we have therefore chosen
to omit it here. Also, as in [12], the deterministic functions that govern the process between its
jumps are continuous. Thus the strong Markov property then follows by Theorem 7.5.1 of [10].
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From here to the end of the next subsection we fix N , consider the Markov process Y N , and
suppress N from our notation. We denote by Py its law given Y (0) = y and, given any probability
measure µ over Y, let Pµ =

∫

Px(·)µ(dx). We denote by Ey and Eµ the corresponding expectations.

For each bounded measurable function ψ on Y and λ > 0, let Uλψ(y) = Ey[
∫∞
0 e−λtψ(Yt)dt]

denote the λ-potential of the process Y applied to the function ψ.

The state space contains points that we call ‘special’. These are points y = (α,X, ν, η) ∈ Y,
having the property αi = αj for some two distinct indices i and j. When starting from such a
point, customers of two classes are scheduled to arrive at the same time. Write Ys for the set of
special points and Ycs = Y \ Ys.
Assumption 4.1. For each i, the class-i inter-arrival distribution has a density.

Lemma 4.1. Let Assumption 4.1 hold. Then for each bounded, continuous function ψ on Y, the
function y 7→ Uλψ(y) is continuous at any y ∈ Ycs .

Proof. For eλ an exponentially distributed random variable with parameter λ which is independent
of Y , we can write

Uλψ(y) =
1

λ
Eyψ(Y (eλ)).

Suppose that ym → y0 ∈ Ycs as m → ∞, that Y m (respectively Y 0) is the process Y that starts at
time 0 at ym (respectively y0).

For each m ∈ Z+, let Y
m be the state descriptor of a multi-class N -server queue with initial

state

Y m(0) = ym =
(

αm, xm,i,

km,i
∑

j=1

δ
um,i
j
,

lm,i
∑

j=1

δ
zm,i
j
, i = 1, . . . , J

)

∈ Y,

for some km,i ∈ {0, . . . , N}, lm,i ∈ N, i = 1, . . . , J . Suppose that all {Y m : m ∈ Z+} are defined
on the same probability space constructed using all the inter-arrival, service and patience times as
primitives. Suppose further that ym → y0. This immediately implies that xm,i = x0,i, km,i = k0,i,
lm,i = l0,i for m sufficiently large and that αm,i → α0,i, um,ij → u0,ij , zm,ij′ → z0,ij′ for 0 ≤ j ≤ k0,i,

0 ≤ j′ ≤ l0,i. We may assume without loss of generality that km,i = k0,i, lm,i = l0,i, xm,i = x0,i,

that the residual service the j-th customer of class i in service has the density
gs,i(um,i

j +t)

1−Gs,i(um,i
j

)
and

the residual patience of the j′-th customer of the class i in the queue is
gr,i(zm,i

j +t)

1−Gr,i(zm,i
j )

. It is further

assumed that

• all inter-arrivals after the first one, αm,i, are identical for each N -server process Y m.

• all service times of customers that arrive after time zero are identical for each N -server process
Y m.

Since zm,ij → z0,ij and um,ij → u0,ij , it follows that the remaining patience of customers in the queue
at time 0 and the remaining service times of customers in service at time 0 converge in distribution
to those associated with z0,ij and u0,ij . Since we are looking for the convergence of Uλψ(ym) to

Uλψ(y0) which is the convergence of Eym(ψ(eλ)) to Ey0(ψ(eλ)) we may as well assume that
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• for each j′ = 1, . . . , l0,i the remaining patience times of the customer associated with δ
zm,i

j′

converges almost surely as m→ ∞ to the remaining patience time associated with the point
mass δ

z0,i
j′

and for j = 1, . . . , k0,i the remaining service time of the customer associated with

δ
um,i
j

converges almost surely to the remaining service time associated with the point mass

δ
u0,ij

(by using the Skorohod representation theorem).

Observe that for y0 ∈ Ys, two customers of different classes arrive at the same time α0,i = α0,i′ . If
the number of busy servers at that point of time is equal to N − 1, say, then it is possible that, for
a subsequence m′ along which αm

′,i < αm
′,i′ for m′ large, customer from class i will go into service

at time αm
′,i, and for another sequence m′′, having αm

′′,i > αm
′′,i′ the opposite will occur. This

may cause {Y m(αm,i)} to have two limit points, which may in turn cause two different limits of
Y m(αm,i+ t). To avoid this possibility we have assumed that y0 ∈ Ycs . Since we have assumed that
all inter-arrival time distributions have densities, the following event has probability zero, namely
that the arrivals of two customers of different classes, at least one of which is not a first arrival after
time 0, coincide. Further, Lemma 4.2 of [13] and the fact that the inter-arrival times and service
times have densities, exclude the possibility that arrivals and departures will coincide. Those proofs
carry over with no change to our situation of multi-class queues and via the same argument one
can prove that arrivals and reneging do not coincide when the patience times have densities.

Let {τmn : n = 1, 2, . . .} be the jump times of Y m and {τ0n : n = 1, 2, . . .} be the jump times of Y 0.
Since ψ is bounded, by dominated convergence it suffices to show that ψ(Y m(eλ)) → ψ(Y 0(eλ)) a.s.
Since eλ is an exponential r.v., independent of the processes Y m, m = 1, 2, . . ., and Y 0, it suffices
to show that

Y m(t) → Y 0(t) for every t, a.s. (64)

Combining now the facts that

• the deterministic functions that govern the motion between the jumps are all continuous
functions on Y,

• for all t, Y 0(t) ∈ Ycs as we have explained above,

• no arrivals of two customers (for the process Y m), beyond possibly those at αm,i, coincide.

One can now use the same argument as the one used in Lemma 4.1 of [13] to prove that for each
i ∈ N, τmn → τ0n, and Y

m(τmn ) → Y 0(τ0n). Finally, if t is not a jump time of Y 0 then there is an n
so that τ0n < t < τ0n+1 and therefore for sufficiently large m, τmn < t < τmn+1. By the continuity of
the deterministic functions that govern the motion between jumps, it follows that Y m(t) → Y 0(t)
a.s. as m→ ∞, for such t, as we set out to prove. This completes the proof.

4.2 Stationary distributions

In this subsection we show that the process Y has a stationary distribution. Since Y is a Markov
process, this can be done by finding invariant distributions to its semigroup. For that we shall use
the Krylov-Bogoliubov theorem (see Theorem 3.1.1 of [7]). The statement of this theorem requires
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the semigroup of the process to be Feller, a condition not met in our case, since we work with
the forward recurrence time αN . We therefore argue that the Krylov-Bogoliubov candidate for the
invariant measure is invariant with respect to the 1-potential operator U1 defined above, proven
in Lemma 4.1 to map bounded continuous functions to bounded functions that are continuous
on Ycs . We then use Lemma 1 (p. 159) of Azema, Kaplan-Duflo, Revuz [4] to conclude that any
measure that is invariant with respect to U1 is invariant with respect to the Markovian semigroup
Ptψ(y) = Ey(ψ(Yt)), and therefore a stationary measure for Y .

For each measurable set B ⊂ Y and t > 0 define

Lµt (B) =
1

t

∫ t

0
Pµ(Y (s) ∈ B)ds, (65)

where µ is any initial distribution for the process Y . Obviously, for each t, Lt is a probability
measure on the measurable sets of Y.

Theorem 4.2. Let Assumption 4.1 hold. Assume, in addition, that for all i = 1, . . . , J , one has
Eµ〈1, ηi,0〉 < ∞. Then the family of measures {Lµt }t>0 is tight. Any subsequential limit of this
family is an invariant measure for U1, and thus for the semigroup of Y .

Proof. The proof of the first assertion follows along lines similar to those of Lemma 4.4–4.8 of [13],
proved for all classes in our case, and we shall not repeat it here. Since in the Krylov-Bogoliubov
Theorem it is required that the semigroup be Feller, we shall show how to adjust its proof to our
setting. Let tn → ∞ as n→ ∞ be a subsequence along which the sequence of probability measures
Lµtn converges weakly to a measure ξ.

Since by Assumption 4.1 the interarrival times have densities, with probability one no two
arrivals occur at the same time, except possibly the first arrivals of some of the classes (i.e., in the
case of starting at a special point of the state space). Hence

lim
t→∞

Pµ(Yt ∈ Ys) = 0,

and therefore any limit of Lµtn does not charge the set of special points, Ys.
Let ψ be a bounded continuous function on Y. Then U1ψ is bounded, and by Lemma 4.1, it is
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continuous on Ycs . Denote by (Pr)r≥0 the semigroup of Y . Then

〈U1ψ, ξ〉 = 〈U1ψ, lim
tn→∞

Lµtn〉

= lim
tn→∞

〈

U1ψ,
1

tn

∫ tn

0
Pµ(Ys ∈ ·)ds

〉

= lim
tn→∞

〈

∫ ∞

0
e−rPrψdr,

1

tn

∫ tn

0
Pµ(Ys ∈ ·)ds

〉

= lim
tn→∞

∫ ∞

0
e−r

〈

Prψ,
1

tn

∫ tn

0
Pµ(Ys ∈ ·)ds

〉

dr

= lim
tn→∞

∫ ∞

0
e−r

〈

ψ,
1

tn

∫ tn+r

r
Pµ(Ys ∈ ·)ds

〉

dr

=

∫ ∞

0
e−r lim

tn→∞

〈

ψ,
1

tn

∫ tn+r

r
Pµ(Ys ∈ ·)ds

〉

dr

=

∫ ∞

0
e−r lim

tn→∞

[ 1

tn

〈

ψ,

∫ tn

0
Pµ(Ys ∈ ·)ds

〉

+
1

tn

〈

ψ,

∫ tn+r

tn

Pµ(Ys ∈ ·)ds
〉

− 1

tn

〈

ψ,

∫ r

0
Pµ(Ys ∈ ·)ds

〉]

dr

=

∫ ∞

0
e−r〈ψ, ξ〉dr = 〈ψ, ξ〉,

where the second equality follows from weak convergence, the fact that U1ψ is bounded, and is
continuous on a set of full ξ-measure, the fourth by Fubini’s theorem, the fifth by the Markov
property and the sixth by dominated convergence.

The following result relating integration against Lµt to integration with respect to invariant
measures will be used in Section 5.

Proposition 4.1. Let Assumption 4.1 hold and assume that Eµ(〈1, ηi,0〉) < ∞, i = 1, . . . , J. Let
ci, i = 1, . . . , J be non negative constants and recall that Q1, . . . , QJ denote the queue lengths of
the various classes. Let ξ be an invariant measure obtained as above, and tn the corresponding
subsequence. Then

〈c1Q1 + · · · + cJQJ , ξ〉 = lim
tn→∞

1

tn

∫ tn

0
Eµ(c1Q1(s) + · · ·+ cJQJ(s))ds. (66)

Consequently, there exists an invariant measure ξ̂, such that

〈c1Q1 + · · ·+ cJQJ , ξ̂〉 = lim sup
T→∞

1

T
Eµ

[

∫ T

0
(c1Q1(s) + · · · + cJQJ(s))ds

]

. (67)

Proof. We first prove (66). Recall that for each i = 1, . . . , J , Qi(t) = Xi(t)−〈1, νi,t〉. Thus Qi(t) is
obtained as a continuous function on the state space of the Markov process (α,X, η, ν). If it were
bounded the result would follow from weak convergence. To obtain the result for the unbounded
function at hand, we shall prove that {Qi : i = 1, . . . , J} are uniformly integrable with respect to
the sequence of measures Lµtn . That is, that supn(ELµ

tn
(Qi1{Qi>K})) → 0 as K → ∞, where ELµ

tn
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is the expected value w.r.t. the measure Lµtn . Note that for each i, Qi(t) ≤ 〈1, ηi,t〉, and so the
uniform integrability of Qi will follow from that of 〈1, ηi〉.

Using Theorem 4.9 of Chapter 3 of [6], and the fact that 〈1, ηi,t〉 are non-negative, it suffices to
show is that ELµ

tn
(〈1, ηi〉) <∞, that 〈〈1, ηi〉, ξ〉 <∞ and that limtn→∞ ELµ

tn
(〈1, ηi〉) = 〈〈1, ηi〉, ξ〉.

We first recall Lemma 4.4 of [13] that proves in the single-class case that supt≥0 E(〈1, ηt〉) <∞.
Their proof carries over to our case with Eµ replacing their E, with no changes. This immediately
implies that ELµ

tn
(〈1, ηi〉) <∞. Next, recall that since ξ is a stationary distribution, and 〈〈1, ηi〉, ξ〉

is the expectation, under the stationary distribution, of the number of customers in a G/G/∞
queueing system with the arrival process ENi and service distribution Gri , it follows from the Little’s
law [15] that it is equal to λNi θ

−1
i , where we recall that (λNi )

−1 are the mean inter-arrival times and
θ−1
i are the mean patience times. It therefore remains to show that limtn→∞ ELµ

tn
(〈1, ηi〉) = λNθ

−1
i .

To lighten the notation we restrict ourselves to one class and suppress the symbol i. From [13,
Proposition 2.2] we have

Eµ〈1, ηt〉 = Eµ

∫ ∞

0

1−Gr(x+ t)

1−Gr(x)
η0(dx) +

∫ t

0
(1−Gr(t− s))de(s), (68)

where e(s) = Eµ(E(s)), and (E(s))s≥0 is the arrival process (of class i customers in the N -server
queue). We shall treat the two terms of (68) separately.

We first note that since Eµ〈1, η0〉 < ∞ and limt→∞
1−Gr(x+t)
1−Gr(x) = 0, it follow by dominated

convergence that

lim
t→∞

Eµ

∫ ∞

0

1−Gr(x+ t)

1−Gr(x)
η0(dx) = 0,

and therefore that

lim
tn→∞

1

tn
Eµ

∫ tn

s=0

∫ ∞

0

1−Gr(x+ s)

1−Gr(x)
η0(dx)ds = 0.

As for or the second term in (68)

1

tn

∫ tn

t=0

∫ t

s=0
(1−Gr(t− s))de(s)dt =

1

tn

∫ tn

u=0
e(tn − u)(1−Gr(u))du

=
1

tn

∫ tn/2

u=0
e(tn − u)(1 −Gr(u))du +

1

tn

∫ tn

u=tn/2
e(tn − u)(1 −Gr(u))du.

We shall treat the two terms on the right hand side of the above equation separately. For the
second term,

1

tn

∫ tn

u=tn/2
e(tn − u)(1−Gr(u))du ≤ e(tn/2)

tn

∫ tn

tn/2
(1−Gr(u))du.

By the Elementary Renewal Theorem t−1
n e(tn/2) → 1

2λN as tn → ∞ whereas
∫ tn
tn/2

(1−Gr(u))du →
0, as tn → ∞, by our assumption that the patience time has a finite expectation. As to the first
term, it is equal to

∫ tn/2

u=0

e(tn − u)

tn − u

tn − u

tn
(1−Gr(u))du.
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One can choose tn large enough so that | e(tn−u)tn−u
− λN | < 1, for all u ∈ [0, tn/2]. Thus applying the

dominated convergence theorem to the above term we have

lim
tn→∞

∫ tn/2

u=0

e(tn − u)

tn − u

tn − u

tn
(1−Gr(u))du = λN

∫ ∞

0
(1−Gr(u)du =

λN
θr
.

Summing all the above we have proved that

lim
tn→∞

ELµ
tn
(〈1, η〉) = λN

θr
,

as required. This being proved for each class, we have shown that 〈1, ηi〉, i = 1, . . . , J are uniformly
integrable under ELµ

tn
and therefore so are Qi, i = 1, . . . , J . It follows that

ELµ
tn

(

J
∑

i=1

ciQi

)

→
〈

J
∑

i=1

ciQi, ξ
〉

as tn → ∞

as claimed.

Next, to show that (67) follows, let {Tn} be a sequence along which the r.h.s. of (67) is achieved.
It follows from Theorem 4.2 that the sequence {LµTn} is tight, and that any subsequential limit is

invariant. Select one such invariant measure and denote it by ξ̂. Denote by {n′} the corresponding
subsequence. Then (67) follows from (66) by substituting (ξ̂, {Tn′}) for (ξ, {tn}).

4.3 Convergence

We now relate a scaled version of theN -server system to the fluid model. The scaling is performed as
follows. For the initial conditions we write X̄N

i,0 = N−1XN
i,0 and B̄

N
i,0 = N−1BN

i,0. For the real-valued

processes we let X̄N
i = N−1XN

i , and define ĒNi , B̄
N
i , D̄

N
i , K̄

N
i , R̄

N
i , Q̄

N
i , Ī

N
i analogously. For the

measure-valued processes, ν̄Ni,0 = N−1νNi,0, ν̄
N
i = N−1νNi , and η̄Ni,0 and η̄Ni are defined analogously.

The first two of the three items in the assumption below summarize the hypotheses considered
in the main results of Section 3. Recall L defined in (56).

Assumption 4.2. One has

• The hazard rates hri are all bounded.

• GrL is strictly increasing in [0,Hr
L).

• For each i, hsi is either bounded or lower semi-continuous on (Lsi ,H
s
i ), for some Lsi < Hs

i .

Next are assumptions regarding convergence of the initial distributions and mean inter-arrival
times (recall that for the N -th system, the class-i mean inter-arrival times are given by (λNi )

−1).
For simplicity we assume that the limiting initial conditions are deterministic.

Assumption 4.3. As N → ∞,

• N−1λNi → λi > 0, for every i.
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• X̄N
i,0, i = 1, . . . , J converges a.s.; its limit is denoted by Xi,0.

• ν̄Ni,0 converges a.s., weakly in MF [0,H
s
i ), for every i; its limit is denoted by νi,0.

• η̄Ni,0 converges a.s., weakly in MF [0,H
r
i ) for every i; its limit is denoted by ηi,0. Moreover,

for each i, ηi,0[0, t) are continuous in t. Finally, one has E[〈1, η̄Ni,0〉] → 〈1, ηi,0〉, for every i.

• Xi,0, νi,0 and ηi,0 are deterministic.

Owing to the structure of the arrival processes (renewal with finite mean inter-arrival), ĒNi
converge a.s., uniformly over finite time intervals, to Ei, where, here and in what follows,

Ei(t) = λit, t ≥ 0, i = 1, . . . , J.

Recall our notation from Section 3 and denote by S = (B,X,Q,D,K,R, ν, η) the solution to the
FME with data E and initial condition (X0, ν0, η0). Note that S is uniquely defined under the
assumptions of this section and in view of the results of the previous section. We can now prove
convergence of the scaled N -server system over a finite time interval. The process

(ĒN , B̄N , X̄N , Q̄N , D̄N , K̄N , R̄N , ν̄N , η̄N )

takes values in Ŷ, where Ŷ = R
7J
+ ×

J
×
i=1

MD[0,H
s
i )×

J
×
i=1

MD[0,H
r
i ). We endow it with the product

topology (R+ with Euclidean, MD with weak topology). It is a Polish space. The process’s sample
paths belong to DŶ(R+), which we endow with the corresponding Skorohod topology.

Theorem 4.3. Under Assumptions 4.1, 4.2 and 4.3,

(ĒN , S̄N ) = (ĒN , B̄N , X̄N , Q̄N , D̄N , K̄N , R̄N , ν̄N , η̄N ) ⇒ (E,S) = (E,B,X,Q,D,K,R, ν, η).

Proof. First, as mentioned above, ĒNi converge to Ei, which have continuous sample paths, by
which {ĒNi } are C-tight. Tightness of each of the sequences D̄N

i and R̄Ni follows precisely as in
the case treated in Lemma 6.3 of [12]. We thus omit the details. Note that each of the jumps of
these processes is of size N−1. As a consequence, these processes are, in fact, C-tight (see [11],
Proposition VI.3.26).

Note that, for each N , ĒN and the components of S̄N satisfy equations (26)–(32), as follows
from the equations listed in Section 2 for the unscaled processes. As a result, Proposition 3.3
applies for the scaled processes. Thus, for any t, θ > 0,

w(Q̄N , θ, t) ≤ c1(w(Ē
N , θ, t) + w(D̄N , θ, t) + w(R̄N , θ, t)). (69)

Using (27) and (28) we also have

‖Q̄N‖ ≤ 1 + ‖X̄N
0 ‖+ ‖ĒN‖+ ‖D̄N‖+ ‖R̄N‖. (70)

The C-tightness of each of the sequences ĒNi , D̄N
i and R̄Ni implies, in view of (69), that, for each

t > 0, ε > 0, ε′ > 0 there exists θ > 0 such that P(w(Q̄N , θ, t) > ε) < ε′ for all large N . Using also
the assumed convergence of X̄N

0 gives tightness of the r.h.s. of (70) (see, eg. Proposition VI.3.26 of
[11]). As a result, C-tightness of each of the sequences Q̄Ni follows (ibid.).
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Next, recalling that the scaled processes satisfy (27), (28) and (26), it follows that each of the
sequences X̄N

i , and in turn, B̄N
i and K̄N

i are C-tight as well.

Further, the measure-valued processes are tight. The argument follows closely that provided in
Lemma 6.6 of [12], and we thus omit the details.

Since the scaled processes satisfy (26)–(31) and (35), any subsequential limit also satisfies these
equations. The prelimit processes satisfy also (32). Let us argue via continuity of the Skoro-
hod map that so do the limit processes. To this end, fix a subsequential limit (B,X,Q,D,K,R)
of (B̄N , X̄N , Q̄N , D̄N , K̄N , R̄N ). Since the prelimit processes satisfy (26)–(32), Lemma 3.2(i) is
applicable. Fix i0 ∈ {2, 3, . . . , J}. Recalling the notation Θ from this lemma, as well as the
solution map Γ̂ from Definition 3.1, we have (Q̂N , K̂N,(2)) = Γ̂ [ÊN ] where (Q̂N , K̂N,(2), ÊN ) =
Θ(B̄N , X̄N , Q̄N , D̄N , K̄N , R̄N ). Recall that Γ is continuous in the uniform topology (41), and
note, by Definition 3.1 and the definition of Γ̂ , that so is Γ̂ . As a result, if (Q̂,K(2), Ê) =
Θ(B,X,Q,D,K,R), one has (Q̂,K(2)) = Γ̂ [Ê]. By (44),

(

i0−1
∑

j=1

Qj,

J
∑

j=i0

Qj

)

= Q̂+. (71)

Now, by the third bullet in Definition 3.1 we have, a.s.,
∫

[0,∞)
1{Q̂(s)∈Go}dK

(2)
s = 0.

By the structure of the set G and the nonnegativity of Q̂2, it follows that Q̂(s) ∈ Go if and only if
Q̂1(s) > 0, which, by (71) holds if and only if

∑i0−1
j=1 Qj(s) > 0. We thus obtain, a.s.,

∫

[0,∞)
1
{
∑i0−1

j=1
Qj(s)>0}

dK(2)
s = 0.

Recalling that i0 is arbitrary and applying Lemma 3.2(ii) we obtain that the limit processes satisfy
(32).

Now, any subsequential limit satisfies also equations (33), (34), (36) and (37). The argument
here follows that of the proof of Theorem 7.1 of [12]. More precisely, the first inequality of (25)
and identity (36) follow as that of (7.2) of [12]. This relation corresponds to (5.49) established in
Proposition 5.17 of [14] that relies on Lemma 5.8(1) and Lemma 5.16 of that paper. Those continue
to hold in the presence of abandonments and priorities. The second inequality of (25) and identity
(37) are proved in Proposition 7.2 and Lemmas 7.3–7.6 that are a part of the proof of Theorem 7.1
of [12] and carry without any change for each class, to our model. The fact that (33) and (34) are
satisfied follows as in the proof of Theorem 7.1 of [12] or of Theorem 5.15 of [14] applied to each
class. We avoid repeating the details of these arguments here.

Having shown that any limit satisfies all of (25)–(37), we can apply Theorem 3.1, by which the
limit must be equal to (E,S) a.s. This shows the claimed convergence and completes the proof.

Finally we present the result regarding convergence of invariant distributions. Let Σ∗
0 =

(X∗
0 , ν

∗
0 , η

∗
0) denote the unique invariant state of the fluid model, identified in Theorem 3.3. Let L̄Nt

be defined by

L̄Nt (B) =
1

t

∫ t

0
P((X̄N

s , ν̄
N
s , η̄

N
s ) ∈ B)ds,
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for any measurable set B ⊂ Ȳ = R
J
+ ×

J
×
i=1

MD[0,H
s
i ) ×

J
×
i=1

MD[0,H
r
i ). We endow R+ with

the Euclidean topology, and MD with the weak topology and Ȳ with the corresponding product
topology. It follows from Theorem 4.2 that these measures are tight in t, for each N .

Theorem 4.4. Let Assumptions 4.1, 4.2 and 4.3 hold. For each N , fix a subsequential limit ξN of
L̄Nt . Then ξN ⇒ δΣ∗

0
as N → ∞.

Proof. Given the result of Theorem 4.3, this follows as in Theorem 3.3 of [13].

5 Application: the cµ/θ rule

The main results of this paper are concerned with the behavior of the system under a particular
policy, namely a policy of priority type. In this section we relate these results to a dynamic control
problem in which a control policy is sought to minimize a given cost. In [1] and [2] such a control
problem was studied for a multi-class many-server system with abandonment, under a LLN scaling,
and a general lower bound on the asymptotic performance was obtained [2] for general service time
distribution and exponential reneging time distribution (see Proposition 5.1 below). In addition,
in the case of exponential service time, this bound was shown to be achieved by a simple fixed
priority policy (the priority ordering is described below). The goal of this section is to show that
this bound is achieved by the same policy for general service time distribution. The proof of this
fact uses the results of this paper to their full strength.

To describe the control problem we consider a queueing system analogous to the one presented
in Section 2, under a wide range of control policies. The fixed priority policy of Section 2 will be
a special case. Thus, as before, N represents the number of (identical) servers, and ENi , BN

i , XN
i ,

QNi , D
N
i , RNi are processes having the same meaning as in Section 2. The probabilistic and scaling

limit assumptions that we shall impose on arrival, service and reneging will be consistent with the
general framework of this paper, except that we will only be concerned with exponential reneging
distributions.

A control policy is usually defined as a rule for scheduling jobs. For our purpose, however,
specifying the set of rules is not necessary, and instead, a control will be associated with a collec-
tion of processes satisfying a minimal set of relations. More precisely, given N , let NJ mutually
independent renewal processes D̃i,k, i = 1, 2, . . . , J , k = 1, 2, . . . , N , be given, where Di,k specifies
the service times of class i in server k. The inter-renewal times for each of these processes are
distributed according to Gsi (with mean µ−1

i ), and Di,k(0) = 0 (i.e., no renewal counted at time 0).
For each i, k, let BN

i,k be a process that takes values in {0, 1}, and indicates the business of server
k with a class-i customer. The number of class-i service completions by server k, up to time t, is
given by

DN
i,k(t) = D̃i,k

(

ãNi,k(0) +

∫ t

0
BN
i,k(s)ds

)

, (72)

where ãNi,k(0) denotes the time that a customer of class i that occupies server k at time 0 (if such a
customer exists) has already spent there by then. The number of class-i customers in service and
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number of class-i departures, respectively, are given by

N
∑

k=1

BN
i,k = BN

i ,

N
∑

k=1

DN
i,k = DN

i . (73)

It is assumed that interruption of service is not possible (i.e., a server that is assigned a new
customer serves it until completion of the service requirement). The total number of customers
reneging up to time t is given by

RNi (t) = R̃i

(

θi

∫ t

0
QNi (s)ds

)

, (74)

where R̃i are mutually independent standard Poisson processes, and θi > 0 are given parameters,
representing the per-customer reneging rate. The arrival processes (ENi ) are as defined in section
2.

For each N , the collections (ENi ), (R̃i) and (D̃i,k) are assumed to be mutually independent.
Given are, in addition, initial conditions (XN

i,0, ν
N
0,i). We refer to these stochastic processes and

initial conditions as the primitives. Note that the initial age-in-queue measures (ηNi,0) are not
relevant here due to the memoryless property of the exponential patience distribution. The initial
age-in-service measure νN0 may be used to determine the parameters ãNi,k(0) in (72) in an obvious

way (that is, each non-zero ãNi,k(0) corresponds to a unit point mass of νN0,i at x = ãNi,k(0)). In
addition, the primitives are related to the assumptions made in the previous section. First, for
each N , ENi are mutually independent renewal processes with inter-arrival distribution having
mean 1/λNi , and satisfying Assumption 4.1 (regarding density) and the first item of Assumption
4.3 (convergence). Next, the first and second items of Assumption 4.2 are satisfied due to the
exponential assumption on the patience. The last item of Assumption 4.2, regarding the service
time distribution, is assumed, as well as all items of Assumption 4.3, regarding initial conditions.
Thus all of Assumptions 4.1–4.3 are in force. Finally, it is assumed that the system is overloaded,
in the sense that

∑

ρi =
∑

λi/µi > 1. (The results below are still valid in the underloaded case
but are trivial, as the fluid cost V in (79) is zero in this case.)

Clearly, we require
XN
i = XN

i (0) + ENi −RNi −DN
i , (75)

QNi = XN
i −BN

i ≥ 0, (76)

and

BN
i ≥ 0,

J
∑

i=1

BN
i ≤ N. (77)

Given the primitives, any collection of processes

π = ((BN
i,k), B

N , (DN
i,k),D

N , RN ,XN , QN ),

satisfying equations (72)–(77) is regarded a policy for the Nth system, and the set of all policies
for the Nth system is denoted by ΠN . The priority policy analyzed in this paper (specialized to
exponential reneging) is a valid policy according to this definition. As in the rest of this paper,
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normalized versions of XN , QN and BN are denoted by X̄N = N−1XN , Q̄N = N−1QN and
B̄N = N−1BN . Fix c = (c1, . . . , cJ) ∈ (0,∞)J . Given N and policy π ∈ ΠN , consider the long-run
average, expected cost

C̄N(π) = lim sup
T→∞

1

T
E
π
[

∫ T

0

∑

i

ciQ̄
N
i (t)dt

]

, (78)

where ciQ̄
N
i represents a linear holding cost for class i. See Remark 5.1 below for the incorporation

of reneging penalties in this cost function. Let also

CN (π) = lim inf
T→∞

1

T
E
π
[

∫ T

0

∑

i

ciQ̄
N
i (t)dt

]

.

The following is a result from [2]. Denote S
J = {b ∈ R

J
+ :

∑

bi ≤ 1}.

Proposition 5.1. (Propositions 2.1 and A.1 of [2]) Under any sequence of policies πN ∈ ΠN ,
N ∈ N,

lim inf
N→∞

CN (πN ) ≥ V := inf
{

c · q : (q, b) ∈ (RJ+,S
J), θiqi + µibi = λi, i = 1, 2, . . . , J

}

. (79)

It is easy to see what pair (q, b) achieves the infimum on the r.h.s. of (79). Namely, qi are
determined from bi via the equations θiqi + µibi = λi, while bi are determined by the relations

j
∑

i=1

bi = 1 ∧
j

∑

i=1

λj
µj
, j = 1, 2, . . . , J,

where the classes are labeled in such a way that, with Li = ciµi/θi,

L1 ≥ L2 ≥ · · · ≥ LJ . (80)

In what follows, we assume that the labeling is as above. What is referred to in [1] and [2] as the
cµ/θ rule (in analogy with the well-known cµ rule) is the non-preemptive priority policy according
to the ordering (80). The main point of this section is to show that prioritizing according to (80)
is asymptotically optimal.

Theorem 5.1. Let π∗ denote the priority policy according to the class ordering (80). Then

lim sup
N→∞

C̄N(π∗) = V .

Proof. This is a consequence of the main results of this paper. First, by Proposition 4.1, specifically
(67), there exists, for each N , an invariant distribution ξ̂ = ξ̂N such that

C̄N,∗
.
= C̄N (π∗) =

1

N

〈

J
∑

i=1

ciQ
N
i , ξ̂

N
〉

=
〈

J
∑

i=1

ciQ̄
N
i , ξ̂

N
〉

.

Next, note that the hypotheses of Theorem 3.3 are satisfied and thus the invariant state of the fluid
model is uniquely given by that result. Denote the invariant state and the corresponding quantities
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from Theorem 3.3 by S0 = (B0,X0, Q0,D0,K0, R0, ν0, η0). Arguing as in the proof of Theorem 6.2
of [13] one can show that any sequence of stationary measures for the processes Ȳ N are tight. Our
convergence results of the previous section (particularly, Theorem 4.4) show that any subsequence
of stationary distributions of the scaled N -server system converge to the unique stationary state
of the fluid equations. Hence 〈∑J

i=1 ciQ̄
N
i , ξ̂

N 〉 converges in distribution to
∑J

i=1 ciQi,0. To deduce
that

lim
N→∞

C̄N,∗ = lim
N→∞

〈

J
∑

i=1

ciQ̄
N
i , ξ̂

N
〉

=
J
∑

i=1

ciQi,0,

it suffices to show that Q̄Ni are uniformly integrable with respect to the stationary measures ξ̂N .
Again, to show that, it is enough to show that 〈1, η̄Ni 〉 are uniformly integrable with respect to ξ̂N .
As in Section 3, one needs to show that supN 〈〈1, η̄Ni 〉, ξ̂N 〉 <∞, 〈1, ηi,0〉 <∞, where ηi,0 is the i-th

component of η0 of the unique invariant state of the fluid, and that limN→∞〈〈1, η̄Ni 〉, ξ̂N 〉 = 〈1, ηi,0〉.
But as we have shown in Section 4, by Little’s formula, 〈〈1, η̄Ni 〉, ξ̂N 〉 = λNi

N
1
θi

which converges as

N → ∞ to λ̄i
1
θi

= λ̄i
∫∞
0 (1 − Gri (u))du = 〈1, ηi,0〉. We have thus shown that C̄N,∗ → c · Q0 as

N → ∞.

It thus remains to show that V = c ·Q0. In view of the discussion following Proposition 5.1, it
suffices to show that the pair (Q0, B0) satisfies the equations

λi = θiQi,0 + µiBi,0, i = 1, 2, . . . , J, (81)

j
∑

i=1

Bj,0 = 1 ∧
j

∑

i=1

ρj, j = 1, 2, . . . , J. (82)

To this end note that, for i < L, by (57),

Bi,0 = λi

∫ ∞

0
(1−Gsi (x))dx =

λi
µi

= ρi,

whereas Qi,0 = Xi,0 − Bi,0 = 0. Equation (81) thus holds in this case. Since Bi,0 = Xi,0 = ρi, so
does (82). For i > L, by (59), Bi,0 = 0, while by (61), Qi,0 = λi

θi
, which again shows that (81)

and (82) are valid. Finally, consider i = L. By (58), BL,0 = 1 − ρ̂. Thus (82) holds. Moreover,
QL,0 = b, with χL(b) = x, ηL,∗[0, x] = λL

∫ x
0 e

−θLada = b. Along with equation (60) this gives

QL,0 =
λL
θL

ρ̂+ ρL − 1

ρL
.

As a result, (81) holds for i = L as well. This shows (81) and (82), and hence C̄N,∗ → c·Q0 = V .

Remark 5.1. In addition to the holding cost treated above, it is reasonable to penalize abandonment
of waiting customers. That is, replace the expected value in (78) with the augmented cost

E
π
[

∑

i

cai R̄
N
i (T ) +

∑

i

∫ T

0
cbiQ̄

N
i (t)dt

]

,

where R̄N = N−1RN is the normalized cumulative reneging process. Recalling (74), it may be
verified that the equality

E
π[R̄Ni (T )] = Eπ

[

θi

∫ T

0
Q̄Ni (t)dt

]
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holds for all T ≥ 0, provided that the policy π is non-anticipative, that is, QN (t) is measurable on
the history

{RN (s), EN (s),DN (s), s ≤ t; QN (s), s < t} .
(The non-anticipative property is needed to ensure that the integral τt = θi

∫ t
0 Q

N
i (s)ds is indepen-

dent of the future increments R̃i(τt+s)−R̃i(τt) of the Poisson process R̃i(t).) See, e.g., Lemma 1 in
[3] for a proof of the above equality via a martingale argument. Given this equality, the augmented
cost is equivalent to the one in (78), with ci = θic

a
i + cbi .

A Appendix

Here we analyze the SP (G, d) (see Definition 3.1). Uniqueness of solutions to the SP (and Lipschitz
continuity of the solution map) in convex polyhedral domains are well-understood, but on a non-
convex polyhedron sufficient conditions are perhaps less standard. However, the particular setting
under consideration is simple. Indeed, owing to the direction of constraint being fixed, questions of
uniqueness, explicit representation, and Lipschitz property can be addressed via a one-dimensional
SP on a time-varying domain.

Proposition A.1. The SP (G, d) is uniquely solvable for any β ∈ DR2(R+). Moreover, the Lips-
chitz property (41) and the statement (42) regarding the modulus of continuity hold.

Proof. The proof is based on a result from [5] regarding a one-dimensional SP with moving bound-
ary. Let ℓ ∈ DR(R+) be fixed. Let a path β̂ ∈ DR(R+) be given. A pair (γ̂, η̂), γ̂ ∈ DR(R+),
η̂ ∈ DR+

(R+), is said to solve the SP on [ℓ(·),∞) for β̂ if

• γ̂ = β̂ + η̂,

• γ̂(t) ≥ ℓ(t) for all t ≥ 0,

• η̂ is nondecreasing, and
∫

[0,∞) 1{γ̂(s)>ℓ(s)}dη̂(s) = 0.

It follows from Theorem 2.6 and Remark 2.7 of [5] that for any path β̂ there exists a unique pair
(γ̂, η̂) that solves the SP on [ℓ(·),∞) for β̂, and

γ̂(t) = β̂(t) + sup
s∈[0,t]

[ℓ(s)− β̂(s)]+, t ≥ 0.

Turning to the SP (G, d), let β be given, and consider a solution (γ, η). Denote ẽ1 = d/
√
2 =

(e1 − e2)/
√
2 and ẽ2 = (e1 + e2)/

√
2. Let (β1, β2) and (γ1, γ2) represent β and γ in the coordinate

system (ẽ1, ẽ2). By Definition 3.1, we have γ2 = β2. Moreover, letting

ℓ(t) = −|β2(t)|, t ≥ 0,

it is straightforward to check that (γ1,
√
2 η) solves the SP on [ℓ(·),∞) for β1. Hence, by the result

cited above, there exists a unique solution (γ, η) for the SP (G, d) for β, and γ is given by

γ1(t) = β1(t) + sup
s∈[0,t]

[−|β2(s)| − β1(s)]
+, t ≥ 0,
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γ2 = β2.

Both properties (41) and (42) follow from this explicit representation. This completes the proof of
the proposition.
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