
Available online at www.sciencedirect.com

Systems & Control Letters 51 (2004) 269–275
www.elsevier.com/locate/sysconle

A Brownian control problem for a simple queueing system
in the Hal*n–Whitt regime
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Abstract

We consider a formal di4usion limit for a control problem of a multi-type multi-server queueing system, in the regime
proposed by Hal*n and Whitt. This takes the form of a control problem where the dynamics are driven by a Brownian
motion. In one dimension, a pathwise minimum is obtained and is characterized as the solution to a stochastic di4erential
equation. The pathwise solution to a special multi-dimensional problem (corresponding to a multi-type system) follows.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Brownian control problems (BCPs) were proposed
by Harrison [8] as formal di4usion limits for queue-
ing network control problems, to provide a basis for
identifying and analyzing “good” or nearly optimal
control policies. Since then, several authors have stud-
ied methods for providing optimal solutions to the
BCPs, as well as suboptimal policies for the queueing
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networks that asymptotically achieve these optima
(see [13] and references therein). The formal limit
is obtained under the so called heavy tra<c scaling
(which we refer to here as the classical heavy tra<c
scaling), in which time is sped up by a factor of N ,
and queue lengths are normalized by a factor of

√
N .

In the classical heavy tra<c regime, a multi-server
model with a *xed number of servers gives rise to a
di4usion limit identical to that obtained for a single
server with accelerated service. In systems where the
number of servers is large (e.g., in models for call
centers [5]), it is reasonable to consider an alterna-
tive heavy tra<c asymptotic regime, namely the one
that was proposed by Hal*n and Whitt [6]. Under
this regime, the number of servers is scaled up by a
factor of N , the number of customers in queue and
the number of idle servers are scaled down by a fac-
tor of

√
N , and time is not scaled (for recent results

on these di4usion limits under *xed policies, see
[10–12]). Typically, the di4usion limits obtained
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Fig. 1. A queueing model.

under the classical heavy tra<c scaling give rise to
reKected di4usions, while the scaling of Hal*n and
Whitt gives rise to di4usions with nonlinear (but
piecewise linear) drift. In the current work, we con-
sider a BCP obtained as a formal limit under the
scaling of Hal*n and Whitt. Rather than formulating
a general framework, we consider in this short paper
only the most simple example of a queueing network
service control problem, as depicted in Fig. 1. A
related work is Ref. [9], where the Hamilton–Jacobi–
Bellman equation for the Brownian control problem
under study is proved to have a unique solution. An-
other control problem in the Hal*n–Whitt regime is
studied in Ref. [1], although the objective function
there is di4erent.
Before analyzing the control problem referred to

above, we formulate a BCP in one dimension, for
which we show that a pathwise solution exists. This
solution is otherwise characterized as the solution to a
stochastic di4erential equation. We point out the anal-
ogy with the classical BCP [7], where the pathwise
minimum agrees with the solution to the Skorohod
equation.
In many cases, it has been shown that BCPs (in

the classical setting) that correspond to networks with
several customer classes or service stations, and are
therefore multi-dimensional, have a reduction to a
one-dimensional problem, and as a result, a cost such
as the weighted average queue length possesses a path-
wise minimum. The BCPs discussed in the current
paper turn out to be more complicated in that path-
wise minimal solutions do not exist even in very sim-
ple two-dimensional problems. Consider a network

consisting of two classes of customers 1 and 2, served
by a pool of statistically identical servers, where class i
customers are served at rate �i and the number of class
i customers in the system at time t isQi(t); i=1; 2. The
quantity that corresponds in the BCP to the weighted
average queue length Qc(t) =

∑
i ciQi(t) does not in

general have a pathwise minimum, and in particular,
minimizing di4erent (monotone) functionals of Qc(t)
may give rise to di4erent optimizing policies. How-
ever, in the special case where �1 = �2 (but c1 �= c2),
we show that the quantity corresponding to Qc(t) in
the BCP does have a pathwise minimum. This is done
by showing that the dimensionality of the problem
can be reduced, and by using the one-dimensional so-
lution. Our argument applies to an arbitrary number
of classes, but we consider only two classes, to keep
the notation simple. In the model that we consider,
we also allow for customer abandonments from the
queues. Heuristically, the solution to the BCP suggests
priority to the class i for which ci is greater. How-
ever, as is known in the classical scaling (e.g., [3]), an
actual asymptotically optimal policy for the queueing
network may have to be more involved than what is
reKected by solutions to the limit problem.
Although the BCPs in the context considered here

may fail to have the especially convenient form of
solution that the classical ones have, they still provide
an obvious simpli*cation of the underlying queueing
network control problems, and may help identifying
asymptotically optimal policies for particular costs.
We pursue this direction in the paper [2].
In Section 2 we formally derive a BCP for a

two-dimensional network. In Section 3 we con-
sider pathwise minimum results for a corresponding
one-dimensional problem. Finally, in Section 4 we
identify a two-dimensional BCP that has a pathwise
minimum, by showing that it can be reduced to a
one-dimensional problem.

2. Formal derivation of a Brownian control
problem

The con*guration of the queueing system under
study is depicted in Fig. 1. The arrival rate to queue
i is �i; i = 1; 2. Abandonments from queue i occur
at rate 	i per customer per unit of time. There are N
statistically identical servers, and service to class i is
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performed at rate �i. A controller dynamically sched-
ules the services.
Let Qi0; Qi1 denote the number of class-i customers

waiting in the queue, and, respectively, being served.
The total number of customers of class i in the system
is then Qi = Qi0 + Qi1. To ease the exposition, we
consider a Markovian network (Poisson arrivals and
exponential services), although networks with more
general arrival processes give rise to the same BCP.
The state of the system will be given by the collection
of the four variables Qij; i=1; 2; j=0; 1. Note that if
we assumed the policy is a non-idling one, we would
have a three-dimensional problem, e.g. with variables
Q10 + Q11, Q20 and Q21, since then Q10 = ((Q10 +
Q11) + Q21 − N )+. However, at least in the prelimit
problem, it makes sense to allow for idling policies.
Let Ai denote the arrival process of class i customers,
and Si the potential number of service completions
in class i up to time t by a single server, namely, a
Poisson process of rate �i. Similarly, Ri(t) denotes a
process used to count abandonments and is a Poisson
process of rate 	i. The processes Ai; Si, and Ri; i=1; 2
are independent.
Following Bell and Williams [3], the control policy

will be associated with a process T = (T1; T2), where
Ti(t) denotes the accumulated time devoted to class
i up to time t, summed over all servers. Note that
Ti(t) is also the integral up to time t of the number
of servers serving class i customers. The composition
Si(Ti(t)); i = 1; 2 which gives the number of class-i
customers served by one server up to time Ti(t), is
equal in law to the number of class-i customers that are
actually served up to time t. In the same spirit, if Ui(t)
denotes the waiting time before service, accumulated
up to time t, summed over all class i customers, then
it is equal to the integral up to time t of the queue
length Qi0, and Ri(Ui(t)) then gives the number of
abandonments from queue i until time t.
The constraints that the processes above must sat-

isfy are as follows. For i = 1; 2 and j = 0; 1 and
t¿ 0; Qij(t)¿ 0. Moreover, Q11(t) + Q21(t)6N ,
t¿ 0. Finally, the two components of T are nonde-
creasing processes.
We introduce two more quantities. Although they

do not carry additional information, it will be conve-
nient to use them to express the constraints. The total
number of class i customers in the system at time t will
be denoted by Qi(t)=

∑
j Qij(t). I(t) denotes the idle

time until time t, summed over all servers. The time
derivatives of T; U and I satisfy Ṫ i = Qi1, U̇ i = Qi0
and İ = N −∑

i Qi1.
The equations satis*ed by the above quantities are

Qi(t) = Qi(0) + Ai(t)− Si(Ti(t))− Ri(Ui(t));

Ui(t) =
∫ t

0
Qi(s) ds− Ti(t);

I(t) = Nt − T1(t)− T2(t):

(1)

The constraints discussed before are now fully de-
scribed by

Ti; Ui; I are nondecreasing: (2)

Note, in particular, that Qi¿ 0 follows from (1)
and (2).
We now consider a sequence of systems, where

the number of servers in the N th system is N . The
systems’s parameters also depend on N , and satisfy
the following conditions: �Ni =N → �i, 	Ni → 	i and
�Ni → �i. In fact, for simplicity we shall consider
only the case where �Ni = N�i; 	

N
i = 	i and �

N
i = �i.

Due to this simpli*cation, the heavy tra<c assump-
tion �N1 =(N�

N
1 )+�

N
2 =(N�

N
2 )→ 1 as N → ∞ takes the

form

�1
�1
+
�2
�2
= 1: (3)

The initial conditions will correspond to the
steady-state Kuid approximation solutions, namely,
QNi (0) = (�i=�i)N . The following equations de*ne
the scaled processes involved:

STNi (t) = N
−1TN (t);

SUN
i (t) = N

−1UN (t);

ÂNi (t) = N
−1=2(ANi (t)− N�it);

ŜNi (t) = N
−1=2(SNi (Nt)− N�it);

R̂Ni (t) = N
−1=2(RNi (Nt)− N	it);

Û N
i (t) = N

−1=2UN
i (t);

Î N (t) = N−1=2IN (t);

Q̂Ni (t) = N
−1=2(QNi (t)− QNi (0)):
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Letting

ST ∗(t) =
(
�1
�1
t;
�2
�2
t
)

and introducing the processes

Ŷ Ni (t) = N
1=2( ST ∗

i (t)− STNi (t)); i = 1; 2;

X̂ Ni (t) = Â
N
i (t)− ŜNi ( STNi (t))− R̂Ni ( SUN

i (t));

we obtain the following equations for the normalized
quantities:

Q̂Ni (t) = X̂
N
i (t) + �iŶ

N
i (t)− 	iÛ N

i (t);

Û N
i (t) =

∫ t

0
Q̂Ni (s) ds+ Ŷ

N
i (t);

Î N (t) = Ŷ N1 (t) + Ŷ
N
2 (t):

Note that by assumption X̂ Ni (0) = 0. Since we would
like the limit control problem to correspond to the fam-
ily of queueing network control problems for which
the Kuid asymptotics of TN is given by ST ∗, we im-
pose the assumption that STN → ST ∗. The processes
ÂNi ; Ŝ

N
i ◦ STNi and, respectively, R̂Ni ◦ SUN

i then formally
converge to Brownian motions with mean zero and
variances �i, �i and, respectively, 0.
We can now state the BCP for the system. The

costs that we consider are somewhat arbitrary in view
of the fact that we will only be interested here with
pathwise solutions. Let X̃ i be independent Brownian
motions with variances 2�i, i = 1; 2. One is required
to minimize either

lim
t→∞ t

−1(c1Q1(t) + c2Q2(t))

or

E
∫ ∞

0
e−�t(c1Q1(t) + c2Q2(t)) dt;

using a control process (Y1; Y2; U1; U2) such that the
processes (Q;U; I) satisfy

Qi(t) = Xi(t) + �iYi(t)− 	iUi(t);

Ui(t) =
∫ t

0
Qi(s) ds+ Yi(t);

I(t) = Y1(t) + Y2(t);

Ui and I are nondecreasing:

(4)

3. On a one-dimensional control problem

In [7] a one dimensional BCP is de*ned which
corresponds to the classical heavy tra<c scaling, and
it is shown that it has a unique pathwise minimum.
The minimum is otherwise given as solution to the
one-dimensional Skorohod equation. We consider
here a control problem that is analogous to it in both
respects: It has a unique pathwise minimizer; and its
solution can be characterized as the unique solution
to a certain di4erential equation. The equation for the
minimum is

dQ(t) = dX (t) + �Q−(t) dt − 	Q+ dt;

Q(0) = X (0);

where we denote x+=max(0; x) and x−=max(0;−x),
and where X is the driving Brownian motion.
The one-dimensional BCP is to minimize (path-

wise) the cost c1Q1 + c2Q2 using controls Y and U
such that

Q(t) = X (t) + �Y (t)− 	U (t);∫ t

0
Q(s) ds= U (t)− Y (t);

Y; U are nondecreasing;

Y (0) = U (0) = 0:

(5)

Proposition 1. Let X ∈C be given and consider re-
lations (5). Assume 	 �= �. Then there is a unique
solution (Q∗; Y ∗; U ∗; I∗) to (5) in C, for which Y ∗

and U ∗ are minimal in the following sense: For any
solution (Q; Y; U; I) to (5) one has

U (t)¿U ∗(t); t¿ 0 (6)

and

Y (t)¿Y ∗(t); t¿ 0: (7)

Moreover, Q∗ is given by the unique solution q to

q(t) = X (t) + �
∫ t

0
q−(s) ds− 	

∫ t

0
q+(s) ds (8)

and U ∗ and Y ∗ are given by

U ∗(t) =
∫ t

0
(Q∗(s))+ ds; (9)
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Y ∗(t) =
∫ t

0
(Q∗(s))− ds: (10)

Remarks. (a) In case that 	 = � there are multiple
solutions.
(b) Minimality and maximality of Q∗ also holds,

depending on the relation between 	 and �. In case
that 	¡�, one has

Q(t)¿Q∗(t); t¿ 0

and in case 	¿�,

Q(t)6Q∗(t); t¿ 0;

holds. This follows from the proof.
(c) Eq. (8) was obtained by Hal*n and Whitt [6] in

the case 	=0 as the weak limit of a queueing system
undergoing the above scaling. Garnett, Mandelbaum
and Reiman generalized the result of [6] to accommo-
date abandonment.
(d) Eqs. (9) and (10) merely express the fact that

under the optimal policy, the cumulative idle time and
the cumulative waiting time are minimal. They also
indicate that under the optimal policy, when Q¿ 0
one has dY=0 and when Q¡ 0 one has dU=0. This,
in fact, together with (5) characterizes the solution
(Q∗; Y ∗; U ∗) (see Proposition 2).
(e) In fact, a statement stronger than (6) holds (for

	¡�) : U−U ∗ is nondecreasing. On the other hand,
as can be shown by some simple examples. Y −Y ∗ is
not necessarily nondecreasing.

Proof. Since x− is Lipschitz in x, it is classical that
(8) has a unique solution. Therefore, the functions
Q∗; Y ∗; U ∗ and I∗ are well de*ned. The relations be-
tween Y ∗; U ∗ and Q∗ expressed in (9) and (10) are
immediate consequences of (5) and (8). We will *rst
treat the case 	¡�. It will be shown that

Q(t)¿Q∗(t); t¿ 0; (11)

and (6) and (7) hold for an arbitrary solution
(Q; Y; U; I) to (5). We claim that

�(t) ≡ U (t)−
∫ t

0
Q+(s) ds is nondecreasing: (12)

Indeed, (5) imposes that both U (t) and Y (t)=U (t)−∫ t
0 Q(s) ds are nondecreasing. Hence for 06 s¡ t

one has

U (t)− U (s)−
∫ t

s
Q+(�) d�

=
∫ t

s
1Q¿0 d�+

∫ t

s
1Q60 d�

=
∫ t

s
1Q¿0 dY +

∫ t

s
1Q60 dU

¿ 0; (13)

where the last line follows by monotonicity of the
integrators and nonnegativity of the integrands. Since
s¡ t are arbitrary, (12) holds. From the second line
in (5), we have that

�= U −
∫ ·

0
Q+ ds= Y −

∫ ·

0
Q− ds:

Now, from the *rst line in (5), we have

Q(t) = X (t) + �
∫ t

0
Q−(s) ds− 	

∫ t

0
Q+(s) ds

+(� − 	)�(t): (14)

The solution to this equation is monotone in � in the
following sense: If �̃−� is nondecreasing with �(0)=
�̃(0) and ifQ[Q̃] denotes the solution corresponding to
� (respectively, �̃) then Q̃¿Q (see [4]). Since �¿ 0
and Q∗ corresponds to �= 0, (11) follows.
Next, sinceQ¿Q∗, we have thatQ+¿ (Q∗)+.We

therefore obtain from (9) that

U¿
∫ ·

0
Q+ ds¿

∫ ·

0
(Q∗)+ ds= U ∗;

and (6) follows. Now (7) follows from the *rst line
in (5), (6) and (11). This completes the proof in the
case 	¡�.
In case that 	¿� one can transform the problem

as follows: Replace Q by −Q and X by −X ; inter-
change Y with U and � with 	. The proposition is
then valid for the transformed problem, and there-
fore asserts about the original problem that (6) and
(7) are valid, and that (11) is valid with an inverted
inequality.

We next show that the solution to the control prob-
lem can be characterized as follows.
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Proposition 2. The solution (Q∗; Y ∗; U ∗) of Propo-
sition 1 uniquely solves (5) and∫ ·

0
1Q¿0 dY = 0;

∫ ·

0
1Q60 dU = 0; (15)

given that 	 �= � and X ∈C.

Proof. It follows from Proposition 1 that (Q∗; Y ∗; U ∗)
solves (5) and (15). Let (Q; Y; U ) satisfy both
(5) and (15). Then it follows from (13) that for
t ¿ s; �(t) − �(s) = − ∫ t

s 1Q=0 dY and also that
�(t) − �(s)¿ 0. Therefore, � = 0 and Q must sat-
isfy Eq. (8). As discussed before, this equation has
a unique solution, hence Q = Q∗. Having 	 �= �; U
and Y are now uniquely determined by the *rst two
lines of (5) as U = (� − 	)−1(Q − X + � ∫ ·

0 Q) and
Y = (� − 	)−1(Q − X + 	 ∫ ·

0 Q).

4. Reduction of the control problem to one
dimension

We show that under special assumptions on the
parameters it is possible to reduce the dimensional-
ity of the problem, and obtain pathwise minimum for
Qc = c1Q1 + c2Q2. We assume

� ≡ �1 = �2¿	 ≡ 	1 = 	2:
Assume without loss that c1¿c2. Consider the pro-
cesses Q̃ =Q1 +Q2; X̃ = X1 + X2 and Ũ =U1 +U2.
Write

Qc(t) = (c1 − c2)Q1(t) + c2Q̃(t):
Pathwise minimality for Qc will be obtained by a con-
trol that achieves simultaneously pathwise minimality
for Q1 and for Q̃. From the statement of the BCP (4) it
follows that the following relations must be satis*ed:

Q̃(t) = X̃ (t) + �I(t)− 	Ũ (t);

Ũ (t) =
∫ t

0
Q̃(s) ds+ I(t);

Ũ ; I are nondecreasing:

(16)

Proposition 1 (see also remark (b)) shows that a mini-
mal pathwise Q̃ exists, under the constraints speci*ed

in (16). It is given as the unique solution to

Q̃(t) = X̃ (t) + �
∫ ·t

0
Q̃−(s) ds− 	

∫ t

0
Q̃+(s) ds;

(17)

while Ũ and I are given by

Ũ (t) =
∫ t

0
(Q̃(s))+ ds; I · =

∫ t

0
(Q̃(s))− ds: (18)

Note that the set of constraints speci*ed in (16)
is a subset of those in (4). Hence, if we can *nd
U1; U2; Y1; Y2 satisfying (4), and at the same time
U1 + U2 = Ũ ; Y1 + Y2 = I , where Ũ are I are as in
(18), then (17) will also serve as a pathwise minimal
Q̃ for (4). The choice that we make is to let U1(t)=0.
With this, U1 and U2 = Ũ and I automatically are
nondecreasing. Hence the constraints of (4) are all
satis*ed, and Q̃ of (17) is minimal for (4). To see that
Q1 is minimal as well, note that by (4), Q1 is given by

Q1(t) = X1(t)− �
∫ t

0
Q1(s) ds+ �(t);

where �(t) = (� − 	)
∫ t
0 U1(s) ds¿ 0 for all t. By

monotonicity of the solution to the equation in the last
display with respect to �; Q1 is minimized by � = 0.
This is achieved by U1=0. As a result, Q1 is minimal,
and since also Q̃ is minimal, so is Qc.
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