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Abstract We consider a class of deterministic and stochastic dynamical systems
with discontinuous drift f and solutions that are constrained to live in a given closed
domain G in R

n according to a constraint vector field D(·) specified on the boundary
∂G of the domain. Specifically, we consider equations of the form

φ = θ + η + u, θ̇ (t) ∈ F(φ(t)), a.e. t

for u in an appropriate class of functions, where η is the “constraining term” in the
Skorokhod problem specified by (G, D) and F is the set-valued upper semiconti-
nuous envelope of f . The case G = R

n (when there is no constraining mechanism)
and u is absolutely continuous corresponds to the well known setting of differential
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inclusions (DI). We provide a general sufficient condition for uniqueness of solutions
and Lipschitz continuity of the solution map, in the form of existence of a Lyapunov
set. Here we assume (i) G is convex and admits the representation G = ∪i Ci , where
{Ci , i ∈ I} is a finite collection of disjoint, open, convex, polyhedral cones in R

n , each
having its vertex at the origin; (ii) f = b + f c is a vector field defined on G such that
b assumes a constant value on each of the given cones and f c is Lipschitz continuous
on G; and (iii) D is an upper semicontinuous, cone-valued vector field that is constant
on each face of ∂G. We also provide existence results under much weaker conditions
(where no Lyapunov set condition is imposed). For stochastic differential equations
(SDE) (possibly, reflected) that have drift coefficient f and a Lipschitz continuous
(possibly degenerate) diffusion coefficient, we establish strong existence and path-
wise uniqueness under appropriate conditions. Our approach yields new existence
and uniqueness results for both DI and SDE even in the case G = R

n . The work has
applications in the study of scaling limits of stochastic networks.

Keywords Discontinous drift · Ordinary differential equations · Differential
inclusions · Stochastic differential equations · Stochastic differential inclusions ·
Reflected diffusions · Skorokhod map · Skorokhod problem

Mathematics Subject Classifications (2000) Primary: 34A60 · 60H10; Secondary:
60J60 · 34F05 · 34A36

1 Introduction, problem description and main results

1.1 General framework

This paper introduces and analyses a framework for dynamical systems with multiple
intersecting surfaces of discontinuity, that includes differential inclusions (DI) and
stochastic differential equations (SDE) with discontinuous drift, and yields new exis-
tence and uniqueness results in both fields. For both types of equations, the solutions
are required to be constrained at all times to a given set G ⊂ R

n , that is the closure of
an open connected set. In the case where G is a strict subset of R

n , our formulation of
SDE corresponds to stochastic differential equations with reflection (SDER) that have
a discontinuous drift. Our treatment also covers the case G = R

n in which there is no
constraint (or reflection). Even in the absence of constraint, uniqueness of solutions
for formulations in which the velocity vector field is discontinuous has been studied
mostly when the vector field has a single, smooth surface of discontinuity [1,8,18],
with the exception of [15]. However, the conditions for uniqueness in [15] are not
given explicitly in terms of the problem data, and are not natural for the study of
SDE (see Sect. 1.2.2 for further discussion of this issue). We aim in this paper at a
setting that goes beyond a single, smooth surface of discontinuity and obtain explicit
sufficient conditions on the problem data for existence and uniqueness of solutions
that are applicable in both the deterministic and stochastic settings.

The general form of the dynamical systems of interest, in the absence of constraints
(i.e. when G = R

n), is
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Deterministic and stochastic differential inclusions

φ = θ + u, θ̇ (t) ∈ F(φ(t)) a.e. t (1.1)

for u in an appropriate class of functions and a suitable set-valued velocity field
F . We refer to this formulation as the discontinuous media problem (DMP). For
the case where G is a proper subset of R

n , a natural framework for constraining
the dynamics to G is through the notion of the Skorokhod problem (SP) [6,9,19,
21,22]. Roughly speaking, given a domain and a constraint vector field D on its
boundary, the SP associates to any given trajectory ψ a version that is restricted to
the domain. Such a version is obtained from ψ by adding a term that is locally of
bounded variation, and acts as a “singular drift” on the boundary, along directions
determined by D. The relationship between the DMP and the SP is, in fact, more
intimate than might first be apparent. Indeed, it turns out that a strategy used for
establishing uniqueness of solutions for the SP can be adapted to the DMP. Moreover,
a formulation that embraces both discontinuity aspects turns out to be natural. In
this formulation, which we refer to as the constrained discontinuous media problem
(CDMP), G is a proper subset of R

n with a constraint vector field D defined on its
boundary, and F is a velocity vector field defined on G, in a fashion analogous to the
DMP. By adopting the perspective that the constraining action of the SP essentially
gives rise to a discontinuity in the drift across the boundary of the domain, one can
view CDMP dynamical systems as featuring two kinds of discontinuities—‘interior’
and ‘boundary’ discontinuities, corresponding to the drift and the constraint directions,
respectively. Some two-dimensional examples of domains, velocity and direction fields
for the DMP, SP and CDMP are depicted in Fig. 1. Rigourous definitions of the DMP
and CDMP are given in Sect. 1.3.

We establish existence of solutions to the CDMP under rather general conditions on
(G, D, F) (see Sect. 1.5 for a summary of the main results). For uniqueness, we restrict
ourselves to the class of so-called “polyhedral CDMPs” for which G is a convex,
polyhedral cone in R

n with vertex at the origin, with a piecewise constant constraint
vector field D defined on its boundary, and a velocity vector field in the interior that
can be represented as the sum of a Lipschitz continuous function (throughout, by the
term ‘Lipschitz’ we mean ‘globally Lipschitz’) and a piecewise constant function that

b1

b3

b4

b2

d1

d2

b1 b2

b3

d1

d2

(a) (b) (c)

Fig. 1 a A discontinuous media problem with velocity vector field described by cones Ci and vectors bi .
b A Skorokhod problem with constraint directions di on the faces of a polyhedral domain. c A constrained
discontinuous media problem that combines a discontinuous velocity field and constraint
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is discontinuous across multiple hyperplanes that pass through the origin. We present
a sufficient condition (Assumption 4) for uniqueness, stated in terms of the existence
of a suitable Lyapunov set. Similar Lyapunov set conditions have been very useful
in the study of uniqueness questions for SPs [9,11]. We find that a joint Lyapunov
set that handles both “interior” and “boundary” discontinuities is a natural way to
treat uniqueness for the CDMP. To illustrate this point, we show in Example 2.12 that
even when there is uniqueness for a given SP and for a given DMP, the CDMP that
results by combining them may admit multiple solutions. Our approach, which yields
uniqueness results for the CDMP, is also useful for establishing pathwise uniqueness
for SDE with discontinuous drift whose solutions are constrained to a domain G
(sometimes referred to as SDER).

A framework that treats both deterministic and stochastic dynamical systems and
allows for both interior and boundary discontinuities has been developed in Cepa [5].
The conditions in [5] however, are quite different and do not cover our results. We
comment on the setting of [5] and its relation to the current paper in Sect. 1.2.2.

In both the DMP and CDMP formulations, one could consider uniqueness for
problems in which the hyperplanes of discontinuity of the vector fields (and the hy-
perplanes defining the boundary of the domain) do not all intersect at a single point.
However, it is expected that relatively standard localisation arguments could be invo-
ked to extend the results of this paper to deal with such settings. Indeed, analogous
extensions have been successfully carried out in the pure SP setting [7,19]. One could,
of course, also consider smooth surfaces, in place of hyperplanes, and more general
piecewise continuous vector fields, but our setting is a natural first step towards these
broader formulations. Finally, we emphasise that there are many problems arising in
applications that have the “polyhedral” structure described above (see Example 2.14).
Indeed, functional strong law of large numbers and functional central limit approxima-
tions of pure jump processes arising in stochastic networks give rise to CDMPs and,
respectively, SDERs of this form. Applications of the results of this paper to these
problems will be considered in future work.

In the case when u is absolutely continuous, our formulation can be viewed as a
constrained differential inclusion. Thus, to set our work in perspective, in Sect. 1.2
below we review some relevant results on constrained differential inclusions. For the
setting and statements of the main results of the paper, the reader may safely skip to
Sect. 1.3. The generalisation to u that are not absolutely continuous, as embodied in the
CDMP, is essential for the study of corresponding SDE and SDER with discontinuous
drift. In Sect. 1.3, we provide a rigorous definition of the CDMP—the special class
of polyhedral CDMPs is described in Sect. 1.4. An outline of the paper and its main
results is provided in Sect. 1.5.

1.2 Some background on constrained differential inclusions

Our analysis of SDE (SDER) is pathwise and based on the DMP (respectively, CDMP).
Since DMPs are closely related to DI, we begin by discussing DI in general, and then
describe our particular setting. Our aim here is not to provide a complete survey of
results on DI, but merely to place our work in context.
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1.2.1 Description of constrained differential inclusions

The classical theory of ordinary differential equations is concerned with dynamical
systems of the type

φ̇(t) = f̃ (t, φ(t)), t ≥ 0 (1.2)

where f̃ (t, x) : R+ × R
n → R

n is a continuous function of t and x . It is well
understood that when f̃ is discontinuous, an appropriate framework for the analysis
of (1.2) is through the theory of differential inclusions [3,15]. In this theory one
considers set-valued functions F̃ and relations of the form

φ̇(t) ∈ F̃(t, φ(t)), a.e. t. (1.3)

In particular, when f̃ is piecewise continuous, F̃(t, x) is constructed from f̃ (t, x) by
a convexification procedure (cf. [3]). A special case of (1.3) is

φ̇(t) ∈ F(φ(t))+ v(t), (1.4)

where for each x , F(x) is a nonempty, bounded, closed, convex set and the set-valued
function F is upper semicontinuous (u.s.c.) and v : R+ → R

n is a given function.
We are in fact interested in the more general integral equation (1.1) with u being an
arbitrary RCLL (right continuous with finite left limits) trajectory. Note that (1.1)
reduces to (1.4) when u is absolutely continuous and v = u̇. This integral formulation
is natural for the study of SDEs of the form

d Xt = αt dt + σ(Xt ) dWt , αt ∈ F(Xt ), a.e. t,

where W is a standard Brownian motion and σ is a diffusion coefficient. Such SDE
model autonomous DI of the form φ̇(t) ∈ F(φ(t)), perturbed by noise, and are some-
times referred to as multivalued SDE (see, for example [5]) or as stochastic differential
inclusions. The general form of SDE studied in this paper can be found in Sect. 3.2.

As we already mentioned, it is also of interest to consider a formulation in which F is
defined on the closure G of a domain that is a proper subset of R

n , and the SP is invoked
to define solutions that are constrained to G. Here we only describe the constrained
analogue of (1.4); the more general setting corresponding to the constrained form of
(1.1) is presented in Sect. 1.3. For a given set A, we will denote its interior by Ao. Let
D be a set-valued, u.s.c. function defined on G such that for each x ∈ G, D(x) is a
convex cone and for x ∈ Go, D(x) = {0}. Define for x ∈ G,

F(x)+ D(x) = {
β ∈ R

n : β = β1 + β2, β1 ∈ F(x), β2 ∈ D(x)
}
.

Constrained DI studied in this work (as a special case of more general dynamical
systems) take the form

φ̇(t) ∈ F(φ(t))+ D(φ(t))+ v(t), φ(t) ∈ G. (1.5)
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1.2.2 Summary of some prior results

The results of this paper provide, in particular, conditions for existence and uniqueness
of solutions to constrained DI described in the last section. To the best of our knowledge
[5] is the only paper prior to this work that treats general existence and uniqueness
results for (1.5) in the setting where F is a nontrivial set-valued function and G � R

n .
Specifically, the paper [5] establishes existence and uniqueness of solutions under the
assumption that the velocity vector field F is the negative of a maximal monotone
operator (see also Theorem 3.2.1 of [3]). This includes, in particular, the case when
−F is the subdifferential of a proper, lower semicontinuous, convex function V , and
also allows for the case when G is a strict convex subset of R

n with normal directions
of constraint on the boundary.

Other prior results in this domain fall mainly into two categories: the case when
there is either no boundary discontinuity (so that G = R

n), leading to a DI, or there
is no interior discontinuity (so that F is single-valued and continuous), which we
refer to as constrained ODE. We now provide a brief description of these results—
as elaborated below, even in the case when there is no boundary discontinuity, but
the interior velocity field has multiple intersecting surfaces of discontinuity, currently
existing conditions for uniqueness are not completely satisfactory.

A. DI on R
n (where D = {0}).

1. Existence. In this case, existence of solutions (on a suitable time interval) to
the DI (1.4) follows from standard theorems (see, for example, Theorem 7.1 in
[15] for the case where each F is locally bounded and u.s.c., and v is u.s.c.; the
generalisation to the case when v is locally integrable is straightforward).

2. Uniqueness. Other than the results of [3,5] discussed above, this seems to have
been studied in depth only in the following cases.

(i) When F is obtained from the convexification of a function f whose disconti-
nuities only occur across isolated surfaces, necessary and sufficient conditions
for uniqueness can be found in [15, Sect. 2.10]; also see [1,18] for a related
analysis. In particular, consider the following case concerning a single hyper-
plane of discontinuity: let f (y) take the value b1 for 〈y, e1〉 < 0 and b2 for
〈y, e1〉 > 0, where b1, b2 ∈ R

n are constant vectors. Then the condition

〈b1 − b2, e1〉 > 0 (1.6)

is sufficient for uniqueness of solutions to the DI (1.4) with initial condition
φ(0) = x (see, e.g. [15, Sect. 2.10, Theorem 2]). We comment that this setting
is not covered by the framework in [3,5] since the maximal monotonicity of
−F requires that b1 − b2 be a non-negative multiple of e1.

(ii) In the setting where several surfaces of discontinuities of f have a common
point of intersection, Filippov established uniqueness of solutions to a large
class of DI of the form (1.3) under the requirement that the solution not pass
from one surface of discontinuity to another an infinite number of times in
a finite time interval (see [15, Theorem 10.4] for a precise statement). This
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condition is not specified fully in terms of the problem data and is thus hard to
verify. Moreover, it is far from being necessary [15, p. 116] and is not a natural
condition for extensions to the setting of SDE. In particular, the more general
case of a locally integrable function v is not covered by Filippov’s conditions.

B. Constrained ODE on G � R
n

Consider now the case where F(x) = { f (x)} for every x ∈ G. When f is the constant
function, this coincides with the SP, which has been studied extensively in past works
[2,4,6,9,11,16,19,22]. Thus, below we only summarise results when f has non-trivial
state-dependence.

1. Existence. It was shown in [9] that solutions to (1.5) exist in the case where
f is Lipschitz and there exists a Lipschitz continuous projection operator (see
Assumption 1) associated with the SP (G, D). Other papers that treat existence
include [2,19,22].

2. Uniqueness. For general Lipschitz continuous f , uniqueness has been treated in
[2,9,19,22], with general oblique directions of constraint on the boundary. In
particular, a Picard iteration argument was used to establish pathwise uniqueness
of a class of SDERs in [2], and applied to establish uniqueness of constrained
ODEs in [9].

1.3 The constrained discontinuous media problem

Let G be the closure of an open, connected set in R
n and D be a set-valued vector

field defined on the boundary ∂G such that for every x ∈ ∂G, D(x) is a closed,
convex cone. Extend the definition of D to G by setting D(x) = {0} for all x ∈ Go.
Let F be a set-valued vector field that maps points in G to subsets of R

n . We will
refer to D and F as the constraint vector field and, respectively, the interior velocity
or drift vector field. Roughly speaking, we seek solutions to dynamical systems that
are governed by the velocity vector field F in the interior of G and constrained to
lie in G according to the constraint vector field D and driven by a given path u. We
refer to them as solutions to the constrained discontinuous media problem (CDMP)
associated with G, D, F and u. A precise formulation is as follows. Let D[0, T ] be
the space of R

n-valued functions on [0, T ], that are RCLL, with the usual Skorokhod
J1 topology. The total variation of φ ∈ D[0, T ] over [0, t] will be denoted by |φ|(t).
We denote the space of R

n-valued, integrable functions on [0, T ] by L1[0, T ], the
space of R

n-valued, bounded and measurable functions on [0, T ] by BM[0, T ] and
the space of R

n-valued absolutely continuous functions on [0, T ] by AC[0, T ].
Definition 1.1 (Constrained discontinuous media problem) Let u ∈ D[0, T ]. We say
that φ ∈ D[0, T ] is a solution of the CDMP associated with G, D, F and u, and write
φ ∈ M(G, D, F, u), if the following properties hold:

(i) φ(t) ∈ G for all t ∈ [0, T ];
(ii) there exists η ∈ D[0, T ] and θ ∈ AC[0, T ] such that

φ(t) = u(t)+ θ(t)+ η(t), t ∈ [0, T ];
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(iii) there exists α ∈ L1[0, T ] such that α(t) ∈ F(φ(t)), a.e. t ∈ [0, T ] and for
t ∈ [0, T ],

θ(t) =
t∫

0

α(s) ds;

(iv) |η|(T ) < ∞ and

|η|(t) =
∫

[0,t]
11{φ(s)∈∂G} d|η|(s), t ∈ [0, T ];

(v) there exists γ ∈ BM[0, T ] such that γ (s) ∈ D(φ(s)) for d|η|-a.e. s ∈ [0, T ]
and for t ∈ [0, T ],

η(t) =
∫

[0,t]
γ (s) d|η|(s).

In the special case where F(x) = {0} for all x ∈ G, we refer to the CDMP associated
with G, D, F and u as the SP associated with G, D and u. Similarly, in the case where
G = R

n and D = {0}, we refer to the CDMP associated with G, D, F and u as the
DMP associated with F and u.

1.4 Polyhedral CDMPs

For uniqueness we focus on a special class of CDMPs. To this end we introduce the
following notation. A subset of R

n is said to be a closed (open) half space if it takes
the form {x ∈ R

n : 〈x, ν〉 ≥ 0} (respectively, {x ∈ R
n : 〈x, ν〉 > 0}), for some ν 	= 0.

A set that is either equal to R
n or is a subset of R

n given by a finite intersection of
half spaces is said to be a (convex) polyhedral cone. Given a set A ⊂ R

n we denote
its closure by A and its closed, convex hull by co(A).

Let f be a piecewise continuous vector field defined on a closed, convex, polyhedral
cone G ⊆ R

n . Moreover, suppose that G is the closure of the set O of continuity points
of f , and that O is the union of a finite number of disjoint, open, convex, polyhedral
cones Ci , i = 1, . . . , I,with f = b+ f c on O, where f c is Lipschitz continuous on G
and b is equal to the vector bi ∈ R

n on the cone Ci , for each i . Define I
.= {1, . . . , I },

let

C .= {Ci , i ∈ I} (1.7)

denote the partition of O into convex polyhedral cones and let the corresponding
collection of drift vectors be given by

B .= {bi , i ∈ I}. (1.8)
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Note that by definition b : O → R
n satisfies

b(x) = bi for x ∈ Ci , i ∈ I. (1.9)

The interior velocity field F will be obtained as a convexification of f , given as the
following set-valued function from G to convex, compact subsets of R

n : for x ∈ G,

F(x)
.=

⎧
⎨

⎩

∑

i∈I (x)

αi bi + f c(x) :
∑

i∈I (x)

αi = 1, αi ∈ [0, 1], i ∈ I

⎫
⎬

⎭
, (1.10)

where I (x)
.= {i ∈ I : x ∈ Ci }. It is easy to verify that the graph of F is closed;

indeed, if xn → x ∈ G and un ∈ F(xn) converges to u as n → ∞, then u ∈ F(x)
since F(·) is u.s.c.

By assumption, G is given as the intersection of K closed half spaces, G1, . . . ,G K ,
where Gk

.= {x ∈ R
n : 〈x, nk〉 ≥ 0}, k = 1, . . . , K . Let K

.= {1, . . . , K }. Associated
with each half space Gk , k ∈ K, we are given a vector dk ∈ R

n such that

〈dk, nk〉 > 0, for all k ∈ K. (1.11)

Define

D(x)
.=

⎧
⎨

⎩

∑

k∈K (x)

γkdk : γk ≥ 0, k ∈ K (x)

⎫
⎬

⎭
, (1.12)

where K (x)
.= {k ∈ K : 〈x, nk〉 = 0}. The CDMP associated with the data (G, D, F),

constructed from dk, nk, k = 1, . . . , K and C,B and f c as above, will be referred to
as a polyhedral CDMP.

Remark 1.2 A standard measurable selection argument [14, Corollary 10.3, Appen-
dix] shows that with φ and α as in the definition of CDMP, and with (G, D, F) as
above, there exist λi ∈ BM([0, T ] : [0, 1]), i ∈ I, such that for a.e. t ∈ [0, T ],∑

i∈I
λi (t) = 1, λi (t)11{φ(t) 	∈Ci } = 0 and α(t) = ∑

i∈I
λi (t)bi + f c(φ(t)).

1.5 Main results and outline of paper

In Sect. 2 we provide general sufficient conditions for the existence and uniqueness of
solutions to CDMPs. In Sect. 3 we introduce the related class of stochastic differential
inclusions, and stochastic differential equations with reflection that have discontinuous
drift, and establish strong existence and pathwise uniqueness of solutions for these
SDE. A summary of the results obtained in these sections is as follows.

(a) Existence. Theorem 2.3 establishes existence of solutions to the CDMP (G, D, F)
for RCLL u under the assumption that F is a uniformly bounded u.s.c. set-valued
function on G, with each F(x), x ∈ G, being a convex, compact subset of R

n ,
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and that the SP (G, D) satisfies Assumptions 1 and 2. These assumptions on the
SP are quite mild (see Remark 2.1).

(b) Uniqueness. Uniqueness is studied for the class of polyhedral CDMPs. We treat
it in two main steps. In Sect. 2 we consider the special case f c = 0 while
the general setting ( f c 	= 0) is covered as a particular case (with σ = 0) of
the pathwise uniqueness result for SDE established in Theorem 3.4. For the case
f c = 0, Theorem 2.9 provides a general sufficient condition, namely the validity
of Assumptions 3 and 4, for uniqueness of solutions and regularity of the solution
map. Combining the uniqueness and existence results, Theorem 2.11 shows that
if the polyhedral CDMP satisfies Assumptions 1, 2, 3 and 4, then the solution
mapping is well-defined and Lipschitz continuous on all of D[0, T ]. For the case
G = R

n , Theorems 2.9 and 2.11 allow for multiple surfaces of discontinuity as
well as a general class of input functions u, and thus address settings not covered
by the results described in Sect. 1.2.2 on uniqueness of differential inclusions.

(c) SDE. We obtain new existence and uniqueness results for SDE (SDER) with dis-
continuous drift. We restrict ourselves to the case where (G, D, F) is associated
with a polyhedral CDMP, as described in Sect. 1.4. In Sect. 3.2 we introduce
SDE for which the velocity vector field F serves as the drift coefficient, and the
diffusion coefficient is Lipschitz continuous and possibly degenerate. We further
allow a progressively measurable RCLL input on the right hand side of the equa-
tion. In Theorem 3.4 we establish strong existence and pathwise uniqueness.
Here too, we consider a formulation that allows for a constraint vector field,
giving rise to constrained diffusions. See Remark 3.5 for comparison of our
results with prior results on strong solutions to SDE with discontinuous
coefficients.

2 Existence and uniqueness of solutions

We establish sufficient conditions for existence of solutions to a large class of CDMPs
in Sect. 2.1 and for uniqueness of solutions to the class of polyhedral CDMPs in
Sect. 2.2. Section 2.3 contains some concrete examples of CDMPs that satisfy these
assumptions.

2.1 Existence of solutions

We first impose two natural conditions (Assumptions 1 and 2) on the constraint data
(G, D) associated with the CDMP (G, D, F). The main result of this section is
Theorem 2.3, which establishes existence of solutions to the CDMP under these
assumptions and a mild condition on F .

Assumption 1 There exists a measurable map π : R
n → G such that π(y) = y for

y ∈ G and π(y)− y ∈ D(π(y)) for every y ∈ R
n .

Assumption 2 Consider the SP associated with the data (G, D). Given ψn, ψ ∈
D[0, T ] such that ψn → ψ , if (φn, ηn) solve the SP for ψn , n ∈ N, then there exists

123



Deterministic and stochastic differential inclusions

(φ, η) such that (along a subsequence) (φn, ηn) → (φ, η) and (φ, η) solve the SP
for ψ .

Remark 2.1 Assumption 1 reduces to Assumption 3.1 of [9] in the setting of that paper
(also, in a more general setting, see Definition 4.1 of [6]). As shown in those papers,
this assumption is necessary for existence of solutions to the corresponding SP on
D[0, T ]. Assumption 2 is equivalent to the statement that the set-valued Skorokhod
map (SM) preserves relative compactness and has a closed graph. It was shown in
Theorem 1.3 of [20] that the SM has a closed graph if there is no x ∈ ∂G for which
there exists a unit vector d with {d,−d} ⊂ D(x). Under this condition, the paper
[6] shows that the SM preserves relative compactness (and thus Assumption 2 holds)
when certain oscillation estimates (see Eqs. (2.17) and (2.18) therein) are satisfied.
Such estimates are available for broad families of SPs. Indeed, they are easily shown to
hold when the associated SM is Lipschitz continuous (see Assumption 4 for a sufficient
condition for Lipschitz continuity). In addition, when G is the n-dimensional orthant
R

n+ and D(x) = {∑i :xi =0 ci di : ci ≥ 0, i = 1, . . . , n}, these oscillation estimates
were shown in [4] to hold if the constraint matrix (the n × n matrix with di as its i th
column) is completely-S (and in this case Assumption 1 holds as well). Other settings
where Assumptions 1 and 2 hold can be found in [6,7].

Our proof of existence relies on the following convergence result, which is standard.
For completeness, we have included the proof of this lemma in the Appendix.

Lemma 2.2 Suppose F is an u.s.c. set-valued function on G, such that each F(x),
x ∈ G, is a convex, compact subset of R

n, and for every compact set E ⊂ G, ∪x∈E F(x)
is bounded. Let a sequence (θn)n∈N of absolutely continuous functions and a sequence
(φn)n∈N of functions in D[0, T ] that satisfy θ(0) = 0, φ(0) ∈ G and, for every n ∈ N,

θ̇n(t) ∈ F(φn(t)) for a.e. t ∈ [0, T ],

be given. If θn → θ in the uniform topology and φn → φ in the Skorokhod J1 topology
then

θ̇ (t) ∈ F(φ(t)) for a.e. t ∈ [0, T ].

We now come to the main existence result.

Theorem 2.3 Suppose that (G, D) satisfies Assumptions 1 and 2, and let F be a
uniformly bounded u.s.c. set-valued function on G, such that each F(x), x ∈ G,is a
convex, compact subset of R

n. Then for every u ∈ D[0, T ], there exists at least one
φ ∈ M(G, D, F, u).

Proof Since F is uniformly bounded and has a closed graph, it admits a bounded,
measurable selection ξ : G → R

n (see Corollary 10.3 in the Appendix of [14]). Let
π be the function from Assumption 1. Fix u ∈ D[0, T ] and let Dc [0, T ] denote
the subspace of piecewise constant functions in D[0, T ] that have a finite number of
jumps.
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We shall now use an approximating sequence to construct a solution φ to the CDMP
associated with u. Since Dc [0, T ] is dense (with respect to the uniform topology) in
D[0, T ], there exists a sequence (un)n∈N ⊂ Dc [0, T ] such that un(0) = u(0) and
un → u. For n ∈ N, define Jn to be the finite set of jump points of un , and let
�n

.= {0 = tn
0 < tn

1 · · · < tn
mn

= T } be a finite partition of [0, T ] such that �n

contains Jn and satisfies maxk=1,...,mn �tn
k ≤ 1/n, where �tn

k
.= tn

k − tn
k−1. For each

n ∈ N, let φn , ψn and ηn be functions in D[0, T ] that are constant on each interval
[tn

k−1, tn
k ) and satisfy ψn(0) = u(0), φn(0) = π(u(0)), ηn(0) = π(u(0))− u(0), and

ψn(t
n
k )

.= ψn(t
n
k−1)+ un(t

n
k )− un(t

n
k−1)+ ξ(φn(t

n
k−1))�tn

k

φn(t
n
k )

.= π
(
φn(t

n
k−1)+ ψn(t

n
k )− ψn(t

n
k−1)

)
(2.1)

ηn(t
n
k )

.= ηn(t
n
k−1)+ φn(t

n
k )− φn(t

n
k−1)− ψn(t

n
k )+ ψn(t

n
k−1)

for each k = 1, . . . ,mn . It follows immediately from the definitions that (φn, ηn)

solve the SP (G, D) for ψn . Now, for n ∈ N, define

θn(t)
.=

t∫

0

ξ(φn(s)) ds for t ∈ [0, T ]. (2.2)

Then θn(0) = 0, θn is absolutely continuous and for every 0 ≤ s ≤ t ≤ T , we have

sup
n∈N

|θn(t)− θn(s)| ≤ M(t − s), (2.3)

where M is a uniform bound on F . Thus, by the Arzèla–Ascoli theorem and the fact
that the space of Lipschitz continuous functions with Lipschitz constant bounded by M
is a closed subspace of the continuous functions, there exists an absolutely continuous
function θ such that θn → θ (along a suitable subsequence). Along with the fact that
un → u and the easily verified inequality

sup
t∈[0,T ]

|θn(s)− ψn(s)+ un(s)| ≤ M

n
, (2.4)

this shows thatψn → ψ
.= θ+u. Therefore, by Assumption 2, we can assume without

loss of generality (by choosing further subsequences, if necessary) that φn → φ and
ηn → η, where (φ, η) solve the SP (G, D) for ψ . An application of Lemma 2.2,
combined with (2.2), then shows that there exists a bounded, measurable function α
on [0, T ] such that

θ(t) =
t∫

0

α(s) ds
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and α(s) ∈ F(φ(s)) for a.e. s ∈ [0, T ]. The quantities (u, θ, α, η, φ) above satisfy the
conditions of Definition 1.1, thus showing that φ solves the CDMP for u. This proves
the theorem. �

2.2 Uniqueness of solutions to polyhedral CDMPs

In this section, we consider uniqueness of solutions for the class of polyhedral CDMPs
introduced in Sect. 1.4. Under the basic assumptions stated in Sect. 2.2.1 below, the
main proof of uniqueness is given in Sect. 2.2.2. With the notation of Sect. 1.4, the
constraining mechanism for the polyhedral CDMP dynamical system is then comple-
tely described by (NSP,DSP), where

NSP

.= {nk, k ∈ K} and DSP

.= {dk, k ∈ K}.

By convention, the case K = 0 will correspond to G = R
n and NSP = DSP = ∅ (also

referred to as a DMP). On the other hand, when I = 1 and b ≡ 0, the CDMP reduces
to the classical SP (cf. [9]) associated with (NSP,DSP).

The velocity field F of a polyhedral CDMP (G, D, F) is given in (1.10) in terms
of (C,B, f c). Throughout Sect. 2.2 we set f c = 0 (for general f c see Remark 3.6).
In this case, for the purpose of studying uniqueness of solutions to the CDMP, we will
find it convenient to use an alternative representation of the data (C,B) describing the
interior dynamics. This representation can be given in terms of certain sets NDI and
DDI that play an analogous role in the analysis of the interior dynamics as the sets NSP

and DSP play in the study of the constraining mechanism on the boundary. First, we
define a neighbouring relation between the cones Ci , i ∈ I.

Definition 2.4 For i, j ∈ I, the cones Ci and C j ∈ C are said to be neighbours
(denoted Ci ∼ C j ) if and only if the dimension of the affine hull of Ci ∩ C j is n − 1.

Define

E(C) .= {(i, j) ∈ I
2 : Ci ∼ C j } (2.5)

to be the set of neighbouring cones in C, and for (i, j) ∈ E(C), define νi j to be the
unique unit normal to the affine hull of Ci ∩ C j that satisfies

〈νi j , x〉 < 0 for x ∈ Ci . (2.6)

Also, let

bi j
.= bi − b j for (i, j) ∈ E(C)

and define

NDI

.= {νi j , (i, j) ∈ E(C)} and DDI

.= {bi j , (i, j) ∈ E(C)}.
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Remark 2.5 Note that one cannot uniquely recover the data (C,B), and therefore F ,
from the representation (NDI,DDI) since the latter is invariant under translations of B
by a constant drift b. However, as shown below, questions of uniqueness only depend
on the information encoded in (NDI,DDI). Let N = (NDI,NSP) and D = (DDI,DSP). We
will refer to (N ,D) as a representation for the polyhedral CDMP (G, D, F)whenever
(G, D) is defined in terms of (NSP,DSP) and F is obtained from some (C,B) that admits
the representation (NDI,DDI).

2.2.1 Basic assumptions

As mentioned in the introduction, uniqueness results have been established for the
case of a single surface of discontinuity under condition (1.6). Assumption 3 below
stipulates that a similar condition hold for each hyperplane of discontinuity. Note that
this assumption is analogous to the condition (1.11) which we imposed on the data
associated with the constraining mechanism.

Assumption 3 Given (NDI,DDI), for every (i, j) ∈ E(C), either 〈νi j , bi j 〉 > 0 or
bi j = 0.

We now present the main condition for uniqueness. It is analogous to Assumption
2.1 of [9]. A set B ⊂ R

n is said to be symmetric if B = −B.

Assumption 4 (Existence of a Lyapunov set) Given the representation (N ,D) of the
problem data, there exists a compact, symmetric, convex set B ⊂ R

n with 0 ∈ Bo

such that if ϑ(z) is the set of inward normals to B at z ∈ ∂B, then the following
properties hold.

(i) If z ∈ ∂B and |〈z, νi j 〉| < 1 for some (i, j) ∈ E(C), then 〈bi j , ϑ〉 = 0 for all
ϑ ∈ ϑ(z).

(ii) If z ∈ ∂B and |〈z, nk〉| < 1 for some k ∈ K, then 〈dk, ϑ〉 = 0 for all ϑ ∈ ϑ(z).
Remark 2.6 (i) Assumption 4 is an analogue of a condition of Dupuis and Ishii

introduced in [9], which guarantees uniqueness of solutions to the SP on poly-
hedral domains. It is worthwhile to note that although the CDMP can in a sense
be viewed as a mixture of a DMP and an SP, uniqueness of solutions to the
CDMP cannot be studied simply by breaking it down into these constituent
parts (cf. Example 2.12).

(ii) A convex duality method for the construction of such Lyapunov sets was
introduced in [11] in the context of polyhedral SPs, and then applied to
establish regularity of the corresponding SM for several concrete classes of SPs
in [12,13]. This method is likely to also be useful for verifying Assumption 4
for polyhedral CDMPs and will be explored in future work.

Remark 2.7 The Lyapunov set condition of Assumption 4 can be visualised in the
planar case, n = 2, in a simple way (see Fig. 2). In the two-dimensional setting,
the geometry of the problem can be associated with a set of rays emanating from
the origin, defining the boundary faces ∂Gi of the domain G and the regions Ci . It is
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Fig. 2 A two-dimensional
CDMP and a corresponding
Lyapunov set

d1

d2

b1 b2

b3

b12

b23

not hard to see that Assumption 4 is then satisfied if one can find a symmetric convex
polyhedron with the following property: every ray defining the boundary between two
regions Ci and C j (respectively, the boundary face ∂Gi ) intersects properly a side of
the polyhedron that is parallel to the corresponding direction bi j (respectively, di ).

The following consequence of Assumption 4 is proved in a manner similar to
Lemma 2.1 of [9]. We provide the proof in the Appendix for the sake of completeness.

Lemma 2.8 Let Assumptions 3 and 4 hold. Let B be as in Assumption 4, z ∈ ∂B and
ϑ ∈ ϑ(z). Then

〈z, nk〉〈ϑ, dk〉 ≤ 0 for k ∈ K (2.7)

and

〈z, νi j 〉〈ϑ, bi j 〉 ≤ 0 for (i, j) ∈ E(C). (2.8)

2.2.2 Proof of uniqueness

Theorem 2.9 below provides a general sufficient condition, namely the validity of
Assumptions 3 and 4, for uniqueness of solutions and Lipschitz continuity of the
solution map. Combining the uniqueness and existence results, Theorem 2.11 shows
that if the polyhedral CDMP satisfies Assumptions 1, 2, 3 and 4, then the solution
mapping is well defined and Lipschitz continuous on all of D[0, T ]. For f ∈ D[0, T ],
we will write sups∈[0,t] | f (s)| as || f ||t .
Theorem 2.9 Suppose that the polyhedral CDMP (G, D, F) admits a representation
(N ,D) that satisfies Assumptions 3 and 4. Let u1, u2 ∈ D[0, T ] and suppose that for
i = 1, 2, φi ∈ M(G, D, F, ui ). Then there exists a constant κ , which is independent
of T, ui and φi , i = 1, 2, such that

||φ1 − φ2||T ≤ κ||u1 − u2||T .

The proof of Theorem 2.9 relies on the following result.
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Lemma 2.10 For each i, j ∈ I, i 	= j , and x ∈ Ci , y ∈ C j , there exist m ∈
{1, . . . , I − 1} and i0, . . . , im ∈ I such that i0 = i, im = j , (il , il+1) ∈ E(C) and
〈x − y, νil il+1〉 ≤ 0 for all l = 0, . . . ,m − 1. We shall denote the collection of such
ordered sets (i0, . . . , im) by S(i, j, x, y).

Proof Fix i, j ∈ I, i 	= j , and define

Ui j
.=

⎧
⎪⎪⎨

⎪⎪⎩
(x, y) ∈ Ci × C j :

there exist m ∈ {1, . . . , I − 1} and
i0, . . . , im ∈ I such that i0 = i, im = j,
and for l = 0, . . . ,m − 1, (il , il+1) ∈ E(C)
and 〈νil il+1 , x − y〉 ≤ 0

⎫
⎪⎪⎬

⎪⎪⎭
.

In order to prove the lemma, we need to show that Ui j = Ci × C j . We will start by
showing that Ui j contains a dense subset (Si j defined below) of Ci × C j . Let

S0
.=

{
x ∈ R

n : 〈x, νq ′r ′ 〉 = 0, 〈x, νqr 〉 = 0, for some
(q ′, r ′), (q, r) ∈ E(C) with (q, r) 	= (q ′, r ′)

}

be the set of points that lie at the intersection of at least two hyperplanes of discontinuity
of the velocity field, and for (x, y) ∈ Ci ×C j , let �(x, y)

.= {αx+(1−α)y : α ∈ [0, 1]}
be the line segment joining x and y. Then define

Si j
.= {
(x, y) ∈ Ci × C j : �(x, y) ∩ S0 = ∅}

.

We first claim that Si j ⊆ Ui j . To see why this is true, let (x, y) ∈ Si j be given, and
define xt

.= (1− t)x + t y for t ∈ [0, 1]. Due to the convexity of the domain and the fact
that x, y ∈ G◦, we have xt ∈ G◦ for t ∈ [0, 1]. Let t1

.= inf{t ≥ 0 : xt 	∈ Ci }. Clearly
t1 ∈ (0, 1) and, since xt1 ∈ ∂Ci ∩G◦, we must have 〈νik, xt1〉 = 0 for some k ∈ K such
that Ck ∼ Ci . In fact, since xt1 	∈ S0 (because xt1 ∈ �(x, y) and (x, y) ∈ Si j ), there is
exactly one such k. This implies that xt1 lies in the relative interior of ∂Ci ∩ ∂Ck and
〈xt , νik〉 changes sign at t = t1. In turn, this means that there exists ε0 ∈ (0, 1 − t1)
such that xt1+t ∈ Ck for all t ∈ [0, ε0] and, since 〈x, νik〉 < 0 due to (2.6) and y = x1,
such that

〈νik, x − y〉 < 0.

If k = j then this shows that (x, y) ∈ Ui j , with m = 1 in the definition of Ui j .
If k 	= j then set i1

.= k, x1 .= xt1+ε0 and note that x1 ∈ Ci1 and (x1, y) ∈ Si1 j

(since �(x1, y) ⊂ �(x, y) and (x, y) ∈ Si j ). The above argument can thus be iterated
(replacing x and i by x1 and i1, respectively) so as to obtain m ∈ {1, . . . , I − 1} and
a sequence i = i0, i1, . . . , im−1, im = j such that Cil is the lth cone intersected by
xt (ordered chronologically as t grows from 0 to 1). It follows that (x, y) ∈ Ui j and
{i0, . . . , im} ∈ S(i, j, x, y). This proves the claim. In particular, since Si j is dense in
Ci × C j , we conclude that Ui j is dense in Ci × C j .

Now choose an arbitrary (x, y) ∈ Ci ×C j , let (xn, yn) ∈ Ui j be such that xn → x ,
yn → y and let (i0,n, . . . , imn ,n) ∈ S(i, j, xn, yn). Since I is a finite set and i j,n 	= ik,n
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for j 	= k, n ∈ N, there exists a fixed index set S = {i0, . . . , im} such that S ∈
S(i, j, xnk , ynk ) along some subsequence {nk}. Then for all l = 0, 1, . . . ,m − 1, we
have 〈xnk − ynk , νil ,il+1〉 ≤ 0, k ∈ N, and therefore on taking the limit as k → ∞,
we have 〈x − y, νil ,il+1〉 ≤ 0. Thus (x, y) ∈ Ui j with S ∈ S(i, j, x, y) and the result
follows. �
Proof of Theorem 2.9 For i = 1, 2, let αi , γi ∈ BM[0, T ], θi ∈ AC[0, T ] and ηi ∈
D[0, T ] be such that (i) through (v) of Definition 1.1 are satisfied with (u, φ, θ, α, η, γ )
there replaced by (ui , φi , θi , αi , ηi , γi ). Let ζi ∈ D[0, T ] be defined as

ζi (t)
.= θi (t)+ ηi (t), t ∈ [0, T ].

Let c
.= sup0≤t≤T |u1(t)− u2(t)|. We will prove that

ζ1(t)− ζ2(t) ∈ cB for all t ∈ [0, T ]. (2.9)

Since B is compact, this will clearly prove the result. We will argue by contradiction.
Suppose there exists a ∈ (c,∞) such that ζ1(t) − ζ2(t) 	∈ aBo for some t ∈ [0, T ].
Let

τ
.= inf{t ∈ [0, T ] : ζ1(t)− ζ2(t) 	∈ aBo}.

Following [9], we divide the analysis into two cases.

Case 1 ζ1(τ−)− ζ2(τ−) ∈ ∂(aB).
Let z

.= ζ1(τ−)− ζ2(τ−). Let ϑ ∈ ϑ(z/a). Then for all t ∈ [0, τ ), since ζ1(t)−
ζ2(t) ∈ aB◦, it follows that

〈z − ζ1(t)+ ζ2(t), ϑ〉 < 0.

Note that z − ζ1(t)+ ζ2(t) can be expressed as

∫

(t,τ )

(α1(s)− α2(s)) ds +
∫

(t,τ )

(γ1(s)d|η1|(s)− γ2(s) d|η2|(s)).

Thus at least one of the following three properties must hold along a sequence {tn},
tn ↑ τ .

1.
∫

(tn ,τ )

〈γ1(s), ϑ〉 d|η1|(s) < 0;

2.
∫

(tn ,τ )

〈γ2(s), ϑ〉 d|η2|(s) > 0;

3.
∫

(tn ,τ )

〈α1(s)− α2(s), ϑ〉 ds < 0.
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Statements 1 and 2 above lead to a contradiction exactly as in the proof of Theorem
2.2 of [9], and so they cannot hold.

Now suppose that statement 3 holds. Following Remark 1.2, for i = 1, 2, we can
find λi,k ∈ BM([0, T ] : [0, 1]), k ∈ I, such that for a.e. t ∈ [0, T ], ∑

k∈I
λi,k(t) = 1,

λi,k(t)11{φi (t) 	∈Ck } = 0 and αi (t) = ∑
k∈I
λi,k(t)bk . Setting λ jk(t)

.= λ1, j (t)λ2,k(t),
we see that for s ∈ [0, T ],

α1(s)− α2(s) =
∑

j∈I

∑

k∈I

(
b j − bk

)
λ jk(s) =

∑

j∈I

∑

k∈I

b jkλ jk(s).

This, along with statement 3 above, guarantees the existence of ( j, k) ∈ I × I such
that

〈b jk, ϑ〉 < 0 and
∫

(tn ,τ )

λ jk(s) ds > 0 for n ∈ N (2.10)

(with the latter inequality holding along a further subsequence of {tn}, if needed).
Taking the limit as n → ∞ in the above display and using the fact that
λ jk(t)11{φ1(t) 	∈C j }11{φ2(t) 	∈Ck } = 0 we see that φ1(τ−) ∈ C j and φ2(τ−) ∈ Ck . Then,
by Lemma 2.10, there exists a finite sequence {i0, . . . , im} ∈ S( j, k, φ1(τ−), φ2(τ−))
that satisfies the relations

〈φ1(τ−)− φ2(τ−), νil il+1〉 ≤ 0 (2.11)

for every l ∈ {0, . . . ,m − 1}. Also, since b jk = b j − bk = ∑m−1
l=0 (bil − bil+1) =

∑m−1
l=0 bil il+1 , the first relation in (2.10) yields

〈bil ,il+1 , ϑ〉 < 0

for some l ∈ {0, 1, . . . ,m − 1}. Due to Assumption 4 and Lemma 2.8, the last display
implies that 〈z/a, νil il+1〉 ≥ 1. Hence we now have

a ≤ 〈z, νil il+1〉 = 〈φ1(τ−)− φ2(τ−), νil il+1〉 − 〈u1(τ−)− u2(τ−), νil il+1〉
≤ 〈φ1(τ−)− φ2(τ−), νil il+1〉 + c,

which implies that 〈φ1(τ−)− φ2(τ−), νil il+1〉 > 0. This contradicts (2.11) and so
statement 3 also cannot hold.

Case 2 ζ1(τ−) − ζ2(τ−) ∈ aBo. This time set z
.= ζ1(τ ) − ζ2(τ ) and let b ∈

[a,∞) be such that z ∈ ∂(bB). Let ϑ ∈ ϑ(z/b). Then by the convexity of B,
〈z − ζ1(τ−)+ ζ2(τ−), ϑ〉 < 0. Noting that

z − ζ1(τ−)+ ζ2(τ−) =
∫

{τ }
(γ1(s) d|η1|(s)− γ2(s) d|η2|(s)),
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we are led to a contradiction exactly as in Theorem 2.2 of [9]. This proves (2.9) and
hence the result.

�
An immediate consequence of Theorems 2.9 and 2.3 is the following.

Theorem 2.11 Suppose that the polyhedral CDMP (G, D, F) admits the representa-
tion (N ,D), where (NSP,DSP) satisfy Assumptions 1 and 2. Then for every T > 0 and
u ∈ D[0, T ], there exists at least one φ ∈ M(G, D, F, u). Furthermore, if (NDI,DDI)

also satisfy Assumptions 3 and 4, then the solution φ is unique. In this case, we use�
to denote the solution map and write φ = �(u). Finally, for some κ ∈ (0,∞),

||�(u1)−�(u2)||T ≤ κ||u1 − u2||T ,

for all T > 0 and u1, u2 ∈ D[0, T ].

2.3 Examples

We now provide examples of CDMPs in order to illustrate the applicability of
Theorem 2.11. We begin with an example that shows that the question of unique-
ness of solutions to a CDMP cannot be decoupled by examining uniqueness for the
associated SP and a naturally associated DMP separately. This emphasises the need for
a common framework that considers both these problems. Define d on the boundary
∂G of G as follows: for x ∈ ∂G,

d(x)
.= D(x) ∩ S1(0), (2.12)

where S1(0) is the unit sphere in R
n .

Example 2.12 Consider a CDMP that has domain R
2+ and boundary constraint data

given by

n1 = (1, 0) d1 = (1,−1) n2 = (0, 1) d2 = (0, 1),

and has the interior of G partitioned into the cones C1 = {x ∈ Go : 〈x, ν12〉 < 0}
and C2 = {x ∈ Go : 〈x, ν12〉 > 0}, whose common boundary lies in the hyperplane
normal to ν12 = {1,−1}, with drift bi in the cone Ci , for i = 1, 2, defined by

b1 = (2, 0) b2 = (0, 0) .

Also, as usual, let b12 = b1 −b2 = (2, 0) and let F be the set-valued function obtained
by the convexification of the vector field associated with (b1, b2) and (C1,C2). Then it
is easy to check that 〈b12, ν12〉 = 2 and 〈di , ni 〉 = 1 for i = 1, 2, and so Assumption 3
is satisfied for the CDMP data. In particular, by the comment following Eq. (1.6), this
implies that solutions to the associated DMP (extended to R

2 in the obvious manner)
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are unique. Moreover, it is straightforward to check that the set B = {x ∈ R
2 : |x1| ≤

1} ∩ {x ∈ R
2 : |x1 + x2| ≤ 2} satisfies Assumption 4 for the data {(n1, n2), (d1, d2)}

related to the SP component of the CDMP. In addition, the SP data is also easily
seen to satisfy Assumptions 1 and 2. Thus, invoking Theorem 2.11, we see that the
corresponding SM is Lipschitz continuous on D[0, T ] and solutions to the CDMP
exist for all input functions u ∈ D[0, T ].

However, it is easy to see that there exists no set that satisfies Assumption 4 for the
data {(ν12, b12), (n1, d1), (n2, d2)}. In fact, there exist input functions u for which the
CDMP admits multiple solutions. Indeed, consider the function

u(t)
.= (−1, 1) t for t ∈ [0, 1].

Then the function φ(1)(t)
.= 0 for t ∈ [0, 1] has the form φ(1)(t) = u(t) + θ(1)(t) +

η(1)(t),where θ = 0 and η = −u = d1t . Thus dθ(1)(t)/dt = 0 ∈ F(0) = F(φ(1))(t),
dη(1)(t)/dt ∈ d(0) = d(φ(1)(t)) for all t ∈ [0, 1], and φ(1) defines one solution to the
CDMP associated with u. On the other hand, the function φ(2)(t)

.= (1, 1)t for t ∈
[0,∞) has the representation φ(2)(t) = u(t)+ θ(2)(t)+ η(2)(t), where θ(2)(t) = b1t
and η(2)(t) = 0. Thus dθ(2)/dt = b1 ∈ F(φ(2)(t)) and dη(2)/dt = 0 ∈ d(φ(2)(t))
for all t , and so φ(2) 	= φ(1) defines another solution to the CDMP associated with u.

Next, we describe a simple DMP for which Assumption 4 does not hold and which
exhibits multiple solutions.

Example 2.13 The DMP, depicted in Fig. 3a, has the following data.

C1 = {x ∈ R
2 : x1 < 0}, C2 = {x ∈ R

2 : x1 > 0, x1 − x2 < 0},
C3 = {x ∈ R

2 : x1 > 0, x1 − x2 > 0},
b1 = (1, 0), b2 = (−1, 0), b3 = (−3,−1).

One computes b12 = (2, 0), b23 = (2, 1) and b31 = (−4,−1), and ν12 = (1, 0),
ν23 = (1,−1) and ν31 = (−1, 0). The discussion in Remark 2.7 suggests that there
exists no set satisfying Assumption 4 since, given ν12 and ν23, the directions b12 and
b23 only allow for a nonconvex set. To make this argument precise, assume such a
set, denoted by B, exists, and let y (resp., z) be the point where the boundary ∂B
intersects the ray {x : x1 = x2 > 0} that is perpendicular to ν23 (resp., the ray
{x : x1 = 0, x2 > 0} perpendicular to ν12). By Assumption 4(ii), it is easy to see
that the vector a = (−1, 2) that is perpendicular to b23 (resp., the vector b = (0, 1)
perpendicular to b12) is an outward normal to ∂B at y (resp., at z). Note that the ray
{y + sa : s > 0} necessarily intersects the ray {z + tb : t > −z2}. This can occur for
t > 0, in which case we have two outward normal rays to ∂B intersecting outside B,
or the intersection can occur for −z2 < t ≤ 0, in which case it follows that an outward
normal ray at y intersects B at some point other than y. In both cases, the convexity
of B is violated.
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b2

b1 b3b23

b12

b31

d1

d2

b1

b2

(a) (b)

Fig. 3 a DMP of Example 2.13. b CDMP of Example 2.14(i)

We now show that, in fact, multiple solutions exist to the corresponding DI. Indeed,
with

u(t) =
(

0,
1

4

)
t,

one has

φ(1)(t)
.=

(
0,

1

4

)
t = 1

2
b1t + 1

2
b2t + u(t)

φ(2)(t)
.= 0 = 3

4
b1t + 1

4
b3t + u(t),

and clearly
1

2
b1 + 1

2
b2 ∈ F(φ(1)(t)) and

3

4
b1 + 1

4
b3 ∈ F(φ(2)(t)) for all t ≥ 0. Thus

both φ(1) and φ(2) solve the DMP for u.

We now discuss a case that appears in queueing applications.

Example 2.14 This model arises in functional law of large numbers and central limit
theorem limits to a queueing system with n customer classes and a single server using
the so-called “Weighted serve-the-longer-queue” (weighted SLQ) service discipline.
In this discipline, customers of class i are queued in buffer i (i = 1, . . . , n) and,
for every t , the server serves class-i customers whenever αi Qi (t) > α j Q j (t) for all
j 	= i ; if the set argmaxiαi Qi (t) has more than one element, the class with the largest
index is served. Here, αi > 0 are fixed, and Qi (t) denotes the number of class-i
customers in the system at time t . Moreover, µ represents the mean service rate of a
customer and λi denotes the (long-run average) arrival rate of class i customers.
(i) When there are two classes, the polyhedral CDMP associated with this model has
domain G = R

2+, with constraint data n1 = d1 = e1, n2 = d2 = e2 and the interior
divided into the two regions

C1 = {x ∈ Go : α1x1 < α2x2}, C2 = {x ∈ Go : α1x1 > α2x2},
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with corresponding drifts b1 = (λ1, λ2 − µ) and b2 = (λ1 − µ, λ2) (see
Figure 3(b)). Noting that b12 = (µ,−µ), it is easy to check directly that the set
defined by

B =
{
(x1, x2) : |x1 + x2| ≤ α1 + α2, |x1| ≤ 1

2
α1 + α2, |x2| ≤ α1 + 1

2
α2

}
,

satisfies Assumption 4. Moreover, since the constraint vector field D is the normal
vector field in this case, Assumptions 1 and 3 hold trivially, while Assumption 2 holds
by Remark 2.1, since D(x) does not contain a line for any x , and the constraint matrix
is completely-S. By Theorem 2.11, the associated solution map is therefore continuous
on D[0, T ].

In order to study the fluid limit, it suffices to consider the CDMP with input u = 0,
in which case the boundary constraint directions are only relevant at the origin. On
the other hand, for the diffusion limit, the input trajectories u to the CDMP represent
diffusion paths and so non-trivial constraining action takes place throughout the boun-
dary of the non-negative orthant (note, however, that we do not prove here that these
processes correspond to the respective scaling limits).
(ii) We shall now investigate the uniqueness of the CDMP associated with the equally
weighted SLQ model with three classes, for inputs u = 0. As mentioned above, this is
sufficient for the characterisation of the functional law of large numbers limits of such
systems. The CDMP described in (i), with u = 0, has the property that no constraint
action takes place on the boundary of the orthant, except at the origin. As a result, the
same solution can be obtained with a domain G that is larger than the orthant, and this
can be used to simplify the corresponding polyhedral CDMP. An analogous statement
holds for the model with three classes under consideration, and the corresponding
simplified CDMP is as follows. Denoting e = (1, 1, 1)/

√
3, the simplified CDMP has

domain G = {x : 〈x, e〉 ≥ 0}, regions

Ci = {x ∈ Go : xi > x j , all j 	= i}, i = 1, 2, 3,

and data d1 = n1 = e, bi j = µ(e j − ei ), νi j = e j − ei , for i, j = 1, 2, 3, i 	= j .
Assumption 3, namely 〈νi j , bi j 〉 > 0, holds. We now show that the following set
satisfies Assumption 4:

B =
{

x ∈ R
3 : |〈x, e〉| ≤ 1, |〈x, ei + e j − 2ek〉| ≤ 3 for all i, j, k distinct

}
.

We first verify part (i) of Assumption 4. Letting z ∈ ∂B be such that

|〈z, ν12〉| < 1, (2.13)

we will show that 〈b12, ϑ〉 = 0 for every normal ϑ to ∂B at z. First, note that the
equality z1 + z3 − 2z2 = 3 does not hold. Indeed, if z1 + z3 − 2z2 = 3 then, using
(2.13), z1 +z2 −2z3 = 3(z1 −z2)−2(z1 +z3 −2z2) = 3(z1 −z2)−6 < −3, violating
the inequality |z1 + z2 − 2z3| ≤ 3 that must hold by the definition of B. A similar
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calculation shows that the equalities |z1 + z3 − 2z2| = 3 and |z2 + z3 − 2z1| = 3 do
not hold. As a result, any normal ϑ to ∂B at z is a linear combination e1 + e2 − 2e3
and e. This immediately ensures that 〈ϑ, b12〉 = 0. By symmetry, the cases with ν12
in (2.13) replaced by ν13 and ν23, respectively, can be treated similarly. This shows
that part (i) of Assumption 4 holds.

To verify part (ii) of the assumption, recall that n1 = d1 = e and let z ∈ ∂B be such
that |〈z, e〉| < 1. Then any normal ϑ to ∂B at z is a linear combination of ei +e j −2ek ,
(i, j, k) distinct. Hence 〈ϑ, e〉 = 0.

Existence and uniqueness of the solution to the CDMP with u = 0 follow.

We conclude with a simple multi-dimensional example that demonstrates that our
method yields new results even in the pure-DMP setting.

Example 2.15 We consider a DMP in R
n in which the bi are co-linear. Let A1 ⊂

· · · ⊂ Ak ⊂ Ak+1 = R
n be closed convex polyhedral cones such that the vector e1 is

an element of the interior of A1. Let the drift vector field b take the constant value bi

on the interior of each C̃i , where C̃1 = A1, and C̃i = Ai \ Ai−1 for i = 2, . . . , k + 1.
Assume bi = ri e1 where

r1 < r2 < · · · < rk+1 (2.14)

are given real numbers (see Fig. 4a for a two-dimensional example). We will show
that this data corresponds to a polyhedral DMP for which Assumptions 3 and 4 hold.
Although the setting is quite simple, continuity (or even uniqueness) results of the
form of Theorem 2.9 do not follow from existing results in the literature. In particular,
as already mentioned in Sect. 1.2.2, the uniqueness results of [15] do not cover the
current setting. Moreover, neither do the results of [5] since the drift vector field
F(·) associated with this DMP is not the negative of a maximal monotone operator.
Indeed, consider, for example, the case A1 = {x ∈ R

2 : x1 ≥ |x2|}, A2 = R
2,

b1 = 0, b2 = e1. Then, for x = e1 ∈ C̃o
1 and y = 2e1 + 3e2 ∈ C̃o

2 , we have
〈−F(x)+F(y), x−y〉 = 〈−b1+b2,−e1−3e2〉 < 0, which violates the monotonicity
assumption (2.3) of [5].

~

1C
~

C
2

C
2

C3
~

~

C
3

C
4

C5

C
6

C
7

C8

2C

1C

(a) (b)

Fig. 4 a A DMP with a co-linear velocity vector field - a two-dimensional case of Example 2.15. b C̃2
divided into two convex cones and C̃3 into five (for simplicity, we use here 1–8 in place of elements of I

for the labels I of CI )
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Since C̃i need not all be convex, they do not constitute the part C (a collection of
convex polyhedral cones (1.7)) of the data of a polyhedral DMP. However, we can
easily recast the problem above in terms of a polyhedral DMP with convex data C
by splitting C̃i into convex polyhedral cones, and assigning the same drift bi to all
convex polyhedral cones that lie within C̃i (see Fig. 4b for the convex realization of
the DMP in Fig. 4a). More precisely, a generic element of I will be denoted by I or J ,
and the sets I and C = {CI : I ∈ I} will be defined below. Write Ai = ∩l Gil , where
Gil are closed half spaces, relabel Gil as Gm , m = 1, . . . ,M , and consider the 2M

open polyhedral cones (some of which may be empty) CI = ∩M
m=1G̃m,nm , indexed by

I = (n1, . . . , nM ) ∈ {0, 1}M , where G̃m,0 = Go
m and Gm,1 = Gc

m . Let I be the set of
I ∈ {0, 1}M for which CI is not empty. Then CI , I ∈ I, are disjoint, open polyhedral
cones satisfying ∪CI = R

n , and it is not hard to see that each CI is contained in one
of the C̃i . As a result, the closure of each C̃i can be written as the closure of the union
of CI over I ∈ I such that CI ⊂ C̃i . The DMP is well-defined by setting bI = bi

whenever CI ⊂ C̃i .
To verify Assumption 3, note that if CI and CJ are subsets of the same C̃i then by

construction bI = bJ , and so the pair I, J satisfies the assumption. If CI ⊂ C̃i and
CJ ⊂ C̃ j for i > j then 〈νI J , e1〉 > 0 because of the nested construction of the Ai ’s
and because e1 ∈ Ao

1. Hence due to (2.14), 〈νI J , bI J 〉 > 0 and again the pair I, J
satisfies Assumption 3.

We now turn to Assumption 4. Denoting by B the cylinder {x ∈ R
n : |x1| ≤

1, x2
2 +· · ·+ x2

n ≤ ε}, we claim that the set δ−1 B satisfies our Assumption 4, provided
that ε and δ are sufficiently small. To see this, note that by construction, for each i, l,
∂Gil does not contain e1. As a result, neither does the affine hull of CI ∩ CJ for each
I, J ∈ I. Therefore if z ∈ ∂B and |〈z, νI J 〉| < δ then the distance of z from the set
{−e1, e1} is bounded away from zero uniformly in z, as δ → 0. We can deduce that
if ε and δ are sufficiently small then |〈z, e1〉| < 1 and thus the normal to ∂B at z is
orthogonal to e1, and hence to bI J .

Although we have exhibited in Examples 2.14 (ii) and 2.15 that one can sometimes
construct a Lyapunov set and verify Assumption 4 in higher-dimensional settings, it
is obvious that such a direct construction and verification can become highly non-
trivial when one considers multi-dimensional data that are not as simple. However, as
mentioned in Remark 2.6, it is expected that the convex duality techniques of [11],
which were developed in the context of the pure SP for the construction of Lyapunov
sets that satisfy Assumption 4, would be useful in this context as well. Indeed, the
result in Example 2.14(b) can be generalised using these techniques, but a detailed
proof lies beyond the scope of this paper. The above results and examples only serve to
demonstrate the importance of further developing and applying techniques that enable
a systematic construction of these Lyapunov sets.

3 Stochastic dynamical systems

This section studies strong existence and pathwise uniqueness for a family of stochastic
differential equations with reflection and a discontinuous drift. Let (G, D, F) be as
in Sect. 2.2. In particular, F is defined by the right side of (1.10) with f c = 0. We
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will apply the results of Sect. 2 to obtain existence and uniqueness for reflected SDE
with drift F̃ = F + f c, where f c is an arbitrary Lipschitz function. In preparation
for the study, we establish in Sect. 3.1 the existence of nonanticipative selections for
certain terms that appear in the CDMP. A standing assumption for this section will be
the unique solvability of the CDMP for all RCLL trajectories, namely we assume:

Assumption 5 For every T > 0 and u ∈ D[0, T ], there exists a unique φ ∈
M(G, D, F, u).

As in Sect. 2, we use � to denote the solution map and if φ is in M(G, D, F, u),
we write φ = �(u). Existence and uniqueness questions for SDE will be taken up in
Sect. 3.2 under the following strengthening of Assumption 5:

Assumption 6 For every T > 0 and u ∈ D[0, T ], there exists a unique φ ∈
M(G, D, F, u). Moreover, there exists κ ∈ (0,∞) such that

||�(u1)−�(u2)||T ≤ κ||u1 − u2||T ,

for all u1, u2 ∈ D[0, T ] and T > 0.

Recall that Theorem 2.11 gives sufficient conditions under which the above assump-
tions hold.

3.1 Nonanticipative selection

A map � from D[0, T ] to itself is said to be nonanticipative if for every t ∈ [0, T ],

u1(s) = u2(s) for s ∈ [0, t] ⇒ �(u1)(s) = �(u2)(s) for s ∈ [0, t].

Consider a CDMP (G, D, F) satisfying Assumption 5. An application of the uni-
queness assumption to the time intervals [0, t], t ≤ T , directly implies that � is
nonanticipative. Recall that a solution φ to the CDMP is of the form φ = u + θ + η,
where θ = ∫ .

0 αs ds and η = ∫
[0,.] γs d|η|s , and some additional conditions (as spe-

cified in Definition 1.1) are satisfied by α and γ . In this section we are interested in
nonanticipative selections of the θ and η components of the solution. We begin with
an example that demonstrates that these components may not be unique even when the
solution φ is unique. Thus the existence of nonanticipative maps u �→ θ and u �→ η

does not follow immediately from the results of the previous section (unlike the case
of the map u �→ φ).

Example 3.1 Let G = R
2+ and consider the normal reflection field on ∂G. Let C1 =

{x ∈ G : x1 < x2} and C2 = {x ∈ G : x1 > x2}. Let b1 = −e2 and b2 =
−e1. Assumption 3 is immediately satisfied since ni = di = ei for i = 1, 2 and
b1 − b2 = ν12 = e1 − e2, where ν12 is the normal to the hyperplane ∂C1 ∩ ∂C2
pointing away from C1. It is also straightforward to check that B = {z ∈ R

2 : |z1| ≤
4, |z2| ≤ 4, |z1 + z2| ≤ 6} satisfies Assumption 4. In addition, since G is convex
and the directions of constraint are normal, the usual normal projection π onto a
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convex set, satisfies Assumption 1. Lastly, Assumption 2 is also easily verified for
this example (since the reflection matrix is clearly completely-S (see Remark 2.1)).
Thus, by Theorem 2.11, there exists a unique solution φ = u + θ + η for every u ∈
D([0, T ] : R

2). In order to demonstrate multiple choices for (θ, η), consider u = 0. It
follows immediately from the definition that d(0) = S1 ∩conv(e1, e2) = S1 ∩R

2+ and
F(0) = conv(−e1,−e2) = −R

2+. It is clear that one can realise the solution φ = 0
with θ(t) = −e1t and η(t) = e1t , and also with θ(t) = −e2t and η(t) = e2t (or, in
fact, with θt = vt for any v ∈ d(0) and η(t) = −vt).

We first show that the singular part of η is unique, and identify a new quantity β,
that will be useful in the next result.

Theorem 3.2 Suppose that Assumption 5 holds for the polyhedral CDMP (G, D, F).
Then for any u ∈ D[0, T ] and φ = �(u), there exists a unique ζ ∈ D[0, T ] and
Lebesgue-a.e. unique β ∈ L1[0, T ] such that

(i)

φ(t) = u(t)+
t∫

0

β(s) ds + ζ(t), t ∈ [0, T ];

(ii)

β(t) ∈ F(φ(t))+ D(φ(t)), a.e. t ∈ [0, T ];

(iii) |ζ |(T ) < ∞ and the measure d|ζ | is mutually singular with respect to Lebesgue
measure on [0, T ];

(iv) there exists γ̃ ∈ BM[0, T ] such that γ̃ (s) ∈ d(φ(s)) for d|ζ |-a.e. s ∈ [0, T ]
and

ζ(t) =
∫

[0,t]
γ̃ (s)11{φ(s)∈∂G} d|ζ |(s).

Moreover, γ̃ in (iv) is |ζ |-a.e. unique. Finally, the maps u �→ ζ and u �→ ∫ ·
0 β(s)ds

are nonanticipative.

Proof Observe that the solution map � is well-defined on D[0, T ] by Assumption 5.
Fix u ∈ D[0, T ] and φ = �(u). We will first consider the uniqueness of ζ and β. Let
(ζ, β) = (ζ1, β1) and (ζ, β) = (ζ2, β2) be two pairs satisfying properties (i)–(iv) of
the theorem. From (i) above, we see that

t∫

0

β1(s) ds + ζ1(t) =
t∫

0

β2(s) ds + ζ2(t), t ∈ [0, T ].

Due to (iii) above and the Radon–Nikodym theorem, this implies that ζ1(t) = ζ2(t) and∫ t
0 β1(s) ds = ∫ t

0 β2(s) ds for all t ∈ [0, T ]. This proves the asserted uniqueness of ζ
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and β. Also, from (iv) we know that for all t ∈ [0, T ], |ζ |t = ∫
[0,t] 11{φ(s)∈∂G} d|ζ |(s).

This shows that γ̃ (s) = dζ(s)/d|ζ |(s), d|ζ |-a.e., and hence proves the asserted uni-
queness of γ̃ .

Next, we consider existence. Let θ , α, η and γ be as in Definition 1.1. By the
Radon–Nikodym theorem, we can write

|η|(t) =
t∫

0

ν(s) ds + λ(t), t ∈ [0, T ] (3.1)

for some ν ∈ L1[0, T ] and for some non-decreasing function λ : [0, T ] → R+ which
is singular with respect to Lebesgue measure on [0, T ]. This shows that, for t ∈ [0, T ],

η(t) =
∫

[0,t]
γ (s) d|η|(s)

=
∫

[0,t]
γ (s)ν(s) ds +

∫

[0,t]
γ (s) dλ(s).

Define β(t)
.= α(t) + γ (t)ν(t) and ζ(t)

.= ∫
[0,t] γ (s) dλ(s). Since ν, α ∈ L1[0, T ]

and γ ∈ BM[0, T ], it follows that β ∈ L1[0, T ]. Recalling that γ (s) ∈ d(φ(s)),
d|η|-a.e., from (3.1) we conclude that the same property holds dλ-a.e. as well. This,
in particular, says that |ζ | = λ. From Definition 1.1(iv), we know that |η|(t) =∫
[0,t] 11{φ(s)∈∂G} d|η|(s). Along with (3.1), this shows thatλ(t)=∫

[0,t]11{φ(s)∈∂G} dλ(s).
It is now easy to check that with the above choice of β and ζ , (i) through (iv) hold.

�
The following result provides a nonanticipative selection of θ and η as a function

of u.

Theorem 3.3 Suppose that Assumption 5 holds for the polyhedral CDMP (G, D, F).
Then there exist measurable, nonanticipative maps�and� fromD[0, T ] to itself, such
that for u ∈ D[0, T ],�(u) and�(u) comprise the θ and, respectively, η components
of the solution φ = �(u).

Proof A basic ingredient in the proof is the following statement:

for every x ∈ G, there exist continuous maps

�1
x : F(x)+ D(x) → F(x), �2

x : F(x)+ D(x) → D(x), (3.2)

such that �1
x (β)+ �2

x (β) = β, ∀β ∈ F(x)+ D(x).

The case x ∈ G◦ is trivial, since then D(x) = {0}, and one takes �1
x (β) = β,

�2
x (β) = 0. Therefore, let x ∈ ∂G be fixed and, in the present paragraph, suppress the

symbol x from the notation. For β ∈ F + D, define

H(β)
.=

{
(m1,m2) ∈ F × D : m1 + m2 = β

}
.
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Note that, for β ∈ F + D, H(β) is a closed convex set, and let �(β) denote the
unique minimiser of |m| over m = (m1,m2) ∈ H(β). We first show that the map
β �→ |�(β)| is convex, and thus continuous, on F + D. Let β1, β2 ∈ F + D and
β = αβ1 + (1 − α)β2, some α ∈ [0, 1]. Let m = α�(β1) + (1 − α)�(β2). Then
m ∈ H(β), and therefore |�(β)| ≤ |m| ≤ α|�(β1)|+(1−α)|�(β2)|, which establishes
the claim. We now claim that the map β �→ �(β) is also continuous. Indeed, given
β ∈ F + D, let the sequence {βn} ⊂ F + D be such that βn → β, and set mn = �(βn)

and m = �(β). The continuity of the map β �→ |�(β)| shows that |mn| → |m|
and therefore, in particular, that the sequence {mn} is uniformly bounded. Therefore
{mn} has a convergent subsequence, whose limit, which we denote by m∗, satisfies
|m∗| = |m|. Moreover, since F × D is closed, m∗ ∈ H(β). The equality m∗ = m
then follows from the uniqueness of the minimiser of |m′| over m′ ∈ H(β), and thus
mn → m and the claim is established. The validity of (3.2) now follows by letting
�1 and �2 be defined via � = (�1, �2). Next, note that the dependence of �x (β) on x
is only via F(x) and D(x), i.e., �x (β) = �x ′(β) if (F(x), D(x)) = (F(x ′), D(x ′)).
Clearly, there are finitely many values that the sets (F(x), D(x)) take as x ranges over
G, and for each x0 ∈ G, {x ∈ G|(F(x), D(x)) = (F(x0),G(x0))} is a measurable
subset of G. As a result, using (3.2), (x, β) �→ �x (β) is a measurable map. Let
u ∈ D[0, T ] be given. Keeping the notation of Theorem 3.2, let φ = �(u), and noting
that β(t) ∈ (F + D)(φ(t)) for a.e. t (by property (ii) of Theorem 3.2), let, for i = 1, 2,
β i (t) = �i

φ(t)(β(t)). Let α(t) = β1(t) and θ(t) = ∫ t
0 α(s) ds. It follows from (3.2)

that
α(t) ∈ F(φ(t)), a.e. t ∈ [0, T ]. (3.3)

It is also clear from the preceding discussion that α and θ are measurable. Next, let
β◦(t) = 0 if β2(t) = 0, and otherwise set β◦(t) = |β2(t)|−1β2(t). Then (3.2) implies
that

β◦(t) ∈ d(φ(t)), a.e. on {t : φ(t) ∈ ∂G}. (3.4)

Recall that by (ii) of Theorem 3.2,

γ̃ (t) ∈ d(φ(t)), d|ζ |−a.e. on {t : φ(t) ∈ ∂G}, (3.5)

and set

η(t) =
t∫

0

β2(s) ds +
∫

[0,t]
γ̃ (s) d|ζ |(s).

By mutual singularity of d|ζ | and Lebesgue measure, there exists a Borel set Q ⊂
[0, T ] such that

∫
Q ds = ∫

Qc d|ζ | = 0. We also have

d|η|s = |β2(s)| ds + |γ̃ (s)| d|ζ |s = |β2(s)| ds + d|ζ |s . (3.6)
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Thus, with γ = 11Qcβ◦ +11Q γ̃ and using (3.4), (3.5) and the definition of β◦, we have

η(t) =
∫

[0,t]
(11Qcβ◦(s)+ 11Q γ̃ (s)) d|η|(s) =

∫

[0,t]
γ (s) d|η|(s), (3.7)

γ (t) ∈ d(φ(t)), d|η|−a.e. on {t : φ(t) ∈ ∂G}. (3.8)

Moreover, by Theorem 3.2(iv),
∫

11{φ∈∂G}d|ζ | = |ζ |, and by (3.2), β2(t) ∈ D(φ(t))
a.e. t ∈ [0, T ]. Combining this with the fact that D(x) = {0} for x ∈ G◦ and relation
(3.6), we obtain

∫

[0,t]
11{φ(s)∈∂G} d|η|(s) =

∫

[0,t]
11{φ(s)∈∂G}(|β2(s)| ds + d|ζ |(s)) = |η|(t). (3.9)

By (3.2) and Theorem 3.2(i), we conclude that

u + θ + η = u +
.∫

0

(β1(s)+ β2(s)) ds + ζ = u +
.∫

0

β(s) ds + ζ = φ. (3.10)

Equations (3.3), (3.7), (3.8), (3.9) and (3.10) verify that the functions θ , α, η and γ
defined above meet the requirements in the definition of a solution to the CDMP for
u. Given u, we have defined θ and η in terms of the function β, which is unique only
in an a.e. sense. However, since θ is given in an integral form as

∫
�1
φ(s)(β(s)) ds, this

suffices to determine θ uniquely. Similarly, since η = ∫
�2
φ(s)(β(s)) ds + ζ and since

ζ is uniquely determined, so is η. We have thus constructed measurable maps � and
� as stated. Finally, the nonanticipative property of these maps now follows from that
of φ, ζ and

∫ ·
0 β(s)ds. �

3.2 Existence and uniqueness

Let (�,F ,P) be a complete probability space supporting an n-dimensional Brownian
motion W . Denote by {Ft } a right continuous P-complete filtration such that {Wt } is an
Ft -martingale. Denote by PM the class of {Ft }-progressively measurable processes
having RCLL sample paths P-a.s. Recall the function f c introduced in Sect. 1.3,
assumed to be Lipschitz on G. We are given σ : G → R

n×n , an initial condition
x ∈ G, and a stochastic process U ∈ PM, and are interested in a stochastic dynamical
system that is, roughly speaking, a solution to the equation

Xt = x +
t∫

0

f c(Xs) ds +
t∫

0

σ(Xs) dWs + θt + ηt + Ut ,
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where θ and η are the corresponding discontinuous media term and Skorokhod
constraining term, respectively. More precisely, we seek a stochastic process X that
satisfies:

there exist R
n-valued processes α, γ ∈ PM

and θ ∈ AC, η ∈ BV such that P-a.s.
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xt ∈ G for all t

Xt = x +
t∫

0

f c(Xs) ds +
t∫

0

σ(Xs) dWs + θt + ηt + Ut ,

θt =
t∫

0

αs ds, αt ∈ F(Xt ) a.e. t,

ηt =
t∫

0

γs d|η|s, |η|t =
t∫

0

11{Xs∈∂G} d|η|s, γt ∈ d(Xt ), d|η|-a.e.

(3.11)

Clearly, under Assumption 5, a process satisfying (3.11) also satisfies P-a.s.,

X = �

⎛

⎝x +
·∫

0

f c(Xs) ds +
·∫

0

σ(Xs) dWs + U

⎞

⎠ . (3.12)

Theorem 3.4 below proves strong existence and pathwise uniqueness of solutions to
(3.11). One motivation for including the process U in the formulation above is because
then, as a special case of Theorem 3.4, we obtain an extension of the uniqueness result
of Theorem 2.11 (see Remark 3.6). Another motivation is to allow for the interpretation
of U as being an external control.

Theorem 3.4 Let Assumption 6 hold and assume that σ is Lipschitz on G. Then there
exists a unique {Ft }-adapted process X satisfying (3.11) on [0, T ] P-a.s.

Proof Let us begin by showing the existence of a unique {Ft }-adapted process X
satisfying (3.12). Consider first the case where, for some M < ∞, one has |U (t)| ≤ M
for all t , P-a.s. Recall from Theorem 3.3 that � is nonanticipative. Therefore, if X is
an {Ft }-adapted process and the r.h.s. of (3.12) is denoted by h(X), we have that h(X)
is also {Ft }-adapted. Recall the notation ||X ||t = sups∈[0,t] |Xs |. The global Lipschitz
property of�, f c and σ imply that for some constant c depending only on�, f c and σ ,

E[||h(X)s − h(X ′)s ||2t ] ≤ c

t∫

0

E[||Xr − X ′
r ||2s ] ds, t ∈ [0, T ], (3.13)

whenever X and X ′ are {Ft }-adapted processes satisfying

E[||X ||2T + ||X ′||2T ] < ∞.
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Given (3.13), it is standard to show the existence of a unique {Ft }-adapted process
X satisfying (3.12) (see, e.g., the Proofs of Theorems 5.2.5 and 5.2.9 of [17]). To
remove the boundedness assumption on U , let τk = inf{s : |U (s)| ≥ k} and set
U k(s) = U (s)11[0,τk )(s), for k ∈ N. Then for each k there is a unique process Xk for
which (3.12) holds with U k in place of U ; moreover τk ↑ ∞ P-a.s., and X j , j ≥ k, all
agree on [0, τk), k ∈ N. Thus the a.s. pointwise limit satisfies (3.12). Any two processes
satisfying (3.12) agree on [0, τk), and thus follows the uniqueness statement.

To conclude, we must prove the existence of processes α, γ ∈ PM that satisfy
(3.11). Let Y = ∫ .

0 f c(Xs) ds + ∫ .
0 σ(Xs) dWs + Ut . By (3.12) and Theorem 3.3,

X = Y + θ + η, where θ = �(Y ) and η = �(Y ). Using the definition of �, there
exist maps ᾱ, γ̄ : [0, T ] × � → R

n and a full P-measure set �1 such that for all
ω ∈ �1 the following holds: the sample path of U is RCLL, ᾱ and γ̄ are Borel
measurable maps from [0, T ] → R

n , and

θ =
.∫

0

ᾱs ds, ᾱs ∈ F(Xs), (3.14)

η =
∫

[0,·]
γ̄s d|η|s, |η| =

∫

[0,·]
11{Xs∈∂G} d|η|s, γ̄s ∈ d(Xs). (3.15)

Since � and � are measurable and nonanticipative, the versions θ11�1 and η11�1 of
θ and, respectively, η (still denoted as θ and η in the sequel) are measurable, adapted
processes for which all sample paths are continuous, and, respectively, RCLL. As a
result, θ and η lie in PM. Let

αt = lim inf
s↓t

θs − θt

s − t
t ∈ [0, T ).

Then αt is progressively measurable on {Ft+ε} for every ε > 0, and since {Ft } is
continuous, it lies in fact in PM. We say t ∈ [0, T ) is a point of increase for |η| if
|η|(t, s) > 0 for all s ∈ (t, T ). Then for t ∈ [0, T ), define

γt =
⎧
⎨

⎩
lim infs↓t

ηs − ηt

|η|(s, t)
if t is a point of increase for |η|,

0 otherwise

and note that, in analogy with α, γ lies in PM. Moreover, on [0, T ) × �1 we have∫ .
0 αs ds = ∫ .

0 ᾱs ds and
∫ .

0 γs d|η|s = ∫ .
0 γ̄s d|η|s . Hence (3.14) and (3.15) are satisfied

by α (a.e.) and γ (d|η|-a.e.) a.s. It thus follows that (α, γ, θ, η) satisfy (3.11) a.s.
�

Remark 3.5 Prior results on strong solutions to SDE with discontinuous coefficients
include the following. Veretennikov [23] proves existence and uniqueness of strong
solutions for multi-dimensional SDE under a uniform ellipticity assumption. The paper
[24] proves strong existence and pathwise uniqueness in the case where the diffusion
coefficient is uniformly elliptic with respect to a part of the variables, and where the
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drift coefficient satisfies certain continuity conditions (that do not hold for the cases
studied in our paper). Existence and uniqueness of strong solutions was obtained in
[5] for the particular case when the drift of the SDE arises from a maximal monotone
map, without a nondegeneracy condition. We note that the current paper also allows
for a degenerate diffusion coefficient, and in fact, the special case when the diffusion
term is zero recovers the general CDMP.

In the case where G is a proper subset of R
n the only strong existence and uniqueness

results that are available correspond to diffusions with continuous coefficients [2,9,
10,19,20], with the exception of [5] which allows for the special case when the drift
arises from a maximal monotone map and G is convex with a normal constraint vector
field D.

Remark 3.6 In the case where U is deterministic and σ = 0, X is a solution to (3.11)
if and only if X ∈ M(G, D, F̃,U ), where F̃ = F + f c. Thus Theorem 3.4 above
extends the uniqueness statement of Theorem 2.11 to cover nonzero f c.

4 Appendix

Here, we present the proofs of Lemma 2.2 of Sect. 2.1, which was used to establish
existence of solutions to the CDMP, and Lemma 2.8 of Sect. 2.2.1, which derives some
elementary consequences of Assumption 4.

Proof of Lemma 2.2. Let E
.= {x ∈ G : |x | ≤ R}, where R ≥ supn ||φn||T , and let

H be a compact subset of R
n containing ∪x∈E F(x). Denote αn

.= θ̇n . Then

θn(t) =
∫

[0,t]
αn(s) ds, αn(t) ∈ F(φn(t)), a.e. t ∈ [0, T ]. (4.1)

Let S(t)
.= E × H × [0, t] for t ∈ (0, T ], and denote S = S(T ). For n ∈ N, define a

probability measure mn on S as follows: for A ∈ B(E × H),

mn(A × [0, t]) .= 1

T

∫

[0,t]
11{(φn(s),αn(s))∈A} ds.

The compactness of S guarantees that the measures {mn} are tight. Hence along a
subsequence, which we denote again by {mn}, we must have mn ⇒ m, where m is a
probability measure on S. Observe that since mn(E × H × ·) is normalized Lebesgue
measure on [0, T ], so is m(E × H × ·). Thus

m{(x, α, s) ∈ S : φ(s) 	= φ(s−)} = 0 (4.2)

and, moreover, m(∂(S(t))) = m(E × H × {t}) = 0 for every t ∈ [0, T ]. The latter
property shows that, as n → ∞,
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∫

S(t)

αmn(dx dα ds) →
∫

S(t)

αm(dx dα ds).

Since S(t) ⊆ S(T ), this convergence is in fact uniform over t ∈ [0, T ]. In turn, this
shows that, as n → ∞,

θn(t) =
∫

[0,t]
αn(s) ds = T

∫

S(t)

αmn(dx dα ds) → T
∫

S(t)

αm(dx dα ds).

Since, by assumption, θn → θ as n → ∞, this implies that

θ(t) = T
∫

S(t)

αm(dx dα ds), t ∈ [0, T ]. (4.3)

Now note that the set

�1
.= {(x, α, s) ∈ S : α /∈ F(x)}

is open and that mn(�1) = 0 for every n ∈ N. Since mn ⇒ m, we have that
m(�1) = 0. For j ∈ N, define

�
j
2
.= {(x, α, s) ∈ S : |x − φ(s)| > 1/j or |x − φ(s−)| > 1/j}

and let �2
.= ∪ j∈N�

j
2 . Due to the J1-convergence of φn to φ, we conclude that

mn(�
j
2 ) = 0 for all sufficiently large n. Since φ ∈ D[0, T ] implies � j

2 is open, we

have m(� j
2 ) = 0 for every j ∈ N, and consequently, m(�2) = 0. Together with (4.2)

and the fact that m(�1) = 0, this implies that

m{(x, α, s) ∈ S : x = φ(s), α ∈ F(φ(s))} = 1. (4.4)

Decomposing m in terms of the normalised Lebesgue measure m(E × H × ·) and
the conditional stochastic kernels ms(dx, dα), s ∈ [0, T ], we can use (4.4) to rewrite
(4.3) as

θ(t) = T
∫

S(t)

αm(dx dα ds) =
∫

[0,t]

⎛

⎝
∫

E×H

αms(dx, dα)

⎞

⎠ ds

=
∫

[0,t]

⎛

⎜
⎝

∫

F(φ(s))

αms(E, dα)

⎞

⎟
⎠ ds

=
∫

[0,t]
α(s) ds,
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where α ∈ BM[0, T ] is defined in the obvious manner. Finally, using the convexity
of F(φ(s)), we see that α(s) ∈ F(φ(s)) for a.e. s ∈ [0, T ], thus concluding the proof
of the lemma. �
Proof of Lemma 2.8 The proof of (2.7) is exactly the same as that of Lemma 2.1 of
[9]. Consider now (2.8). Let (i, j) ∈ E(C). By Assumption 3, we either have bi j = 0,
in which case (2.8) holds trivially, or we have that

〈bi j , νi j 〉 > 0, (4.5)

which we shall assume in what follows. Now, fix z ∈ ∂B and ϑ ∈ ϑ(z), and assume
without loss of generality that 〈z, νi j 〉 	= 0. Define

y
.= z − 〈z, νi j 〉

〈bi j , νi j 〉bi j .

We claim that y ∈ B. Suppose the claim is false. Then, since 0 lies in the interior of
B, there exists θ ∈ (0, 1) such that θy ∈ ∂B. Also, since 〈θy, νi j 〉 = 0, we have from
Assumption 4 that 〈bi j , ϑ̃〉 = 0 for all ϑ̃ ∈ ϑ(θy). In addition, by the convexity of
B, 〈ϑ̃, θy − x〉 ≤ 0 for all x ∈ B. Combining the above observations, we see that
〈ϑ̃, θ z − x〉 = 〈ϑ̃, θy − x〉 ≤ 0 for all x ∈ B. Recalling that θ ∈ (0, 1), substituting
x = z in the last relation, we deduce that 〈ϑ̃, z〉 ≥ 0, while substituting x = 0, we
obtain 〈ϑ̃, z〉 < 0. This leads to a contradiction, thus proving that y ∈ B. Using the
convexity of B once again, we obtain 〈z − y, ϑ〉 ≤ 0. Lastly, using the definition of y
and recalling that (4.5) holds, we obtain (2.8). �
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