
Queueing Syst (2011) 67: 275–293
DOI 10.1007/s11134-011-9212-7

A blind policy for equalizing cumulative idleness

Rami Atar · Yair Y. Shaki · Adam Shwartz

Received: 1 May 2010 / Revised: 12 December 2010 / Published online: 9 February 2011
© Springer Science+Business Media, LLC 2011

Abstract We consider a system with a single queue and multiple server pools of
heterogeneous exponential servers. The system operates under a policy that always
routes a job to the pool with longest cumulative idleness among pools with available
servers, in an attempt to achieve fairness toward servers. It is easy to find examples
of a system with a fixed number of servers, for which fairness is not achieved by this
policy in any reasonable sense. Our main result shows that in the many-server regime
of Halfin and Whitt, the policy does attain equalization of cumulative idleness, and
that the equalization time, defined within any given precision level, remains bounded
in the limit. An important feature of this policy is that it acts ‘blindly’, in that it
requires no information on the service or arrival rates.

Keywords Blind control · Diffusion limits · Halfin–Whitt regime · Fairness ·
Many-server systems

Mathematics Subject Classification (2000) 68M20 · 60F17 · 93E99

1 Introduction

The performance and optimization of systems with a large number of servers has at-
tracted much attention in recent years. This is due to their applicability—for example

Research supported in part by BSF (Grant 2008466), ISF (Grant 1349/08) and the fund for
promotion of research at the Technion.
Research supported in part by BSF (Grant 2008466), ISF (Grant 1349/08) and the Viterbi
Postdoctoral Fellowship.
The Julius M. and Bernice Neiman Chair in Engineering. Research supported in part by BSF (Grant
2008466) and the fund for promotion of research at the Technion.

R. Atar (�) · Y.Y. Shaki · A. Shwartz
Department of Electrical Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel
e-mail: atar@ee.technion.ac.il

mailto:atar@ee.technion.ac.il

276 Queueing Syst (2011) 67: 275–293

to call centers—as well as to their interesting structure. Since exact analysis proves
impossible in most cases, a large part of the research has focused on asymptotics.
Particularly, the many-server diffusion regime introduced by Halfin and Whitt [9]
has been widely studied and is the subject of ongoing research. Under this regime,
both the arrival rates and the number of servers are scaled up in a fixed proportion,
while maintaining a critically loaded system. A unique property of this regime is that
it allows for the total number of customers to sometimes rise above and sometimes
fall behind the number of servers, with non-negligible probability. For this reason it
is often considered more realistic for some applications than the conventional heavy
traffic regime (where the service rates are scaled up rather than the number of servers)
under which the number of customers exceeds that of servers except for a negligible
set of times.

In this paper we consider a system with a single queue and a fixed number, l, of
server pools of heterogeneous exponential servers. For i = 1, . . . , l we denote by Ii

the idleness process for pool i, representing the number of pool-i servers that are
free, and by Ji = ∫ ·

0 Ii(t) dt the cumulative idleness process for pool i, representing
the overall duration of time when a server has been idle since time zero, summed
over all pool-i servers. The system operates under a policy that always routes a job to
the pool with longest cumulative idleness among pools with available servers (more
generally, we analyze the longest weighted cumulative idleness policy). This is done
in an attempt to drive the processes Ji(t) to take nearly equal value for all i, as t

becomes large, thus achieving a certain form of fairness toward servers. We refer to
this as the Longest Idle Pool First (LIPF) policy. It is easy to exhibit examples with a
fixed number of servers, in which fairness is not achieved by LIPF in any reasonable
sense (see Example 2.1). Our main result (Theorems 2.2 and 2.3) is that in the Halfin–
Whitt regime, the policy does attain equalization of cumulative idleness, and that the
equalization time, defined within any given precision level, remains bounded in the
limit.

A feature of LIPF that appears to be convenient, is that it requires no information
on the service or arrival rates. In applications, it is a common practice to use a policy
reminiscent of this policy, namely one that always routes to the server whose cumu-
lative idleness is longest, as a job assignment paradigm [1]. In call center applications
the motivation for fairness comes from operational considerations of human servers,
but the same idea may be justified also in computer systems, where the notion of load
balancing is standard. Following common nomenclature, we call a policy that does
not use any information on the parameters a blind policy. This term may also refer to
situations where the control does not have access to the complete information about
the system state, and in our model both apply.

Fairness toward customers in queueing systems is a rather broad and well-studied
area: see e.g. [5, 14] and references therein. Very few papers have treated the sub-
ject of fairness toward servers (the reader is referred to [1] and references therein).
Armony and Ward [1] consider the problem of optimal routing to minimize steady
state delay costs subject to constraints that ensure idleness is distributed among the
pools according to a given proportion. They find a policy that is asymptotically opti-
mal for the problem in the Halfin–Whitt regime. Although [1] and the present paper

Queueing Syst (2011) 67: 275–293 277

are both motivated by fairness toward servers, the contributions of the two papers
are quite different. First, the mathematical problem formulations are obviously dif-
ferent, as [1] finds a policy that optimizes a criterion, whereas the current paper’s
contribution is on the performance analysis of a single policy, namely LIPF. A par-
ticular aspect of the problem formulation of [1] is that it allows the policy to access
system parameters (such as service and arrival rates), and the parameters are in fact
crucially used in the solution to the problem. In contrast, LIPF is a blind policy. An-
other major difference is that [1] formulates the problem in steady state, whereas
the present paper analyzes the model in the Halfin–Whitt asymptotics on a large, but
fixed time horizon. Understanding the transient behavior, by analyzing a given model
over a finite time horizon, may for some purposes be more accurate than steady state
analysis.

Tseytlin [13] considers a policy where each arriving customer joins pool i with
probability Ii/

∑
j Ij , and explicitly solves the model in steady state. The motivation

of [13] as well is to be fair to servers by achieving what is referred to there as idleness
balancing. Atar [3] analyzes a policy where jobs are routed according to the length
of idleness period of each server since last time of service, identifying the diffusion
limit, and showing that the length of the last idle period is nearly equalized by the
policy, among servers that are idle at a given time.

Gurvich and Whitt [8] study a parallel server system of a more general structure,
that allows for multiple buffers, and consider a class of routing policies, referred to
as Queue- and Idleness-Ratio (QIR) controls, that attempt to bring both the queue
length and idleness processes to a predetermined proportion. This is shown to be
achieved in the Halfin–Whitt regime. Specializing to the case studied here, of a sin-
gle buffer (and multiple pools), and letting ui , i = 1, . . . , l be a given vector of pro-
portions, their result asserts that under a suitable QIR policy, for each i, the process
Ii − ui

∑
i Ii , normalized in diffusion scale, converges to zero in probability, uni-

formly on compact time intervals. This clearly implies an analogous statement about
the processes Ji , and thus fairness is in fact achieved by QIR in a sense very similar
to what is achieved by LIPF. We mention upfront that achieving fairness has not been
the goal of [8] in developing their result. Nevertheless, it is important to explain how
our result relates to such an interpretation of [8], in view of the fact that it can be
used for this purpose. We make several comments about this comparison. First, LIPF
appears to be natural for the purpose of equalizing the cumulative idleness processes,
since these processes are its observables (note that in order to keep track of the cumu-
lative idleness processes one simply considers them as part of the state and updates
them dynamically). At the modeling level, our setting allows for each pool to contain
heterogeneous servers. The LIPF seems to enjoy an advantage over QIR in terms of
robustness: the processes Ii change much faster than the cumulative idleness Ji , re-
quiring any implementation of the latter a high rate of information to be transferred
between the server stations and the system control unit. This is not the case with the
LIPF policy, which is robust in that small delays between the time when the processes
are observed and the time when the information is received by the control unit, lead to
small degradation in terms of the fairness metric. We make a precise statement about
such a robustness property in the last section (Theorem 4.3). Finally, we note that
the proof in [8] is quite involved, and in turn relies on additional general state space

278 Queueing Syst (2011) 67: 275–293

collapse results from [7]. The proof offered here, regarding LIPF, is in contrast ele-
mentary and short, and illustrates that the analysis of this policy, in the more limited
setting of a single buffer, does not require convergence or state space collapse, but is
a direct consequence of properties of the policy and some basic technical results such
as tightness.

Recently, Armony and Ward [2] addressed the multi-class parallel server model
via an approach that emphasizes blind policies. They consider the problem of routing
to minimize delay costs subject to fair division of idle time among servers. A blind
dynamic control policy that routes according to a longest idle server first rule, and
schedules according to a generalized cμ rule is shown to be asymptotically optimal
in the Halfin–Whitt regime. The theme is similar to ours, and the setting is, in fact,
more general. A major difference from our result is that the idleness variable used in
the policy is the one used in [3], namely the time since last service rather than the
cumulative time.

We would like to further emphasize the aspect of blind control, that seems to be of
interest in a much wider context. One of the key assumptions in many recent works
on large queueing systems is that all model parameters are known exactly by the
controller. Such an assumption about service rate, for example, is obviously invalid
for call center applications, where servers are human. In fact, this assumption rarely
holds even when servers are computers, since there are always external influences
which affect service and arrival rates. Ideally, one would hope for an optimal policy
that requires minimal information about the parameters, and will not be sensitive to
their values.

In the context of the conventional heavy traffic theory, since the number of servers
is fixed and time is accelerated, one can obtain accurate information on service time
distribution by sampling service periods in a fixed, short time interval, so that the effi-
cacy of policies that use such estimates seems natural. However, in the Halfin–Whitt
limit, since time is not accelerated, one cannot hope to obtain good estimators for
all system parameters over a fixed interval of time. This provides motivation for the
present study, where the policy does not even attempt to estimate parameters. This
was also the motivation for the approach taken in Atar and Shwartz [4], which re-
lies on partial sampling from the service time distribution, demonstrating how nearly
optimal blind policies can be constructed based on the size of the server population.
Recent work of Stolyar and Tezcan [12] provides an alternative look, proposing a ro-
bust routing scheme for a multi-buffer multi-pool setting in the Halfin–Whitt regime,
which optimally balances load on the server pools without the knowledge of the input
rates.

As an application of our results we describe a model of a distributed collection of
pools with a central control, but where the information needed for LIPF to operate
is mostly local, and only minimal information about idleness is passed to the central
controller.

The rest of this paper is organized as follows. The setting and main results appear
in Sect. 2. Section 3 contains the proof. Finally, Sect. 4 provides a diffusion limit
result, extensions of the main result under relaxed assumptions on the arrival process
and to the case of delayed information, and discusses implementation in a distributed
set up.

Queueing Syst (2011) 67: 275–293 279

2 Setting, notation and main result

A complete probability space (Ω, F ,P) is given, supporting all stochastic processes
defined below. Customers arrive at a system according to a renewal process denoted
by A(t). It is assumed that the i.i.d. inter-arrival times associated with A are positive,
have mean 1 and variance V ∈ (0,∞). Each arrival has a single non-interruptible
service requirement. Arriving customers are routed to one of l pools, and within the
pool to a particular server, according to a routing policy, provided a free server is
available: if not, they are queued in a buffer with infinite room. Customers from the
buffer are routed to servers according to a first-come-first-served rule. We consider
work conserving routing policy, so that no server may be idle when at least one cus-
tomer is in the buffer. Each customer leaves the system when its service requirement
is fully processed.

There are N servers, arranged in l pools, so that the number of servers in pool
i is Ni , for i ∈ L := {1, . . . , l}. The servers are labeled 1, . . . ,N , and the set of k’s
for which server k is in pool i is denoted by Ki . We write K for {1, . . . ,N}, so⋃

i Ki = K , and |Ki | = Ni , i ∈ L. Server k serves according to an exponential service
time distribution with rate μk .

All processes defined below are assumed to have right-continuous sample paths.
For k ∈ K and t ≥ 0, let I(k)(t) take the value 1 if server k is idle at time t , and let

it be 0 otherwise. Set Z(k) = 1 − I(k). Let

J(k)(t) =
∫ t

0
I(k)(s) ds, k ∈ K, t ≥ 0.

Denote by Ii(t) the number of idle servers from pool i at time t , for i ∈ L (see (1))
and define Zi(t) in a similar manner. Then both Ii and Zi are stochastic processes
taking values in [0,Ni], and

Ii =
∑

k∈Ki

I(k) = Ni − Zi, i ∈ L. (1)

The modeling of service completions will require usage of standard Poisson
processes Si , i ∈ L. The number of service completions by pool-i servers until time
t is denoted by Di(t), and is represented as

Di(t) = Si

(
Ti(t)

)
,

where Ti is defined as

Ti(t) =
∑

k∈Ki

μk

∫ t

0
Z(k)(s) ds, i ∈ L, t ≥ 0. (2)

The number-in-system and the number-in-buffer processes are denoted by X and Q,
respectively. The initial configuration, namely,

({
I(k)(0), k ∈ K

}
,Q(0)

)
,

280 Queueing Syst (2011) 67: 275–293

and the processes A and Si , i ∈ L, are assumed to be mutually independent l + 2
entities.

We will say that a routing policy is work conserving if for all t ≥ 0,

Q(t) = (
X(t) − N

)+, or equivalently I (t) = (
N − X(t)

)+
.

Note that this imposes an assumption on the initial configuration as well as on the
policy.

Let

Ji :=
∑

k∈Ki

J(k), i ∈ L, J =
∑

i∈L

Ji.

Then Ji(t) represents the overall idleness time accumulated by servers from pool
i until time t . A vector u = (u1, . . . , ul), where ui ∈ (0,1) and

∑
i ui = 1, will be

called a target vector. Given a target vector u, we will consider a family of policies
that keep track of the Ji processes and attempt to drive the relative idleness Ji(t)/J (t)

toward ui , for each i. More precisely, let a target vector u be given, and let vi = u−1
i ,

i ∈ L. We say that a policy is u-greedy if

• The policy is work conserving; i.e., when a server becomes available and there is a
customer in the queue, a customer is routed to the server. When a customer arrives
to find some available servers, it is routed to one of them.

• If a customer is to be routed at time t to an available server, and AV(t) ⊂ L denotes
the set of pools containing available servers at this time, it is routed to any one of
the available servers from a pool i ∈ AV(t) for which

viJi(t) ≥ vjJj (t), for all j ∈ AV(t). (3)

Example 2.1 (a) Consider a system with Poisson arrivals at rate λ ∈ (0,1), and two
servers with deterministic service times, 1 and r . We argue that for large values of r

a policy that is work conserving and always routes to the server with longest cumu-
lative idleness first, is unfair toward the slow server. It will be clear that the argument
can be generalized to any finite number of servers, and to quite general service time
distributions, but we do not provide these details. A quasi-stationary analysis of the
system within a service period of the slow server, say [t, t + r], shows that the cu-
mulative idleness time of the fast server during the interval is proportional to r . If the
slow server completes service at some time t1, and t2 denotes the first time after t1
when two arrivals occur within less than a unit of time, then the distribution of t2 − t1
does not depend on r . Moreover, by time t2 the slow server will necessarily be as-
signed a new job. This shows that, as r becomes large, the fast and, respectively, slow
server enjoys idleness at a proportion of O(1) and O(1/r) on average. In particular,
the proportions are not equal provided r is sufficiently large.

(b) Next, consider two pools of servers, where pool 1 [resp., 2] contains a fixed
number, n, of servers with deterministic service time 1 [resp., r , where r is some large
number]. Consider again Poisson arrivals, where now λ ∈ (0, n) is fixed. The system
is assumed to work under LIPF. Consider a specific server from pool 2. If it completes
service at some time t1, then it must enter a new service cycle no later than when 2n

Queueing Syst (2011) 67: 275–293 281

new arrivals occur within a window of one unit of time; thus similarly to case (a),
the duration of vacation following t1 is stochastically bounded by a distribution that
is independent of r . As a result, the idleness proportion for each of the slow servers
is O(1/r) for large values of r . On the other hand, since the system is sub-critically
loaded, the average idleness proportion for pool-1 servers must be bounded below as
r becomes large. We conclude that LIPF does not achieve fairness in the situation
described here, provided r is sufficiently large.

Note that, in the above example, the asymptotic properties as r → ∞ are men-
tioned only in order to make a point about a fixed r (that is, any r sufficiently large).
The purpose of the example is to show that there exist (non-asymptotic) situations in
which LIPF does not achieve fairness. One is thus motivated to study under what con-
ditions a u-greedy policy achieves equalization with respect to a given target vector u.
Our treatment of this problem is within an asymptotic framework of a many-server
heavy traffic regime.

To formulate the notion of a large number of servers, we consider a sequence of
systems, parameterized by n, where the number of servers in pool i in the nth system
is proportional to n; particularly, Nn

i = �νin�, where νi are some positive constants.
In the sequel, the notation of all processes and system parameters introduced thus far
will be used with a superscript n, denoting dependence on the parameter; there is no
need however to parameterize the standard Poisson processes, and they will still be
denoted by Si .

With the convention above, An denotes the arrival process in the nth system. It is
assumed to be given as a time acceleration of the process A, namely An(t) = A(λnt).
The rates of arrival λn are assumed to satisfy λn/n → λ ∈ (0,∞) and, moreover,

λ̂n := λn − λn√
n

→ λ̂ ∈ R. (4)

The parameters μn
k are assumed to satisfy

μ ≤ μn
k ≤ μ, k ∈ Kn, n ∈ N, (5)

where 0 < μ < μ < ∞ are constants. In addition, it is assumed that the limits

μ̄n := 1

n

∑

k∈Kn

μn
k → μ ∈ [μ,μ], (6)

and

μ̂n := 1√
n

∑

k∈Kn

μn
k − √

nμ → μ̂ ∈ R, (7)

exist. The ‘heavy traffic’ assumption makes the system critically loaded by relating
the arrival and service rates as

λ = μ. (8)

282 Queueing Syst (2011) 67: 275–293

We will also denote βn = λ̂n − μ̂n and assume its limit satisfies

β̂ := λ̂ − μ̂ < 0. (9)

Note that the random variable Xn(0) is given by Qn(0) + Zn(0). The ‘second
order asymptotics’ of Xn(0) is assumed to satisfy

X̂n(0) := n− 1
2
(
Xn(0) − Nn

)
is a tight sequence of random variables. (10)

Define Ĵ n := n− 1
2 Jn. Given ε > 0 let γ n(ε) := inf{t : Ĵ n(t) ≥ ε}. Our main result

states that under a u-greedy policy, given any level of precision, equalization of the
cumulative idleness processes is achieved soon after γ n(ε), in the large n limit, with
large probability.

Theorem 2.2 Let u be a given target vector, and let π be any u-greedy policy. Then
under π , for every ε > 0 and T > 0,

lim
n→∞P

{
max

i,j∈L,i �=j
sup

s∈[0,T]
∣
∣vi Ĵ

n
i (s) − vj Ĵ

n
j (s)

∣
∣ ≥ ε

}
= 0.

Moreover, for any t ≥ 0, the random variables γ n = γ n(ε) are tight, and one has

lim inf
n→∞ P

{

γ n < ∞ and max
i∈L

∣
∣
∣
∣
Jn

i (γ n + t)

J n(γ n + t)
− ui

∣
∣
∣
∣ ≤ ε

}

≥ 1 − ε.

Note that measuring fairness in terms of ratios is meaningful only when Jn > 0.
This is why the formulation of the last assertion above involves γ n. As will be clear
from the proof of the result, in case that the random variables X̂n(0) in (10) are
further assumed to be bounded above by some −δ < 0, the random variables γ n(ε)

will be small with probability tending to 1 (as n → ∞), provided that ε is sufficiently
small (see, in particular, (28)). In this case, the above result asserts that equalization
is attained soon after time zero.

The following is almost an immediate consequence of the above result. Its purpose
is to emphasizes that equalization is in fact achieved (with high probability) after
sufficiently large time.

Theorem 2.3 Under the hypotheses of Theorem 2.2, for every ε > 0 there exists T

such that for every T1 ∈ [T ,∞),

lim inf
n→∞ P

{

Jn(T) > 0 and max
i∈L

sup
s∈[T ,T1]

∣
∣
∣
∣
Jn

i (s)

J n(s)
− ui

∣
∣
∣
∣ ≤ ε

}

≥ 1 − ε.

Remark 2.4 The way a u-greedy policy is defined leaves open the question of which
server in a pool will receive an incoming job. Because servers in a pool may have
different service rates, selecting, say, uniformly at random among available serves in
the pool will lead to non-equal distribution of idleness within the pool, since faster
servers become available more often. This issue can easily be addressed by our results

Queueing Syst (2011) 67: 275–293 283

as follows. Assuming that the service rate distribution is supported on a finite set, one
can decide on allocation within each pool by pretending that pools are further divided
into smaller pools where each contains identical servers. Then one applies a u-greedy
policy to the larger collection of pools. Here, the vector u for the larger set of pools is
determined based on the original u in a straightforward manner (i.e., by splitting each
ui further according to the proportions of the number of servers in each sub-pool).
Our result implies that this leads to fairness among the smaller pools. There is still the
issue of how idleness is distributed within each pool of identical servers. Although
we do not make any rigorous statement about it, it is plausible that a randomized
selection leads to equalized distribution at large time, and one may attempt to make
this precise by arguing via ergodic considerations.

3 Proof

The main result will be proved by diffusion scale analysis. To this end, we define
processes at diffusion scale, as follows. We denote centered, normalized versions of
the processes, for i ∈ L and t ≥ 0, by

Î n
i (t) = In

i (t)√
n

, Q̂n(t) = Qn(t)√
n

, (11)

Ân(t) = An(t) − λnt√
n

, Ŝn
i (t) = Si(nt) − nt√

n
, X̂n(t) = Xn(t) − Nn

√
n

, (12)

and

Î n(t) = In(t)√
n

, Ĵ n(t) = Jn(t)√
n

. (13)

The fluid-scale process

T̄i (t) = 1

n
T n

i (t), i ∈ L (14)

will also be used.

Lemma 3.1 Define

Fn(t) = 1√
n

∑

k∈K

μk

∫ t

0
In
(k)(s) ds, (15)

Wn(t) = Ân(t) −
l∑

i=1

Ŝn
i

(
T̄ n

i (t)
)
, (16)

β̂n = 1√
n

(

λn −
∑

k∈K

μk

)

. (17)

284 Queueing Syst (2011) 67: 275–293

Then

X̂n(t) − X̂n(0) = Wn(t) + β̂nt + Fn(t), t ≥ 0. (18)

Proof We have for every t that Xn(t) = Xn(0) + An(t) − ∑
i∈L Dn

i (t), by definition
of these processes. Thus

Xn(t) = Xn(0) + An(t) −
l∑

i=1

Si

(
T n

i (t)
)
. (19)

Hence

Xn(t) − Nn − (
Xn(0) − Nn

)

= [
An(t) − λnt

] + λnt −
l∑

i=1

[
Si

(
T n

i (t)
) − T n

i (t)
] −

l∑

i=1

T n
i (t).

Since Zn
(k) + In

(k) = 1,

l∑

i=1

T n
i (t) =

∑

k∈K

μk

∫ t

0
Zn

(k)(s) ds =
∑

k∈K

μkt −
∑

k∈K

μk

∫ t

0
In
(k)(s) ds,

and dividing by
√

n,

X̂n(t) − X̂n(0) = Ân(t) −
l∑

i=1

Ŝn
i

(
T̄ n

i (t)
) +

(
λn

√
n

−
∑

k∈K

μk

)

t

+ 1√
n

∑

k∈K

μk

∫ t

0
In
(k)(s) ds

which yields (18). �

Throughout, we let |f |∗t = sup0≤s≤t |f (s)|. Denote the modulus of continuity of a
function f by

wθ(f, δ) := sup
0≤s≤t≤(s+δ)∧θ

∣
∣f (t) − f (s)

∣
∣, f : [0, θ] → R, δ > 0,

where, here and in what follows, a ∧ b and a ∨ b denote min(a, b) and max(a, b),
respectively. A sequence of processes defined on [0, θ], with sample paths in the
Skorohod space, is said to be C-tight if it is tight, and every subsequential limit has
continuous sample paths with probability one. C-tightness of, say {Xn}, implies tight-
ness of |Xn|∗θ and the convergence lim supn P (wθ (X

n, δ) > δ′) → 0, as δ → 0, for
every δ′ > 0 (see [11, Proposition VI.3.26]). These facts will be used in the sequel in
conjunction with the application of the following lemma.

Queueing Syst (2011) 67: 275–293 285

Lemma 3.2 Given any θ ∈ (0,∞), the sequence of random variables

∣
∣Ân

∣
∣∗
θ
∨ max

i

∣
∣Ŝn

i ◦ �T n
i

∣
∣∗
θ
∨ max

i

∣
∣Î n

i

∣
∣∗
θ
, n ∈ N,

is tight. In fact, {Ân}n∈N and, for every i ∈ L, {Ŝn
i ◦�T n

i }n∈N, are C-tight. Furthermore,
given any ε1, ε2 > 0 there exists t1 such that

lim sup
n→∞

P
(∣
∣Rn

∣
∣∗
t
≥ ε1t

) ≤ ε2, t ≥ t1, (20)

where Rn is any one of the processes Ân or Ŝn
i ◦ �T n

i .

Proof First, we note by (2) that for any t ≤ θ ,

�T n
i (t) ≤ μ

n
θNn

i ≤ μθνi,

since Zn
i is bounded by Nn

i . Hence

∣
∣Ŝn

i

(�T n
i

)∣
∣∗
θ

= sup
0≤t≤θ

∣
∣Ŝn

i

(�T n
i (t)

)∣
∣ ≤ ∣

∣Ŝn
i

∣
∣∗
μθνi

.

It is well known that the scaled renewal processes Ân and Ŝn
i converge in distribution,

uniformly on compacts, to independent zero mean Brownian motions with diffusion
coefficients (λV)1/2 and, respectively, 1 [6, Sect. 17]. Thus {|Ân|∗θ }n, {|Ŝn

i ◦ �T n
i |∗θ }n

are tight.
We next prove that {|Î n

i |∗θ }n is tight. By (5) and (15),

0 ≤ Fn(t) ≤ μ

∫ t

0
Î n(s) ds = μ

∫ t

0
X̂n(s)− ds.

Thus by (18), given θ , we have for every t ∈ [0, θ]
∣
∣X̂n(t)

∣
∣ ≤ ∣

∣X̂n(0)
∣
∣ + ∣

∣Wn
∣
∣∗
θ
+ ∣

∣β̂n
∣
∣θ + μ

∫ t

0

∣
∣X̂n(s)

∣
∣ds.

By Gronwall’s inequality ([10] p. 36)

∣
∣X̂n

∣
∣∗
θ

≤ (∣∣X̂n(0)
∣
∣ + ∣

∣Wn
∣
∣∗
θ
+ ∣

∣β̂n
∣
∣θ

)
eμθ .

Since we already established tightness of the sup norm of terms in the sum defin-
ing Wn, since β̂n are bounded (cf. (4), (7), (8) and (17)), and X̂n(0) are tight by
assumption, it follows that |X̂n|∗θ are tight, and thus so are |Î n

i |∗θ .
We argue that the processes Ŝn

i ◦ �T n
i are C-tight. Denote Mn

i = ∑
k∈Kn

i
μn

k/n and
note that Nn

i are given as �νin� and μk are bounded, whence Mn
i are bounded. By (2),

∣
∣�T n

i (t) − Mn
i t

∣
∣ ≤ �μθ√

n

∣
∣Î n

i

∣
∣∗
θ
, t ∈ [0, θ].

286 Queueing Syst (2011) 67: 275–293

Consider a subsequence on which Mn
i converges to some M ∈ [0,∞). In view of the

tightness of |Î n
i |∗θ , it follows that �Ti converges in distribution to Mt . Combined with

the convergence in distribution of Ŝn
i to a Brownian motion and an application of the

random change of time lemma [6, p. 151], this shows that Ŝn
i ◦ �T n

i are C-tight.
Finally, (20) is an immediate consequence of the fact that uniformly on compacts

subsequential limits of any of the processes Ân and Ŝn
i ◦ �T n

i are all Brownian motions
with zero drift and bounded diffusion coefficient. �

Lemma 3.3 Consider a target vector u and any u-greedy policy. Fix p,q ∈ L, p �= q

and θ ∈ (0,∞). Let Δn(t) = vpĴ n
p (t) − vqĴ n

q (t). Then, for any θ , |Δn|∗θ → 0 in
probability as n → ∞.

An outline of the proof is as follows. We begin by developing the relation (21),
valid under the event that, on some time interval [η, ζ], no jobs are in the queue and
no jobs are routed to a certain pool, i. Then, for arbitrary ε > 0 and θ , we define the
time τn as in (22) and note that it suffices to show P(En) → 0, where En = {τn ≤ θ}.
We next analyze the event En. We define σn as in (23). The important property of the
interval [σn, τn] thus constructed is that on the event En, during [σn, τn], we have
Δn > 0, whence the policy does not allow any new jobs to be routed to pool q . This
makes it possible to use relation (21) with i = q . The analysis shows that, within short
time, all pool-p servers become occupied (Step 1, (24)), and that on the remaining
time until τn, Ip = o(n1/2) (Step 2, (25)). These two estimates are combined (Step 3,
(27)) to bound the incremental idleness time of pool p, by which it follows that En

has small probability.

Proof To simplify the notation, we remove the superscript n from most of the nota-
tion (there will be no confusion). We start by analyzing a scenario where no jobs are
routed to a certain pool within a given interval. More precisely, fix n ∈ N and let η

and ζ be [0, θ]-valued random variables such that η ≤ ζ . Fix i ∈ L and let H be any
event under which

• Q = 0 within the interval [η, ζ]; and
• no jobs are routed to pool i within the same interval.

Write Li for L \ {i}. Then, with the notation Y [a, b] = Y(b) − Y(a), we will show
that, on the event H ,

∑

j∈Li

Îj [η, ζ] + Â[η, ζ] −
∑

j∈Li

Ŝj ◦ �Tj [η, ζ]

− 1√
n

∑

j∈Li

∑

k∈Kj

μk

∫ ζ

η

Z(k)(s) ds + λn

√
n
(ζ − η) = 0. (21)

By (19),

X[η, ζ] = A[η, ζ] −
∑

j∈L

Dj [η, ζ] = A[η, ζ] −
∑

j∈L

Sj ◦ Tj [η, ζ].

Queueing Syst (2011) 67: 275–293 287

By definition of the processes X, Q and Zj , we have X = Q + ∑
j∈L Zj . Since Q

vanishes on the interval [η, ζ], we have

X[η, ζ] =
∑

j∈L

Zj [η, ζ].

Also, since no jobs are routed to pool i, we have

Zi[η, ζ] = −Di[η, ζ] = −Si ◦ Ti[η, ζ].
Combining the above three equations,

∑

j∈Li

Zj [η, ζ] = A[η, ζ] −
∑

j∈Li

Sj ◦ Tj [η, ζ].

Using Zj + Ij = Nj , j ∈ L, we have

−
∑

j∈Li

Ij [η, ζ] = [
A[η, ζ] − λn(ζ − η)

] + λn(ζ − η)

−
∑

j∈Li

[
Sj

(
n�Tj (ζ)

) − n�Tj (ζ)
]

+
∑

j∈Li

[
Sj

(
n�Tj (η)

) − n�Tj (η)
] −

∑

j∈Li

Tj [η, ζ],

and dividing by
√

n and using the definitions of the processes involved (2), (11)–(14),
yields (21).

In what follows, fix an arbitrary ε > 0. Note that Δ(0) = 0, and let

τ = τn = inf
{
t | Δ(t) ≥ ε

}
, (22)

and E = En = {τ ≤ θ}. To prove the lemma, it suffices to show that P(E) → 0 as
n → ∞. Let us define on the event E

σ = σn = sup
{
t | t < τ,Δ(t) ≤ ε/2

}
,

κ = κn = inf
{
t ∈ [σ, τ] | Ip(t) = 0

}
.

(23)

Note that on E we always have σ ∈ [0, τ]. The random variable κ represents the
first time between σ and τ when all servers from pool p are occupied. If this never
happens within [σ, τ], we have, by definition, κ = ∞.

For B ∈ F , we write PE(B) = P(E∩B). The proof proceeds in three steps, where
Steps 1 and 2 are based on (21).

Step 1. We will show that for every δ > 0,

PE(κ ∧ τ − σ > δ) → 0 as n → ∞. (24)

Fixing δ, we will use the foregoing analysis concerning the event H , with

H = E ∩ {κ ∧ τ − σ > δ}.

288 Queueing Syst (2011) 67: 275–293

We take η = σ , and ζ = κ ∧ τ . Under H , by the definition of κ , at any time within
[σ, κ ∧ τ) at least one server from pool p is idle. Consequently, on this time inter-
val, no customer is in the queue (by work conservation), and pool q receives no jobs
(by (3) and the fact Δ > 0). This discussion shows that H satisfies both bullet condi-
tions from the first part of the proof. Consequently (21) is valid with i = q .

Let R denote the sum of the first three terms on the l.h.s. of (21). Note that η and ζ

are bounded by θ on E, hence on H . Thus from Lemma 3.2, the sequence of random
variables {R1H }n∈N is tight. Using (21) and the inequality Z(k) ≤ 1, we have on H ,

R +
(

λn

√
n

− 1√
n

∑

j∈Lq

∑

k∈Kj

μk

)

(ζ − η) ≤ 0.

Using the notation β̂n (17), and the inequality
∑

k∈Kq
μk ≥ μNq ≥ μνqn/2,

R + (
β̂n + √

nμνq/2
)
(ζ − η) ≤ 0.

Since R1H are tight, β̂n converge (cf. (4), (7)), and μνq > 0, it follows that PE(ζ −
η > δ) → 0, establishing (24).

Step 2. We will show that for every γ > 0,

PE

(
τ > κ, sup

t∈[κ,τ]
Ip(t) > n1/2γ

)
→ 0. (25)

We use again the analysis from the first part of the proof. This time let H = E ∩
{τ > κ , supt∈[κ,τ] Ip(t) > n1/2γ }. On H define

τ1 = inf
{
t ∈ [κ, τ] | Ip(t) > n1/2γ

}
, σ1 = sup

{
t ∈ [κ, τ1] | Ip(t) < n1/2γ /2

}
,

and note that on H one has κ ≤ σ1 ≤ τ1 ≤ τ . On the event H , within the time interval
[σ1, τ1], Ip > 0, and so Q = 0, and no jobs are routed to pool q . Consequently,
the bullet conditions about H hold true with η = σ1 and ζ = τ1. We can thus again
use (21) with i = q . By definition of the times σ1 and τ1, we see that the first term
in (21) is bounded below by γ /2, on H . We again use the inequality Z(k) ≤ 1 as well
as the lower bound μ on μk , k ∈ Kq , in (21), to obtain the inequality (on H):

γ /2 + W̃ [η, ζ] + μνqn1/2(ζ − η) ≤ 0, (26)

where

W̃ (t) := Â(t) −
∑

j∈Lq

Ŝj ◦ �Tj (t) + β̂nt.

Recall that β̂n → β̂ . By Lemma 3.2, the processes {W̃ }n∈N are C-tight. Let us denote
H1 = H ∩ {ζ − η ≤ n−1/4} and H2 = H ∩ {ζ − η > n−1/4}. Then by (26), we have

P(H1) ≤ P
(
γ /2 − wθ

(
W̃ ,n−1/4) ≤ 0

)

and

P(H2) ≤ P
(−2|W̃ |∗θ + μνin

1/4 ≤ 0
)
.

Queueing Syst (2011) 67: 275–293 289

In view of the C-tightness, it follows that both P(H1) and P(H2) converge to zero
as n → ∞. This shows that P(H) → 0, and (25) follows.

Step 3. We conclude by combining Steps 1 and 2. On E, we clearly have

Ĵp(τ) − Ĵp(σ) ≤ (κ ∧ τ − σ)|Îp|∗θ + 1{τ>κ} θ sup
[κ,τ]

Îp. (27)

Now, using the fact that Ĵq is nondecreasing and then (27), denoting ε′ = ε/(4vp),

P(E) = P
(
τn ≤ θ

) = PE

(
Δ(τ) − Δ(σ) ≥ ε/2

)

≤ PE

(
Ĵp(τ) − Ĵp(σ) ≥ 2ε′)

≤ PE

(
(κ ∧ τ − σ)|Îp|∗θ ≥ ε′) + PE

(
τ > κ, θ sup

[κ,τ]
Îp ≥ ε′).

By Step 1 and the tightness of |Îp|∗θ the first term converges to 0, and by Step 2 so
does the second term. �

In fact, the proof of Lemma 3.3 establishes the following.

Corollary 3.4 Fix p,q ∈ L, p �= q , θ ∈ (0,∞) and ε > 0. Recall Δn(t) = vpĴ n
p (t)−

vqĴ n
q (t). Then under any (work conserving) policy that gives priority to pool p over

pool q whenever Δn(t) > ε, for any δ > 0,

P
(∣
∣
(
Δn

)+∣
∣∗
θ

> ε + δ
) → 0

as n → ∞.

Lemma 3.5 For every η, ε > 0, there is t1 > 0 such that for all t > t1,

lim inf
n

P
(
Ĵ n(t) ≥ η

) ≥ 1 − ε.

Proof Recall equations (15)–(18). On the event En,t = {Ĵ (t) < η} one has

Fn(t) =
∑

k∈K

μkĴ(k)(t) ≤ �μη

and
∫ t

0
X̂−(s) ds =

∫ t

0
Î (s) ds = Ĵ (t) ≤ η.

Hence

−η ≤
∫ t

0
X̂(s) ds ≤ X̂(0)t +

∫ t

0
Wn(s) ds + 1

2
β̂nt2 + �μηt,

and dividing by t , we have on En,t

−η

t
− X̂(0) − �μη − 1

2
β̂nt ≤ |Â|∗t +

∑

i

|Ŝi ◦ �Ti |∗t . (28)

290 Queueing Syst (2011) 67: 275–293

Recalling that β̂n → β̂ < 0 by (9), and that X̂(0) are tight, the result follows on
applying the last assertion of Lemma 3.2. �

Proof of Theorems 2.2 and 2.3 Let ε > 0 and t ≥ 0 be given. The first state-
ment is an immediate consequence of Lemma 3.3. Tightness of γ n(ε) follows from
Lemma 3.5. Let θ be so large that γ n = γ n(ε) < θ − t with probability at least
1 − ε/2, for all sufficiently large n. Fix θ1 ≥ θ . Let δ > 0 be given, and consider
the event maxi,j |vi Ĵ

n
i − vj Ĵ

n
j |∗θ1

≤ δ. By Lemma 3.3, this event has probability at
least 1 − ε/2, for all sufficiently large n. A simple calculation shows that if ai ≥ 0,
i ∈ L are given numbers that sum up to a > 0, and maxi,j |viai − vjaj | ≤ δ then
maxi |(ai/a) − ui | ≤ δ/a. Hence for all sufficiently large n, with probability of at
least 1 − ε, one has

γ n + t < θ and max
i∈L

∣
∣
∣
∣
Ĵ n

i (γ n + t)

Ĵ n(γ n + t)
− ui

∣
∣
∣
∣ ≤ δ

Ĵ n(γ n + t)
≤ δ

ε
,

where we used the fact Ĵ n(γ n) = ε and that the process Ĵ n is nondecreasing. Theo-
rem 2.2 follows upon setting δ = ε2.

To prove Theorem 2.3, we take t = 0 in the above argument, and set T = θ . Then
we fix some T1 ≥ T and set θ1 = T1. On the event analyzed in the previous paragraph,
for all sufficiently large n, with probability at least 1 − ε, we obtain

T ≥ γ n (hence Ĵ n(T) ≥ ε) and

max
i∈L

sup
s∈[T ,T1]

∣
∣
∣
∣
Ĵ n

i (s)

Ĵ n(s)
− ui

∣
∣
∣
∣ ≤ δ

Ĵ n(T)
≤ δ

ε
= ε. �

4 Further results and discussion

We present in this section a few consequences of the main result. First we obtain,
under some further assumptions, a diffusion limit result for the processes X̂n. We
then observe that the proof of the main result holds under assumptions on the arrival
process that are weaker than the renewal structure. Finally, we discuss two aspects of
implementation, namely delayed information transmission, and a distributed set up.

Diffusion limit As a simple consequence of Theorem 2.2 we obtain a diffusion limit
result for the process X̂n, in the case where each pool consists of homogeneous
servers.

Theorem 4.1 Let the hypotheses of Theorem 2.2 hold. Assume, in addition, that
X̂n(0) has a limit in law, denoted ξ0. Assume moreover, that for all n, i ∈ L and
k ∈ Ki = Kn

i , one has μk = μ∗
i , where μ∗

i > 0, i ∈ L are constants not depending
on n. Then the processes X̂n converge in law, uniformly on compacts, to the solution
ξ of the stochastic differential equation

dξ = σ dw + β̂ dt + c ξ− dt, t ≥ 0, ξ(0) = ξ0, (29)

Queueing Syst (2011) 67: 275–293 291

where σ 2 = λV + μ = μ(V + 1), c = ∑
i∈L μ∗

i ui , and w is a standard Brownian
motion independent of ξ0.

Proof By (1) and (11), Î n
i = n−1/2 ∑

Ki
I(k). Using equations (15) and (18), the as-

sumption that μk are fixed on each Ki , and the relation Ĵ n
i = ∫ ·

0 In
i (s) ds,

X̂n(t) = X̂n(0) + Wn(t) + β̂nt +
∑

i

μ∗
i Ĵ

n
i (t). (30)

The convergence of the processes Ân and Ŝn stated in the proof of Lemma 3.2, along
with the estimates on �T n

i obtained in that proof, imply that Wn (defined in (16)),
converge in law to σw. Recall that β̂n → β̂ (9). Next, note that for each i,

Ĵ n
i − uiĴ

n =
∑

j∈L

(
uj Ĵ

n
i − uiĴ

n
j

)
.

By Theorem 2.2, each of the terms in the sum above converges in law to zero, u.o.c.
Work conservation of the policy implies Î n = (X̂n)−. Consequently,

Ĵ n
i − ui

∫ ·

0

(
X̂n(s)

)−
ds converges to zero in law u.o.c. (31)

It follows from the first assertion in Lemma 3.2 that Ĵ n
i are tight. Hence by (30), so

are X̂n, and, using (31), any subsequential limit must be a weak solution to (29). The
claim follows by uniqueness of solutions to (29). �

Relaxed assumptions on arrivals The probabilistic assumption on the arrival
process can be much relaxed. Rather than assuming An are renewal processes, let
us assume that the normalized processes Ân (12) are C-tight (recall the definition
from Sect. 3). In addition, assume that given ε1, ε2 > 0 there exists t1 such that

lim sup
n→∞

P
(∣
∣Ân

∣
∣∗
t
≥ ε1t

) ≤ ε2, t ≥ t1 (32)

(compare with (20)). The assumptions on the parameters λn, namely (4), (8) and (9),
are, of course, kept. An example might be a Poisson process with intensity function
that varies periodically in time (under suitable conditions). Such a process is often
used in modeling queueing applications.

Corollary 4.2 Under the relaxed assumptions on the arrival processes just de-
scribed, the results of Theorems 2.2 and 2.3 are valid.

Proof A review of the proofs of Lemmas 3.1–3.3 shows that the C-tightness property
suffices. Lemma 3.5 relies, in addition, on the last assertion of Lemma 3.2, which has
been substituted by the assumption (32). Finally, the proof of the theorems holds
verbatim. �

292 Queueing Syst (2011) 67: 275–293

Delayed information Note that by Corollary 3.4, we can extend the results to poli-
cies which are only approximately u-greedy. This implies that we may perform the
routing on the basis of (slightly) delayed information.

Theorem 4.3 Let π be any work conserving policy that gives priority at every time
t > d0 to the pool with the largest value for vpJ n

p (t − d0), where d0 > 0 is a fixed
delay. Then under π , for every ε > 0 and T > 0,

lim
d0→0

lim
n→∞P

{
max

i,j∈L,i �=j
sup

s∈[0,T]

∣
∣vi Ĵ

n
i (s) − vj Ĵ

n
j (s)

∣
∣ > ε

}
= 0.

The meaning of the result is that when the information on the processes Ji is
obtained with a small delay, the effect with regard to the fairness performance is
small.

Proof The proof relies on the fact that we have a priori bounds on the slope of Δn,
and thus a small delay may cause an error with only small probability.

Note that Lemmas 3.1 and 3.2 are in force, since the only property of the policy
that they use is that it is work conserving. Fix p,q , T , and ε > 0, and let Δn be as in
Corollary 3.4. Consider the events

Ωn
1 = {

for every t ∈ [d0, T] one has Δn(t) > ε provided that Δn(t − d0) > 2ε
}
,

Ωn
2 = {∣

∣Δn
∣
∣∗
d0

< ε
}
.

Applying the corollary with δ = ε shows that

lim
n→∞P

(
Ωn

1 ∩ Ωn
2 ∩ {∣

∣
(
Δn

)+∣
∣∗
T

> 2ε
}) = 0.

Recalling that Δn is differentiable and null at zero, the probability of the complement
of Ωn

1 ∩ Ωn
2 is bounded by

P
(
there exists t ∈ [d0, T] such that Δn(t) ≤ ε and Δn(t − d0) ≥ 2ε; or

∣
∣Δn

∣
∣∗
d0

≥ ε
)

≤ P

(∣
∣
∣
∣
d

dt
Δn

∣
∣
∣
∣

∗

T

≥ ε

d0

)

.

However, the derivative of Δn is bounded by maxi vi |Î n|∗T , which, by Lemma 3.2 is
tight. As a result, the bound in the above display tends to 0 as d0 → 0. Since p,q and
ε are arbitrary, this completes the proof. �

We remark that random, pool-dependent, time varying delays may be handled
in the same way. If the maximal delay over the interval tends to 0 in probability, an
analogue of the above result is valid. In particular, note that sampling the accumulated
delays at intervals of size d0 implies maximal delay of d0. This in turn implies that the
amount of information that needs to be considered by the controller and the number
of decisions are much smaller: instead of making decisions based on a continuum of
inputs, sampled data can be used, and with small degradation in performance.

Queueing Syst (2011) 67: 275–293 293

Tree structure implementation Consider now a system with a large number of pools.
From the point of view of managing such systems, it is desirable to reduce the amount
of information that is needed in order to decide on the routing, and possibly also
reduce the amount of computation required by the central controller. In practice, this
may be of particular importance if the facility is distributed geographically over many
locations. As a model, consider the following tree-like system of pools. Each leaf is
a pool, and each node represents a local processing center, the root being the central
controller.

Since the only information the central controller requires is the index of the pool
with largest value viJi that has free servers, a u-greedy policy can be implemented
as follows. Each node sends to its parent (the closest node connected to it which is
closer to the root node) a single number—the value of viJi for that pool among its
offspring (including pools or nodes under it), with largest value viJi that has free
servers. The decision by the root node is then between a small number of values—
one for each sub-node or pool directly under it. This strategy has the advantage that
most of the information is transmitted only locally—from each leaf to the node above
it. The analysis of the case of delayed information applies also to the tree structure
implementation.

Acknowledgements We thank two referees for many thoughtful comments that led to an improved
revision of the paper.

References

1. Armony, M., Ward, A.R.: Fair dynamic routing in large-scale heterogeneous-server systems. Preprint
(2008)

2. Armony, M., Ward, A.R.: Blind fair routing in large-scale service systems. Preprint
3. Atar, R.: Central limit theorem for a many-server queue with random service rates. Ann. Appl. Probab.

18(4), 1548–1568 (2008)
4. Atar, R., Shwartz, A.: Efficient routing in heavy traffic under partial sampling of service times. Math.

Oper. Res. 33, 899–909 (2008)
5. Avi-Itzhak, B., Levy, H., Raz, D.: Quantifying fairness in queueing systems: principles and applica-

tions. Preprint (2004)
6. Billingsley, P.: Convergence of Probability Measures. Wiley, New York
7. Dai, J.G., Tezcan, T.: State space collapse in many server diffusion limits of parallel server systems.

Preprint
8. Gurvich, I., Whitt, W.: Queue-and-idleness-ratio controls in many-server service systems. Math. Oper.

Res. 34, 363–396 (2009)
9. Halfin, S., Whitt, W.: Heavy-traffic limits for queues with many exponential servers. Oper. Res. 29(3),

567–588 (1981)
10. Hale, J.K.: Ordinary Differential Equations. Krieger, Huntington (1980)
11. Jacod, J., Shiryaev, A.: Limit Theorems for Stochastic Processes. Springer, Berlin (1987)
12. Stolyar, A.L., Tezcan, T.: Control of systems with flexible multi-server pools: a shadow routing ap-

proach. Preprint (2008)
13. Tseytlin, Y.: Queueing systems with heterogeneous servers: improving patients’ flow in hospitals.

Research Proposal, The Faculty of Industrial Engineering and Management, Technion (2007)
14. Wierman, A.: Fairness and classification. Perform. Eval. Rev. 34(4), 4–12 (2007)

	A blind policy for equalizing cumulative idleness
	Abstract
	Introduction
	Setting, notation and main result
	Proof
	Further results and discussion
	Diffusion limit
	Relaxed assumptions on arrivals
	Delayed information
	Tree structure implementation

	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

