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Abstract: We review how tools from multiplicative ergodic theory and the theory of
positive operators are used in the analysis of exponential stability of the optimal nonlinear
filter. Particularly, in the case of finite state, we relate the filter sensitivity to perturbations
in its initial data to the Lyapunov spectral gap associated with the filtering equation, and,
in a general setting, use Hilbert’s metric and Birkhoff’s contraction coefficient to estimate
the decay rate of the error.

1. Introduction

The problem of stability of the nonlinear filter arises in the following practical context. If
the transition law of a given Markov process is known, but its initial law is not available,
under what conditions does one not lose optimality of the filter when initializing it with an
arbitrary (thus wrong) initial data, in the limit when time tends to infinity? This question, first
posed by Ocone and Pardoux [35] and Delyon and Zeitouni [20], has attracted much attention.
This paper focuses on the exponential rate of decay of the error made by wrong initialization,
and reviews results that relate this quantity to multiplicative ergodic theory (MET) on one
hand, and to Hilbert’s metric and Birkhoff’s contraction coefficient on the other hand. MET
is instrumental in establishing that, in a finite state setting, the decay rate is deterministic
(roughly speaking). In fact, it identifies the rate with the Lyapunov spectral gap associated
with the filtering equation. The set of tools borrowed from the theory of positive operators,
are more useful in providing estimates on the decay rate, which in turn enable to establish
sufficient conditions for nonvanishing thereof.

Our main goal in this exposition is to present the methods in an elementary and reasonably
self-contained way, starting from a simple case and then extending the ideas to a general
setting. We make no attempt to present the strongest results to date, or to survey various
other techniques to tackle the problem (such as [1, 4–6, 11, 14, 16, 19, 29, 33, 40]).

The paper is organized as follows. In Section 2 we begin by describing the finite state,
discrete time setting and define the decay rate; we then review relevant results from MET and
make the link to the Lyapunov spectral gap. We also describe analogous results in continuous
time. The short Section 3 reviews definitions regarding positive operators and explains their
relation to Lyapunov exponents, based on a lemma of Peres, which leads to first estimates on
the decay rate. Section 4 presents bounds on the decay rate in a general state space.

∗Research supported in part by the Israel Science Foundation (Grant 1349/08), and the Technion fund for
promotion of research
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Notation. Given a positive integer d we write M(d) for the set of d × d matrices with real
entries, and M+(d) for the set of elements of M(d) with nonnegative entries. The set of elements
of Rd with nonnegative entries is denoted by Rd

+. Vectors in Rd are understood to be column
vectors unless otherwise specified. The ith entry of a vector x is denoted by xi, and the (i, j)th
entry of a matrix M is M i,j . 〈·, ·〉 and ‖ · ‖ are the usual scalar product and norm on Rd. For
M ∈ M(d), ‖M‖ = sup{‖Mx‖ : x ∈ Rd, ‖x‖ = 1} is the operator norm corresponding to
‖ · ‖. The transpose of a matrix M is M>. Expectation with respect to a probability measure
denoted by PA

B is written as EA
B, for any set of symbols A and B to be used (particularly E

denotes expectation with respect to P).

2. Finite state filtering and Lyapunov exponents

Let d be a positive integer and set d̄ := {1, 2, . . . , d}. Denoting 1 = (1, 1, . . . , 1) ∈ Rd, and

P = {x ∈ Rd : xi ≥ 0, 〈x,1〉 = 1}, (1)

we will identify members of P with probability distributions over d̄ via (pi)i∈d̄ = (p({i}))i∈d̄.
Consider a homogeneous Markov process X = {Xn, n ≥ 0} taking values in d̄, on a probability
space (Ω,F ,P). Denote by G the transition matrix

Gi,j = P (Xn+1 = j|Xn = i), i, j ∈ d̄, n ≥ 0,

and by π0 ∈ P the initial distribution, regarded as a column vector. Next, fix ` ∈ N and
denote R = B(R`). Let a family G̃(i,dy), i ∈ d̄ of probability measures on (R`,R) be given,
and assume that for some measurable function g : d̄ × R` → R and a probability measure
G̃0 ∈M(R`,R),

G̃(i,dy) = g(i, y)G̃0(dy), i ∈ d̄.

We are given a process {Yn, n ≥ 1} of noisy observations of Xn, satisfying

P(Yi ∈ Ei, i ∈ {1, 2, . . . , n}|Xi = xi, i ∈ {0, 1, . . . , n}) =
n∏

i=1

G̃(xi, Ei),

for all n ∈ N, E1, E2, . . . , En ∈ R and x1, x2, . . . , xn ∈ d̄. For simplicity we assume in this
section that g takes positive values. Xn and Yn are called the state and observation processes,
respectively.

Example 2.1. For some m ∈ N, G̃0 could be the uniform probability measure on the finite
set {1, 2, . . . , m}, and then G̃(i, {j}) = gi,j , where {gi,j}i,j is a positive d × m matrix. Thus
provided Xn = i, the conditional probability of the event {Yn = j} is given by gi,j . ¦
Example 2.2. Let ` = 1. Let k : d̄ → R be a given function. We model Yn as observations of
Xn via the ‘sensor’ k, perturbed by Gaussian noise, by defining

Yn = k(Xn) + σWn, n ≥ 1. (2)

Here {Wn, n ≥ 1} is an i.i.d. sequence of standard normals, independent of {Xn}, and the
parameter σ > 0 is the level of noise. This model is seen to fit the above setup if we set G̃0 to
be the (0, σ2)-Gaussian measure on R,

G̃0(dy) =
1√
2πσ

e−
y2

2σ2 dy,
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and let

G̃(i,dy) =
1√
2πσ

e−
(y−k(i))2

2σ2 dy.

This example will be referred to as the one-dimensional additive Gaussian noise. ¦
We denote by Yn the σ-algebra generated by the observations {Y1, Y2, . . . , Yn}, n ≥ 1, and

set Y0 to be the trivial σ-field. Let

πn = (P (Xn = 1|Yn), . . . , P (Xn = d|Yn))>, n ≥ 0. (3)

The stochastic process {πn, n ≥ 0} takes values in P. It represents the conditional law of Xn

given Yn, and is often referred to as the nonlinear filter associated with the processes Xn and
Yn. A use of Bayes’ rule shows that πn satisfies the recursion

πn =
DnG>πn−1

〈DnG>πn−1,1〉 , n ≥ 1,

where Dn is the diagonal matrix

Di,i
n = g(i, Yn), i ∈ d̄.

An equivalent way of writing this recursion is via

ρn = DnG>ρn−1, n ≥ 1, ρ0 = π0, (4)

in which case πn is given by ρn/〈ρn,1〉. Thus the filter can be expressed as a normalized
version of the solution to a simple linear recursion. The process ρn is often referred to as the
unnormalized conditional measure of Xn given Yn. Often in practice, the initial law π0 is not
available, and one uses the recursion (3) with wrong initial data. Given p ∈ P, let πp

n denote
the solution to the recursion with initial data p. We will use the term exact filter for ππ0

n , and
refer to πp

n as the filter initialized at p. As posed by Ocone and Pardoux [35], it is interesting to
ask whether the filter “overcomes” the error made by choosing wrong initial data, as n →∞ (a
question much related to earlier work by Kunita [24], [25] and Stettner [38], [39] on convergence
in law of the exact filter to a unique measure, under suitable ergodic assumptions about the
state process). Delyon and Zeitouni [20] suggested that, because of the multiplicative form of
(4), it is natural to ask when the error resulting from wrong initialization decays exponentially,
and to study the rate of decay via multiplicative ergodic theory (MET). Denote by dTV the
total variation distance between measures, and note that one has dTV (p, q) = ‖p− q‖1 where
‖ · ‖1 denotes `1 norm and one uses the identification alluded to above. Let

γ(p, q) = lim sup
n→∞

1
n

log ‖πp
n − πq

n‖1. (5)

The main point of this section is to recall results based on MET, stating that the quantity γ
is, loosely speaking, deterministic and independent of p and q. If γ < 0 then the filter can be
said to be exponentially stable with respect to perturbations in the initial condition. Also, it is
natural to interpret −1/γ as the memory length of the filter, and thus it is useful to quantify
γ.
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We will need some basic results from MET (the reader is referred to [15, 17, 28] for further
reading on the subject). Let {Tn, n ≥ 1} be a stationary ergodic sequence of d × d matrices,
defined on (Ω,F ,P), satisfying E[log+ ‖T1‖] < ∞. Denote T(n) = TnTn−1 · · ·T1. Oseledec’s
theorem states that there exist deterministic constants

−∞ ≤ λd ≤ λd−1 ≤ · · · ≤ λ1 < ∞,

and a full P-measure event, Ω1, on which the following holds.
(i) The sets

V (i) := {x ∈ Rd : lim
1
n

log ‖T(n)x‖ ≤ λi}

are subspaces, and dimV (i) = #{j : λj ≤ λi} (in particular, V (1) = Rd).
(ii) With V (d + 1) = {0}, one has for every x ∈ Rd \ {0}

lim
n→∞ log ‖T(n)x‖ = λi,

where i is the unique j for which x ∈ V (j) \ V (j + 1).
(iii) The sequence of matrices (T>(n)T(n))1/(2n) converges to a matrix T whose eigenvalues are

eλ1 , eλ2 , . . . , eλd. For i ∈ d̄ such that V (i) 6= V (i + 1), the orthogonal complement of V (i + 1)
in V (i) is the eigenspace of T corresponding to eλi.

The constants λi are called the Lyapunov exponents associated with {Tn}, under P.
One defines the ith exterior power ∧iM of a matrix M as the linear operator on the ith

exterior power of Rd, for which

∧iM(ej1 ∧ ej2 ∧ · · · ∧ eji) = (Mej1) ∧ (Mej2) ∧ · · · ∧ (Meji)

(see e.g. [10]). The only two facts that we need about exterior products here are, first, that
given i vectors x1, x2, . . . , xi ∈ Rd, the quantity v̄(x1, x2, . . . , xi) := ‖x1 ∧ x2 ∧ · · · ∧ xi‖ =
(det[{〈xj , xk〉}j,k])1/2 equals the i-dimensional volume of the parallelogram generated by these
vectors; particularly, v̄(x1, x2)2 = ‖x1 ∧x2‖2 = ‖x1‖2‖x2‖2−〈x1, x2〉2. And second, that (as in
fact a corollary of Oseledec’s theorem) the following holds P-a.s.

lim
n→∞

1
n

log ‖ ∧i T(n)‖ =
i∑

j=1

λj , i ∈ d̄, (6)

where ‖ · ‖ is used here to denote the corresponding operator norm.
For a nonzero vector x in Rd

+, write x̄ for x/〈x,1〉. For x and y such vectors,

x̄− ȳ =
x

〈x,1〉 −
y

〈y,1〉 =
‖y‖1x− ‖x‖1y

‖x‖1‖y‖1
,

hence

‖x̄− ȳ‖1 ≤
∑d

i,j=1 |xiyj − yixj |
‖x‖1‖y‖1

.

Also,

v̄(x, y)2 = ‖x ∧ y‖2 = ‖x‖2‖y‖2 − 〈x, y〉2 =
1
2

∑

i,j

(xiyj − xjyi)2,
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which gives

‖x̄− ȳ‖1 ≤ cd
v̄(x, y)
‖x‖1‖y‖1

. (7)

This inequality will help us establish a bound on γ(p, q) in term of exponential growth rates of
the three objects v̄(ρp

n, ρq
n), ‖ρp

n‖1 and ‖ρq
n‖1. To see that the latter are quite simple to quantify

by Lyapunov exponents, consider first an arbitrary sequence {Tn} of matrices from M+(d),
satisfying the assumptions of Oseledec’s theorem. Let x, y ∈ P, and denote xn = T(n)x and
yn = T(n)y. By the Perron-Frobenius theorem, the matrix T>(n)T(n) ∈ M+(d) has an eigenvector

un ∈ Rd
+ corresponding to the largest eigenvalue, say µn. Consequently µ

1/(2n)
n and un are

eigenvalue and eigenvector of (T>(n)T(n))1/(2n), and thus by item (iii) of Oseledec’s theorem, the
limit matrix T has an eigenvector u0 ∈ Rd

+ corresponding to its largest eigenvalue, eλ1 . If i is
such that V (i) 6= V (1) = Rd then it follows from item (iii) that V (i) is orthogonal to u0, hence,
provided that x is strictly positive, x /∈ V (i). Thus by item (ii), for all such x, one has P-a.s.,

lim
1
n

log ‖xn‖ = λ1.

Combining this with (6) and (7), we have

lim sup
n→∞

1
n

log ‖x̄n − ȳn‖1 ≤ λ1 + λ2 − 2λ1 = λ2 − λ1, (8)

provided x, y ∈ PP := {z ∈ P : zi > 0, i ∈ d̄}. λ1 − λ2 is often referred to as the spectral gap.
This analysis is not directly applicable to the filtering situation described above because the

matrix process is not necessarily stationary. Of course if {Xn} is a stationary ergodic process
then so is the matrix process Tn := DnG>. We will assume that {Xn} is an irreducible aperiodic
chain. Thus there exists a unique invariant measure for the chain, πS , and we denote by PS the
corresponding measure on (Ω,F). In the special case where π0 equals πS , the sequence {Tn}
is stationary and ergodic. For general π0 we let the term the Lyapunov exponents associated
{Tn} mean the Lyapunov exponents associated with {Tn} under PS . The result (8) developed
above can in fact be improved in the following way [2]:

Theorem 2.1. Assume that the chain {Xn} is irreducible and aperiodic. Assume ES [log+ ‖D1G
>‖] <

∞. Let U denote the uniform measure on P. Then P-a.s., for U × U -a.e. (p, q),

γ(p, q) = λ2 − λ1,

where {λi} are the Lyapunov exponents associated with {DnG>}. Moreover, P-a.s., we have
for every (p, q) ∈ P × P

γ(p, q) ≤ λ2 − λ1.

Remark 2.1. This result is proved in [2, Section 2] for the case of additive Gaussian noise,
but the proof holds in the generality presented here. Also, the second assertion of Theorem 2.1
above is written in [2] in a slightly weaker way, namely that for every p and q, we have, P-a.s.,
γ(p, q) ≤ λ2 − λ1, but the form presented here is valid according to the same proof (indeed,
a review of that proof shows that, in the claim made in (8) and (9) of [2], the full P-measure
event on which the inequality holds is what we have denoted by Ω1 in the above statement of
Oseledec’s Theorem, which in particular does not depend on the initial conditions p and q).
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For a continuous time analog of this result, consider a Markov process X taking values in d̄
with intensity matrix Ĝ, and initial distribution π0. Let the observation process be given by

Yt =
∫ t

0
k(Xs)ds + σWt,

where W is a standard Brownian motion independent of X and denote by πt the conditional
law of Xt given Yt := σ{Ys : s ∈ [0, t]}. Denoting by K the diagonal d × d matrix with
Ki,i = k(i), and letting {ρt} be the unique solution to the stochastic differential equation

dρt = Ĝ>ρtdt + σ−2KρtdYt, t ≥ 0, ρ0 = π0,

one has πt = ρt/〈ρt,1〉 (see e.g. [41, equation (5)] and use Ito’s lemma). Note that this can be
written in terms of the M+(d)-valued process {Tt} solving

dTt = Ĝ>Ttdt + σ−2KTtdYt, t ≥ 0, T0 = I, (9)

where I ∈ M(d) is the identity matrix. Namely, one has ρt = Ttπ0. For general initial data,
p ∈ P, set ρp

t = Ttp and πp
t = ρp

t /〈ρp
t ,1〉.

Oseledec theorem has an analogue in continuous time. We present here the version [15,
Section IV.2]. Let a probability space (Ω,F ,P) be endowed with a semigroup {θt, t ≥ 0} of
measure preserving transformations. Let {Tt, t ≥ 0} be a process on this space, taking values
in GL(d,R) (the group of linear automorphisms of Rd). Then {Tt} is said to be multiplicative if
T0 = I, and Tt+s = (Ts ◦ θt)Tt, for all s, t ≥ 0. Assume that {θt} is ergodic, {Tt} is a separable
multiplicative process, and that E[supt∈[0,1] log+ ‖T k

t ‖] < ∞ for both k = 1 and k = −1. Then
items (i) and (ii) of the discrete version of the theorem, that appears above, hold upon replacing
T(n) by Tt, 1

n by 1
t , and limn by limt. The way this result is used in the present context is by

considering the standard shift transformation. As in the discrete time case, where the process
may not be stationary, the shift transformation may not be measure preserving; however, under
an irreducibility assumption, it is so in the case when π0 equals the invariant measure πS . For
general π0 we use the same convention and define Lyapunov exponents for the non-stationary
process to be the ones for the stationary counterpart.

Analogously to (5) let

γ(p, q) = lim sup
t→∞

1
t

log ‖πp
t − πq

t ‖1. (10)

The assumptions of the above version of the MET can be verified, and one has the following.

Theorem 2.2. [2, 20] Assume that the process X is an irreducible continuous time Markov
chain on d̄. Then the conclusions of Theorem 2.1 hold for γ of (10) and the Lyapunov exponents
{λi} associated with the process (9).

The above results assert that the decay rate γ is, roughly stated, deterministic and indepen-
dent of the initial condition, and identify it with the (negative) Lyapunov spectral gap. The
question of exponential stability can thus be posed as that of determining whether the gap is
positive. Unfortunately, the Lyapunov spectrum is in general hard to calculate, if not impossi-
ble. However, one can sometimes obtain bounds on the gap from which such information can
be extracted. This will be the point of the next section.
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3. Hilbert’s projective metric in finite state space

We present here Hilbert’s projective metric, and its contraction properties under the action of
positive matrices, used to obtain a bound on the Lyapunov spectral gap. This will enable us
to attain conditions under which the gap, and in view of last section’s results, the decay rate,
is nonzero. It will also give rise to quantitative information on the gap.

We need some notation regarding positive matrices (we follow Seneta [37]). A matrix that
is an element of M+(d) is said to be allowable if it contains no columns or rows whose entries
are all zero. Hilbert’s projective metric is the mapping h : P2

P → R+ defined by

h(x, y) = log max
1≤i,j≤d

xiyj

xjyi
. (11)

An allowable d× d matrix M can be seen, by normalization of the action of M , as an operator
M : PP → PP . We denote by M.x its action on x ∈ PP . This definition turns out to be
very useful mainly due to the fact that h makes any allowable matrix a contraction. Namely,
τ(M) ≤ 1 where τ is the Birkhoff contraction coefficient of an allowable matrix M , defined by

τ(M) = sup
{h(M.x,M.y)

h(x, y)
: x, y ∈ PP , x 6= y

}
. (12)

An explicit formula for τ in terms of M is available [37], namely

τ(M) =
1−√

ψ(M)
1 +

√
ψ(M)

, where ψ(M) = min
i,j,k,l

{M i,kM j,l

M i,lM j,k
: M i,lM j,k 6= 0

}
. (13)

Here are two additional elementary properties. As follows directly from (11) and (12), if D is
a diagonal matrix with Di,i > 0 for i ∈ d̄ then τ(MD) = τ(DM) = τ(M). If M ∈ M+(d) is a
matrix whose entries are all positive, then, by (13), τ(M) < 1.

We borrow the following from [36].

Lemma 3.1. Let {Tn} be a stationary ergodic sequence of nonnegative, allowable matrices, and
assume E[log+ ‖T1‖] < ∞. Let λ1 and λ2 denote the top two Lyapunov exponents associated
with the sequence. Then

λ1 − λ2 ≥ −E[log τ(T1)],

where λ2 = −∞ if the right-hand side is infinite.

Combined with Theorems 2.1 and 2.2, this gives a direct relation between the decay rate
and the contraction coefficient, not involving the Lyapunov spectrum.

Corollary 3.1. Under the assumptions of Theorem 2.1, P-a.s., for every p, q ∈ P, γ(p, q) ≤
ES [log τ(T1)], where T1 = D1G

>. Under the assumptions of Theorem 2.2, γ(p, q) ≤ ES [log τ(T1)],
where Tt is given in (9).

By the foregoing discussion on properties of τ , we have in the discrete setting τ(T1) =
τ(D1G

>) = τ(G>) = τ(G). If Gi,j > 0 for all i, j then τ(G) < 1, and as a consequence we have
the following.

Theorem 3.3. [2] In the discrete time setting, assume that Gi,j > 0 for all i, j ∈ d̄. Then
P-a.s., for all p, q ∈ P, γ(p, q) ≤ log τ(G) < 0.
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This provides an estimate that depends only on the transition law of {Xn}. We refer to
[16], this volume, for a bound that holds in greater generality, under which G may be a more
general element of M+(d).

The approach is useful in obtaining estimates on the decay rate in the small noise (large
signal-to-noise ratio) asymptotics. For the following result recall the setting of one-dimensional
additive Gaussian noise (Example 2.2). For i ∈ d̄ denote

δ(i) = min
j 6=i

|k(i)− k(j)|.

Denote by γσ the negative spectral gap, emphasizing the dependence on σ.

Theorem 3.4. [2] Consider the setting of Example 2.2. Then under the assumptions of The-
orem 2.1,

lim sup
σ→0

σ2γσ ≤ −1
2
ES [δ(X1)2]. (14)

If, in addition, det G 6= 0, we have

lim inf
σ→0

σ2γσ ≥ −1
2
ES

[ d∑

i=1

(k(X1)− k(i))2
]
. (15)

Note that δ is not identically zero if and only if there exists at least one i for which k(i) is
distinct from k(j), all j 6= i. Thus the upper bound presented above is meaningful only under
this condition; and when the condition holds, the combination of both bounds establish that
the order of magnitude of γσ is σ−2.

Although in general it is an open question whether either the upper or lower bounds can be
improved, let us mention that (14) holds with equality when one assumes that Xn is a ‘nearest
neighbor’ process, in the following sense: the transition matrix is given by G = exp(sA) for
some s > 0 and A is an intensity matrix for which |i − j| > 1 implies A(i, j) = 0 (some
additional technical conditions are required; see [3, Theorem 5]).

Analogous bounds hold in continuous time.

Theorem 3.5. [2] Consider the filtering problem in continuous time, and let the assumptions
of Theorem 2.2 hold. Then P-a.s., for all p, q ∈ P,

γ(p, q) ≤ −2 min
i,j∈d̄:i6=j

√
Ĝi,jĜj,i.

Moreover, the following bounds hold:

lim sup
σ→0

σ2γσ ≤ −1
2
ES [δ(X0)2], lim inf

σ→0
σ2γs ≥ −1

2
ES

[ d∑

i=1

(k(X0)− k(i))2
]
.

4. Hilbert’s projective metric in general state space

The fact established in Corollary 3.1 deserves a deeper look. We will see that this result has an
easy proof not involving Lyapunov exponents or MET, valid in fact in far greater generality.
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Thus in what follows we shall study the filtering problem in a general setting, and present an
extended definition of h, and present an extended version of Corollary 3.1.

Let S be a Polish space, and let S denote the corresponding Borel σ-field. Fix a positive
integer `. We will introduce a Markov process Xn taking values in S and an observation process
Yn taking values in R`. We will, in fact, present a Markovian family. To this end, assume we
are given a probability kernel G : S2 → R (that is, for every α ∈ S, G(α, ·) is a probability
measure on (S,S) and for every E ∈ S, G(·, E) is a measurable map). Also, we are given a
probability kernel G̃ : S × R` → R. We define for every α ∈ S a probability measure P(α) on
(Ω,F) via

P(α)(X1 ∈ E1, X2 ∈ E2, . . . , Xn ∈ En, Y1 ∈ F1, Y2 ∈ F2, . . . , Yn ∈ Fn)

=
∫

E1×···×En×F1×···×Fn

G(α, dx1)
n∏

i=2

G(xi−1, dxi)
n∏

i=1

G̃(xi,dyi),

for n ∈ N, Ei ∈ S, Fi ∈ R, i ≤ n, where, throughout, we denote R = B(R`). For p ∈M(S,S),
let

Pp =
∫

S
P(α)p(dα).

Fix a probability measure π0 ∈ M(S,S), and let P := Pπ0 . Then under P, Xn is a Markov
process starting from initial measure π0, and Yn is an observation process. As before, we write
Yn for the σ-field generated by (Y1, Y2, . . . , Yn), n ∈ N. The exact filter is thus

πn(ϕ) = E[ϕ(Xn)|Yn], n ≥ 0.

We introduce a reference measure on (Ω,F). To this end we will need the assumption: There
exists a probability measure G̃0 on (R`,R) and a measurable mapping g : S × R` → R with
respect to S ⊗R, such that, for every α ∈ S,

G̃(α, F ) =
∫

F
g(α, y)G̃0(dy), F ∈ R.

Define for α ∈ S the reference probability measure P(α)
0

P(α)
0 (X1 ∈ E1, X2 ∈ E2, . . . , Xn ∈ En, Y1 ∈ F1, Y2 ∈ F2, . . . , Yn ∈ Fn)

=
∫

E1×···×En×F1×···×Fn

G(α, dx1)
n∏

i=2

G(xi−1, dxi)
n∏

i=1

G̃0(dyi),

for n ∈ N, Ei ∈ S, Fi ∈ R, i ≤ n. Denote Pp
0 =

∫
P(α)p(dα) and P0 = Pπ0

0 . Consider the
stochastic process {Λn}, n ≥ 0, where Λ0 = 1 and

Λn =
n∏

i=1

g(Xi, Yi), n ≥ 1.

Then clearly Pp(B) =
∫
B ΛndPp

0, for B ∈ σ{Xi, Yi, i ≤ n}. A use of Bayes rule shows

πn(ϕ) =
E0[ϕ(Xn)Λn|Yn]
E0[Λn|Yn]

.
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We thus let
ρn(ϕ) = E0[ϕ(Xn)Λn|Yn], (16)

and note that πn = ρn/ρn(1). Toward writing a recursion for ρn, we select a regular conditional
probability distribution

P(α)
0 [ · |Yn, Xn = β],

satisfying, for A ∈ S, B ∈ σ{Xi, Yi, i ≤ n},

P(α)
0 [B ∩ {Xn ∈ A}|Yn] =

∫

A
P(α)

0 (B|Yn, Xn = β)P(α)
0 (Xn ∈ dβ).

Letting
In(α, β) = E(α)

0 [Λn|Yn, Xn = β],

we can write ρn (16) as ρπ0
n , where for p ∈M(S,S),

ρp
n(ϕ) =

∫∫
ϕ(β)Gn(α, dβ)In(α, β)p(dα), (17)

and we denote Gn(α,B) = P(α)
0 (Xn ∈ B). Let V denote the vector space of finite signed

measures on (S,S). Denote by J0,n the (random) mapping from V to itself, mapping p ∈ V to
ρp

n according to (17). Denoting by θn the shift transformation, let also

Jm,n = J0,n−m ◦ θm, 0 ≤ m ≤ n.

By conditioning, it is clear that for p ∈ P, 0 ≤ m ≤ n,

ρp
n = Jm,nJ0,m p, (18)

and consequently, J0,n = Jm,nJ0,m. This gives rise to the recursion

ρp
n = Jn−1,nρp

n−1, n ≥ 1, ρp
0 = p. (19)

Set πp
n = ρp

n/ρp
n(1), p ∈ P and

γ(p, q) = lim sup
n→∞

1
n

log dTV (πp
n, πq

n), p, q ∈ P. (20)

A closer look at the recursion (19) shows that it is possible that the measure ρn becomes zero
for some n. Here is an example. Consider the degenerate chain Xn = X0, n ≥ 0, where X0 is
a random variable on {1, 2}. Assume the observation process is given by Yn = Xn for n ≥ 1.
With the notation of the previous section, G = I and Di,i

n = 1{Yn=i}. If π0 consists of an atom
at 1 then P-a.s., for all n,

Tn = DnG> =

(
1 0
0 0

)
.

Thus if p is an atom at 2 then ρp
1 = T1p = 0.

In view of the foregoing discussion, we must define πp
n and γ more carefully. Thus if for

some n0 ρp
n0

= 0 we let πn = 0 for all n ≥ n0. We extend dTV to P ∪ {0} by defining
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dTV (0, λ) = dTV (λ, 0) = dTV (0, 0) = 1 for λ ∈ P. Thus γ(p, q) = 0 on the event that ρp
n takes

the value zero for some n.
The goal is now to show that γ can be bounded in terms of contraction coefficient for linear

operators, in a fashion similar to Section 3. To this end we need an extended definition of
Hilbert’s metric. Define on V the partial order 4 by λ 4 µ for λ, µ ∈ V if λ(A) ≤ µ(A) for
every A ∈ S. Denote by C0 ⊂ V the cone of members λ of V for which 0 4 λ, where 0 is the zero
measure, and by C the collection of members of C excluding the zero measure. Two elements
λ, µ ∈ C are said to be comparable if there exist 0 < α, β < ∞ for which αλ 4 µ 4 βλ. Define
h : C2 → [0,∞] by

h(λ, µ) = log
supA∈Sµ

λ(A)/µ(A)
infA∈Sµ λ(A)/µ(A)

if λ, µ ∈ C are comparable, (21)

and h(λ, µ) = ∞ otherwise, where we denoted Sµ = {A ∈ S : µ(A) > 0}. The function h,
called Hilbert’s metric, is a pseudo-metric on C, and a metric on the space of members λ ∈ P
that are comparable to a given λ0 ∈ P [8, Ch. 16]. A linear operator mapping V into itself
is positive if it maps C into itself. As shown by Birkhoff [7] and Hopf [22], any positive linear
operator L on V is a contraction with respect to Hilbert’s metric, and

τ(L) := sup
0<h(λ,µ)<∞

h(Lλ,Lµ)
h(λ, µ)

= tanh
H(L)

4
, (22)

where
H(L) = sup

λ,µ∈C
h(Lλ,Lµ), (23)

and τ = 1 in case when H = ∞ (see also [8] and [30] for these and various additional useful
facts on the Hilbert metric). The formula above for τ is an extension of the formula (13) of
Section 3.

We extend h to C2
0 by letting h(0, λ) = h(λ, 0) = h(0, 0) = ∞ for λ ∈ C. Further, we let

τ(L) = 1 for any linear operator L mapping C0 into itself that is not positive. Such an operator
will be called weakly positive.

To apply this to the filtering equations, note that Jm,n are weakly positive, and by (18) that,
for p, q ∈ P, one has for any n,m ∈ N,

h(ρp
nm, ρq

nm) ≤ h(p, q)
n∏

i=1

τ(Jim−m,im).

Now, by definition of h, h(c1λ, c2µ) = h(λ, µ) for any c1, c2 ∈ (0,∞), and thus h(πp
n, πq

n) =
h(ρp

n, ρq
n). Note also that, since τ ≤ 1, h(ρp

n, ρq
n) is monotone in n. By these considerations, as

soon as h(p, q) < ∞, a bound on a quantity similar to γ (20) follows, namely

γh(p, q) := lim sup
n

1
n

log h(πp
n, πq

n) ≤ lim sup
n

1
mn

n∑

i=1

log τ(Jim−m,im).

In fact, it is easy to prove [3, Lemma 1]

dTV (λ, µ) ≤ 2
log 3

h(λ, µ), λ, µ ∈ P,

whence γ ≤ γh. We summarize this in the following
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Lemma 4.2. If p, q ∈ P are comparable, or more generally, if infn h(ρp
n, ρq

n) < ∞ P-a.s., then
for any positive integer m, P-a.s.,

γ(p, q) ≤ lim sup
n

1
mn

n∑

i=1

log τ(Jim−m,im) =: Γm. (24)

It is natural to apply this lemma to cases where J has some ergodic properties, so that Γm

can be expressed as expectation of a single term. For example, consider the case where for
some πS ∈ P, the process {Xn} is stationary ergodic under PS := PπS . Then under the same
law, so is the sequence {(Xn, Yn)}, and in turn also the process {Jn}. In this case, Γm is PS-a.s.
equal to Γ̄m := m−1ES [log τ(J0,m)]. Next, if say π0 ¿ πS then also P¿ PS and thus it is true
also P-a.s. that Γm = Γ̄m. More generally, the same conclusion will be valid, provided that P
and PS agree on the tail σ-field, because Γm is measurable on this σ-field. This is recorded in
the following.

Theorem 4.6. [3] Assume there exists πS ∈ P for which the corresponding law PS makes
{Xn} stationary and ergodic. Assume also that the restrictions of both P and PS, to the tail
σ-field, agree. Then P-a.s.,

γ(p, q) ≤ 1
m
ES [log τ(J0,m)], p, q ∈ P, m ∈ N.

Let us exhibit a situation where the above gives rise to an exponential stability result.
Consider the case where the state process satisfies the strong mixing condition. Namely, for
some λ ∈ P and constants 0 < c1, c2 < ∞,

c1λ 4 G(x, ·) 4 c2λ, x ∈ S. (25)

Note that G is a positive operator, and by (22), (23) that τ(G) < 1. We claim that without
any assumptions on the observation process (i.e., on G̃0 and g), one has τ(J0,1) ≤ c < 1, for
some constant c.

Theorem 4.7. [3] Assume (25) holds for some constants 0 < c1, c2 < ∞ and λ ∈ P. Then
τ(J0,1) ≤ c3 := (c2− c1)/(c2 + c1), P(x)-a.s., for any x ∈ S. Consequently, under the hypotheses
of Theorem 4.6, γ(p, q) ≤ log c3 < 0, for all p, q ∈ P, P-a.s.

Proof. Let ā(γ) =
∫
S g(β, γ)λ(dβ). We first show that for every α, P(α)-a.s. one has ā(Y1) > 0.

To see this, let B denote the set {γ ∈ R` : ā(γ) = 0}. Then

P(α)(Y1 ∈ B) =
∫∫

1B(γ)G(α, dβ)G̃(β, dγ)

≤ c2

∫∫
1B(γ)λ(dβ)g(β, γ)G̃0(dγ)

= c2

∫
1B(γ)ā(γ)G̃0(dγ) = 0.

Next, given A ∈ S let aA :=
∫
A g(β, Y1)λ(dβ) and note by (17) that c1aA ≤ ρp

1(A) ≤ c2aA

for every p ∈ P. Hence c1/c2 ≤ ρp
1(A)/ρq

1(A) ≤ c2/c1, provided aA > 0. Thus, provided there
exists A for which aA > 0, by (21), h(ρp

1, ρ
q
1) ≤ 2 log(c2/c1), and by (22), (23), τ(J0,1) ≤
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tanh[14 log(c2/c1)] = (c2 − c1)/(c2 + c1) = c3. In view of the first paragraph, one has, in fact,
aS = ā(Y1) > 0 P(α)-a.s. for arbitrary α, and we conclude that τ(J0,1) ≤ c3, P(α)-a.s.

The second assertion of the theorem is immediate from the first one.

It is interesting that Lemma 4.2 may also be useful in non-ergodic situations. We refer the
reader to [13] for a result based on a similar argument in a setup where the state process is
transient (this result was improved in a subsequent paper [14] by other techniques; see also
[31] and [34] for additional treatments of transient cases).

We now consider a continuous time Markov process on a Polish space, observed in white
noise. The precise setting is as follows.

Equip the space Ω1 = D(R+, S), of càdlàg mappings from R+ to S, with the Skorohod J1

topology, and let B1 denote the corresponding Borel σ-field. Let Ω2 = C(R+,R`) be equipped
with the uniform-on-compacts topology, and denote by B2 the corresponding Borel σ-field. Let
Ω = Ω1×Ω2 and B = B1⊗B2. For ω = (ω1, ω2) ∈ Ω, let the processes X and W be defined via
Xt(ω) = ω1(t) and Wt(ω) = ω2(t). For α ∈ S let P(α) denote a probability measure on (Ω,B)
under which W and X are independent, W is a standard `-dimentional Brownian motion, and

P(α)(Xt1 ∈ E1, X2 ∈ E2, . . . , Xtn ∈ En) =
∫

E1×···×En

Gt1(α, dx1) · · ·Gtn−tn−1(xn−1,dxn),

for n ∈ N, 0 < t1 < t2 < · · · < tn and Ei ∈ S, i ≤ n. Here, Gt is a given Feller-Markov
semigroup. As before, with p ∈ P, associate Pp =

∫
P(α)p(dα) and set P = Pπ0 for some fixed

π0.
To describe the observation process let a measurable function k : S→ R` be given. We shall

assume E(α)[
∫ t
0 ‖k(Xs)‖2ds] < ∞, α ∈ S, t ≥ 0. The process Yt is defined via

Yt =
∫ t

0
k(Xs)ds + Wt, t ≥ 0. (26)

Let Yt = σ{Ys : s ∈ [0, t]}, and set

πp
t (ϕ) = Ep[ϕ(Xt)|Yt], t ≥ 0.

We note on passing that, under various smoothness assumptions on the coefficients [26, The-
orem 6.3.3], πp

t solves the Kushner-Stratonovich equation

πt(ϕ) = p(ϕ) +
∫ t

0
πs(Lϕ)ds +

∫ t

0
〈πs(ϕk)− πs(ϕ)πs(k), dYs − πs(k)ds〉,

for ϕ in the domain of L, where L is the generator of the semigroup Gt; similarly, one has
πp

t = ρp
t /ρp

t (1) where ρt solves the Zakai equation

ρt(ϕ) = p(ϕ) +
∫ t

0
ρs(ϕ)ds +

∫ t

0
〈ρs(ϕk), dYs〉.

Consequently, this study can be viewed as one of sensitivity of solutions to these equations
with respect to perturbations in their initial conditions.
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Let us now describe the flow in a way similar to the discrete time case. To this end let

Λt = exp
{ ∫ t

0
〈k(Xs),dYs〉 − 1

2

∫ t

0
‖k(Xs)‖2ds

}
, t ≥ 0.

Define
ρp

t (ϕ) = Ep
0[ϕ(Xt)Λt|Yt],

where under Pp
0, X and W are independent, but each of these processes has the same law as

under Pp. Then πp
t = ρp

t /ρp(1), Pp-a.s. Let J0,t denote the linear, weakly positive transformation
sending p to ρp

t . Then a result analogous to Theorem 4.6 holds, by similar considerations.

Theorem 4.8. [3] Let assumptions analogous to those of Theorem 4.6 hold for the continuous
time setting described above. Then P-a.s.,

γ(p, q) ≤ 1
t
ES [log τ(J0,t)], p, q ∈ P, t > 0.

The above result is applicable in the case of a diffusion on a compact manifold. Particularly,
let Xt be a diffusion process on a compact manifold M of dimension m. To state the assump-
tions, we embed the manifold in Rd, some d ∈ N, and assume that the process is given as the
solution to the stochastic differential equation

dXt = b(Xt)dt + σ̄(Xt)dW̄t, X0 = x,

where W̄ is independent of the observation noise W . It is assumed that the semigroup associated
with Xt is strictly elliptic on M , and thus (as follows from [18, Ch. 3]), given t > 0 there exist
constants 0 < c1 < c2 < ∞ such that

c1λ 4 Gt(α, ·) 4 c2λ, α ∈ S,
where λ is the surface measure on M . Arguments similar to the ones described above in the
discrete setting, now based on Theorem 4.8, lead to the following [3].

Theorem 4.9. Under the assumptions above on the process Xt, and assuming also that k of
(26) is twice continuously differentiable, one has that P-a.s., γ(p, q) ≤ −c, for all p, q ∈ P,
where c > 0 is a deterministic constant.

We now make some further remarks on small noise asymptotics. First, let us mention that
the upper bound (14) continues to hold in a setting of countable state space; moreover, under
suitable assumptions, a lower bound is also valid, that is different from (15) but sufficient to
deduce that the order of magnitude of γσ is σ−2. These fact were proved by other methods in
[3, Section 5].

Next, in a continuous state space, the following example was studied in [3] (the proof is
based on the estimate from Theorem 4.6, with m = 2).

Theorem 4.10. Let S = [0, 1]. Assume that G(α, dβ) = Ḡ(α, β)`(dβ), where ` is the Lebesgue
measure and Ḡ is three times continuously differentiable on S2. Assume also that the observa-
tions are of the form (2) (from Example 2.2), and that k is C4 on S, while the derivative of k
is bounded away from zero. Then P-a.s., for every p, q ∈ P,

lim sup
σ→0

γ(p, q)
log 1

σ

≤ −1. (27)
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A direct computation in the Gaussian case reveals the behavior 1/σ rather than log(1/σ). In
view of this it is plausible that the above results should be possible to improve upon. A similar
situation occurs in the case of a diffusion on R, where [1] bounds the rate by log(1/σ), whereas
an analogous analysis of the Kalman filter on R in continuous time [27] shows dependence of
the form 1/σ. Under some restricted assumptions, the behavior 1/σ is established in [4], but
the question is open in any reasonable generality.

The techniques involving Hilbert metric appear to work well in a variety of setting where
the state space is compact, but other than in some trivial cases, they usually fail when the
space is noncompact. An exception is the contribution [23], where such techniques are used in
conjunction with very clever considerations to establish stability properties of the filter under
mixing assumptions on the state process, which lies in Rd. See also [21] for a refinement of this
result.

Finally we would like to point out the usefulness of Hilbert metric techniques in treating
a more general problem, namely the sensitivity of the filter to perturbations in the transition
kernel as well as the initial condition. The result is borrowed from [12]. To this end, let us go
back to the setting of Theorem 4.7. Namely, we assume that (25) holds for some 0 < c1 < c2 <
∞ and λ ∈ P. In addition, assume we are given a sequence Gm of probability kernels that
approximate G in the following sense: G and Gm all admit transition probability densities,
g(·, ·) with respect to λ, on (S,S); for every m, g(·, ·) and gm(·, ·) are zero and positive on the
same sets; and log gm converge to log g on the set {(x, y) ∈ S2 : g(x, y) > 0}. We are also given
πm ∈ P, converging in total variation to π0. Denote by π

(m)
n the filter that uses the initial data

πm and the transition kernel Gm, and as before, denote by πn the exact filter. Furthermore,
assume that the observation process is of the form Yn = k(Xn)+Wn, where Wn are R`-valued,
i.i.d., with a bounded density with respect to the Lebesgue measure. The proof of the following
result is based solely on elementary properties of the Hilbert metric.

Theorem 4.11. [12] Under the above assumptions one has

lim
m→∞ sup

n∈N
dTV (π(m)

n , πn) = 0.

References

[1] R. Atar. Exponential stability for non-linear filtering of diffusion processes in a noncom-
pact domain. Annals of Probability, 26 No. 4, 1552–1574 (1998)

[2] R. Atar and O. Zeitouni. Lyapunov exponents for finite state nonlinear filtering. Siam J.
Contr. Opt. 35, No. 1, 36–55 (1997)

[3] R. Atar and O. Zeitouni. Exponential stability for nonlinear filtering. Annales de l’Institut
H. Poincare, Probabilities et Statistiques 33 No. 6, 697–725 (1997)

[4] R. Atar, F. Viens and O. Zeitouni. Robustness of Zakai’s equation via Feynman-Kac
representations. Stochastic analysis, Control, Optimization and Applications: A Volume
in Honor of W. H. Fleming, edited by W. M. McEneaney, G. Yin and Q. Zhang, 339–352;
Birkhauser, (1999)

[5] P. Baxendale, P. Chigansky and R. Liptser. Asymptotic stability of the Wonham filter:
ergodic and nonergodic signals. SIAM J. Control Optim., 43(2):643–669 (electronic), 2004.

[6] A. G. Bhatt, A. Budhiraja, and R. L. Karandikar. Markov property and ergodicity of the
nonlinear filter. SIAM J. Control Optim., 39(3):928–949 (electronic), 2000.



/Estimates on Exponential Decay 16

[7] G. Birkhoff. Extensions of Jentzsch’s Theorem. Trans. Am. Math. Soc., 1957, Vol 85, pp.
219–227.

[8] G. Birkhoff. Lattice Theory. Am. Math. Soc. Publ. 25, 3rd ed., 1967.
[9] R. W. Brockett. Nonlinear systems and nonlinear estimation theory. in Stochastic Systems:

The Mathematics of Filtering and Identification and Applications edited by M. Hazwinkel
and J. C. Willems, D. Reidel Publishing Company, Dordrecht, pp. 441–477, 1981.

[10] P. Bougerol. Theorems Limite pour les Systemes Lineaire a Coefficients Markoviens. Prob.
Theory Rel. Fields. 1988, Vol 78, pp. 192–221.

[11] A. Budhiraja. Asymptotic stability, ergodicity and other asymptotic properties of the
nonlinear filter. Ann. Inst. H. Poincaré Probab. Statist., 39(6):919–941, 2003.
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