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ABSTRACT. We analyze a pair of reflected Brownian motions in a pla-
nar domain D, for which the increments of both processes form mirror
images of each other when the processes are not on the boundary. We
show that forD in a class of smooth convex planar domains, the two pro-
cesses remain ordered forever, according to a certain partial order. This
is used to prove that the second eigenvalue is simple for the Laplacian
with Neumann boundary conditions for the same class of domains.

1. INTRODUCTION

We will prove that the second eigenvalue for the Laplacian with Neumann bound-
ary conditions is simple for a class of planar convex domains. We will also present
some geometric properties of the corresponding eigenfunctions. The main tool
that we use is a coupling of a pair of reflected Brownian motions in the domain,
for which the increments of both processes form mirror images of each other when
both processes are not on the boundary. This coupling, referred to as a mirror cou-
pling, has been used before to study properties of Neumann Laplacian eigenfunc-
tions (see [4], [7] and references therein) and, in particular, has been used in [3]
to determine whether the second eigenvalue is simple. That paper was concerned
with “lip domains” defined as follows. A lip domain is a bounded planar domain
that lies between graphs of two Lipschitz functions with the Lipschitz constant 1.
In particular, it has sharp “left” and “right” endpoints. The current work comple-
ments, in a sense, the results derived in [3], and shows that the technique based
on mirror couplings is also applicable to a class of smooth planar domains. The
earlier paper [4], that also used couplings in a similar context, showed that the
second Neumann eigenvalue is simple in a convex planar domain if the domain
is sufficiently long, namely, if the ratio of the diameter to width of the domain is
greater than 3.06. If in addition we assume that the domain has a line of sym-
metry, the same conclusion can be reached if the ratio of the diameter to width
of the domain is greater than 1.53 (see Proposition 2.4 of [4]). In the current paper
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FIGURE 1.1. A domain with simple second Neumann eigenvalue.

we replace assumptions on the length to width ratio by a set of conditions that, in
particular, allow us to obtain new results for domains that are not too long.

The motivation for this article comes from the “hot spots” conjecture of
J. Rauch which states that the second Neumann eigenfunction attains its max-
imum on the boundary of the domain. The conjecture does not hold in full
generality, see [5, 6, 9]. It does hold under a variety of extra assumptions, see
[7] for a review of literature. This is related to the question of eigenvalue sim-
plicity because it is often easier to analyze a single eigenfunction than a class of
eigenfunctions. One technical approach to handle both the hot spots conjecture
and the question of eigenfunction simplicity is first to change the problem to the
mixed Neumann-Dirichlet problem by identifying the nodal line for the second
eigenfunction (i.e., the line where the eigenfunction vanishes). This is easily done
in symmetric domains (see [4,10,13]). Thus symmetry greatly simplifies the anal-
ysis of eigenfunctions, and removing symmetry from the assumptions is one of the
main technical goals of this paper. The present paper is the first part of a project
which aims at using this strategy for proving the hot spots conjecture for domains
that are not necessarily symmetric.

The class of domains that we consider in this paper is defined via a number of
geometric conditions. The conditions are elementary but their whole set is quite
complicated so we will illustrate our main theorem with some examples. A domain
that combines elements of “extreme” shapes compatible with our assumptions is
depicted in Figure 1.1; see Example 5.1 for the analysis of this domain.

The set of conditions imposed on a domain D is chosen so that for appropri-
ately related reflected Brownian motions and an appropriate partial order, the two
processes remain ordered in the same way forever. We call the line of symmetry for
the two processes a “mirror.” We consider mirror couplings, i.e., pairs of reflected
Brownian motions such that the increments of the two processes are symmetric
images of each other with respect to the mirror, when both processes are in the
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interior of the domain. The mirror can be shown to perform a motion that is
locally of bounded variation. The mirror does not move on any interval on which
both processes remain in the interior of the domain. We analyze the motion of the
mirror and construct an appropriate “Lyapunov set,” i.e., a set with the property
that the mirror remains in this set for all times, with probability one, provided that
it starts inside the set. The partial ordering alluded to above is defined in terms
of this set. An easy consequence of this property of the coupling is that there ex-
ists a second Neumann eigenfunction that is monotone with respect to the partial
order. We do not know how to prove that the second eigenvalue is simple using
standard results on positive linear operators such as the Krein-Rutman theorem—
to do that, we would have to impose some extra assumptions on the domain D.
We take an alternative approach, similar to that of [3]. Along with the partial
order property alluded to above, this approach also uses crucially the following
property of the coupling, which has a quite complex proof, see [3]. If the two
processes are conditioned not to meet up to time 1, the conditional probability
that their distance is greater than c1 > 0 at time 1 is greater than p1 > 0, where c1
and p1 do not depend on the starting points of the processes.

The paper is organized as follows. In the next section we list assumptions on
the domains that we consider and state our main result. In Section 3, we review
basic facts about reflected Brownian motions and mirror couplings. The same
section contains the construction of the Lyapunov set and the proof that it is left
invariant under the dynamics of the mirror process. Section 4 is devoted to the
proof of our main result, Theorem 2.6. Section 5 presents some examples.

We are grateful to Rodrigo Bañuelos for very helpful advice.

2. ASSUMPTIONS AND THE MAIN RESULT

In the first part of the paper, we consider a bounded strictly convex planar domain
D with C2 boundary ∂D. We will later show that, in a suitable sense, one can
remove the assumptions of strict convexity and C2 smoothness (see the end of
Section 4). For A ∈ ∂D let n(A) denote the unit inward normal to ∂D at A. For
two distinct points A, B in the plane, we denote by [A, B] the closed line segment
joining them, and by `(A, B) the straight line containing them. We denote by
R[A, B) the closed ray contained in `(A, B), starting from A and not containing
B. We fix an orthonormal coordinate system with a basis (e1,e2). We identify R2

and C and we use both types of notation for convenience. For any distinct points
A and B, ∠(A, B) denotes the angle between e1 and `(A, B), with the convention
that ∠(A, B) ∈ [0, π). We let p(A, B) = ei∠(A,B), and m(A, B) = −ip(A, B).
If ` is a line, we define ∠`, p(`) and m(`) by choosing any distinct points A,
B ∈ ` and letting ∠` = ∠(A, B), p(`) = p(A, B) and m(`) = m(A, B). Note
thatm(A, B) ·e1 = p(A, B) ·e2 ≥ 0. For a point A ∈ ∂D, we let ∠(A) ∈ [0,2π)
be defined by n(A) = ei∠(A).
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The closed arc of ∂D joining points A and B on the boundary is denoted by
arc(A, B). When we use this notation, we will specify which one of the two arcs is
meant unless it is clear from the context.

We now list our assumptions on the domain D. The assumptions that are
most significant are labelled for future reference in the proofs.

We will use four sequences of points on the boundary: P1, P2, . . . , P6, Q1,
Q2, . . . ,Q6, P ′1, P

′
2, . . . , P

′
6, and Q′1,Q

′
2, . . . ,Q

′
6. In this section, we will only dis-

cuss points with subscripts 1, 3, 4 and 6. This is because we chose the notation so
that each of these sequences is naturally ordered along the boundary, but the exis-
tence of points with subscripts 2 and 5 and some special properties will be proved
only in Section 3.

We assume that there exists an angle α ∈ (0, π/2) such that all of the fol-
lowing conditions hold. Let P1 ∈ ∂D be such that n(P1) = eiα. Note that
P1 exists and is unique because D is assumed to be strictly convex and C2. Let
Q1 6= P1 be the unique point on the boundary for which ∠(P1,Q1) = α (see Fig-
ure 2.1(a)). Similarly, let Q6 ∈ ∂D denote the unique point with n(Q1) = e−iα
and P6 ∈ ∂D be such that ∠(P6,Q6) = α. We assume that (P6 − P1) · e1 > 0 and
(Q6 − Q1) · e1 > 0. We let α′ = π − α and define points P ′1, Q′1, P ′6, and Q′6
relative to α′ in the same way that P1, Q1, P6, and Q6 have been defined relative
to α, and assume that (P ′6 − P ′1) · e1 < 0.

Denote by ∂↑D the closed arc of the boundary fromQ′6 toQ6, not containing
P1. We refer to this arc as the upper part of the boundary. The arc arc(P1, P ′1)
not containing Q6 will be denoted ∂↓D and referred to as the lower part of the
boundary. For points A, B ∈ ∂D we write A < B if the first coordinate of A is less
than that of B. This ordering will only be used when both A and B are in ∂↑D or
when they are both in ∂↓D.

We say that a line `, or line segment [A, B], is admissible if it intersects both
∂↑D and ∂↓D, and ∠` ∈ [α,α′] (or ∠(A, B) ∈ [α,α′]). For a line ` that is
not horizontal, we say that a point C ∉ ` is on the left of ` if there exist D ∈ `
and a > 0 such that C + ae1 = D. We say that a point is on the left of a line
segment [A, B] if it is on the left of `(A, B). Points on the right are defined in an
analogous way. Suppose ` is a line passing through D. We say that a boundary
point x ∈ ∂D \ ` is active for ` if its reflection about ` is in D̄. This seemingly
strange term refers to mirror couplings defined in the next section.

We will state a number of assumptions for P1, P2, . . . , P6 and Q1,Q2, . . . ,Q6.
When we say that “an analogous condition holds for the primes” we mean that the
analogous condition holds for P ′1, P

′
2, . . . , P

′
6 and Q′1,Q

′
2, . . . ,Q

′
6.

Assumption 2.1. There exist line segments [P3,Q3] and [P4,Q4] satisfying
∠(P3,Q3) = ∠(P4,Q4) = α and such that P1 < P3 < P4 < P6. Moreover, if
[P,Q] is an admissible line segment with P1 < P < P3 and ∠(P,Q) ≥ ∠(P),
then no right boundary point is active. If [P,Q] is an admissible line segment
with Q4 < Q < Q6 and ∠(P,Q) ≥ −∠(Q), then no left boundary point is active.
Analogous conditions hold for the primes.



Mirror Couplings and Neumann Eigenfunctions 1321

Suppose that ` is a line that intersectsD and A ∈ ∂D\` is an active point. Let
T denote the line tangential to ∂D at A. If an intersection point of ` and T exists,
it is said to be the hinge of A at ` and it is denoted H(A, `). If ` = `(P,Q), then
H(A, `) will be called the hinge of A at [P,Q]. The name comes from the fact
that the mirror ` for the coupling of reflected Brownian motions moves around
H(A, `) if one of these processes reflects at A (see Section 3). We say that “hinge
H(A, `) does not exist” if A is not an active point or ` and T are parallel.

If P ∈ ∂↓D, Q ∈ ∂↑D and H(A, `(P,Q)) ∈ R[Q, P), then we say that the
hinge is upper. Otherwise we say that it is lower. We say that H(A, `(P,Q)) is
an upper right hinge if A is on the right of [P,Q] and H(A, `(P,Q)) is an upper
hinge. We define upper left, lower right and lower left hinges in an analogous way.

Assumption 2.2. There is ν > 0 such that for all P ∈ ∂↓D and Q ∈ ∂↑D with
∠(P,Q) ∈ [α − ν,α] and P3 < P < P4, there exists no lower left and no upper
right hinge. An analogous condition is assumed for the primes.

It follows from Assumption 2.3 below that arc(P3, P4) is, in fact, the largest
arc with the above property.

Since D is strictly convex, α < ∠(P) for P1 < P < P3. We define A(P1, P3)
as the set of line segments [P,Q] with the properties P1 < P < P3 and ∠(P,Q) ∈
(α,∠(P)). We define analogouslyA(Q4,Q6),A(P ′1, P ′3) andA(Q′4,Q′6).

It is easy to see that for any [P,Q] ∈ A(P1, P3) there exists at least one lower
right hinge. In fact, every A ∈ ∂↓D, A > P , that is sufficiently close to P is active
and the corresponding hinge is lower right.

Assumption 2.3. For any line segment in A(P1, P3) there exists at least one
lower left but no upper right hinge. For any line segment in A(Q4,Q6) there
exists at least one upper right but no lower left hinge. Analogous conditions hold
for the primes.

For an admissible [P,Q], denote the right [resp., left] part of the boundary,
excluding the endpoints P andQ, by ∂R(P,Q) [∂L(P,Q)], and its reflection about
`(P,Q) by ∂̃R(P,Q) [∂̃L(P,Q)].

Assumption 2.4. For every [P,Q] ∈A(P1, P3) [resp.,A(Q4,Q6)], the curves
∂R(P,Q) and ∂̃L(P,Q) intersect at a unique point, and the intersection is nontan-
gential. Moreover, both tangent lines to these curves at the point of intersection
intersect R[P,Q) [resp., R[Q, P)]. Analogous conditions hold for the primes.

Figure 2.2 illustrates a nontangential intersection of the boundary ∂D and its
reflection.

Assumption 2.5. If [P,Q] ∈ A(P1, P3) and [P ′,Q′] ∈ A(Q′4Q′6), then
`(P,Q) ∩ `(P ′,Q′) is non-empty and belongs to D̄. An analogous statement
holds for the pairA(P ′1, P ′3) andA(Q4,Q6).

Our main result is as follows.
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Theorem 2.6. Assume that the set D satisfies all the conditions listed in this sec-
tion, in particular, Assumptions 2.1–2.5. Then the second eigenvalue for the Laplacian
in D with Neumann boundary conditions is simple.

3. MIRROR COUPLING ANALYSIS

We start by a review of definitions and results from [3] on mirror couplings of
reflected Brownian motions.

Let W denote a standard planar Brownian motion and suppose that x ∈ D̄.
The equation

X(t) = x +W(t)+
∫ t

0
n(X(s))dL̂(s),

where L̂ denotes the local time of X on the boundary, has a unique strong solution,
referred to as a reflected Brownian motion. The local time does not increase when

X is away from the boundary of D, i.e.,
∫∞

0
1{Xs∈D} dL̂s = 0, a.s. . By a coupling

we mean a pair of processes defined on the same probability space. We define a
mirror coupling of reflected Brownian motions, denoted by X and Y and starting
from x, y ∈ D̄, by means of the following set of equations:

X(t) = x +W(t)+ L(t), L(t) =
∫ t

0
n(X(s))dL̂(s),(3.1)

Y(t) = y + Z(t)+M(t), M(t) =
∫ t

0
n(Y(s))dM̂(s),(3.2)

Z(t) = W(t)− 2
∫ t

0
m(s)m(s) · dW(s), m(t) = Y(t)−X(t)

‖Y(t)−X(t)‖ .(3.3)

Here M̂ stands for the local time of Y on ∂D. The definition of m given above
is different from the meaning given to this symbol in the previous section but
the two vectors will be effectively identified in our arguments so no confusion
should arise. The equations (3.1)-(3.3) have a unique strong solution up to the
time ζ = inf{t : lims→t−(X(s) − Y(s)) = 0} (see [3] for the precise meaning
of this statement). The random variable ζ is called the coupling time. While
{X(t) : t ≥ 0} is well defined by (3.1), the processm, and consequently Y is only
well-defined on [0, ζ). We set

(3.4) Y(t) = X(t) for all t ≥ ζ.

Each of the processes {X(t) : t ≥ 0} and {Y(t) : t ≥ 0} is a reflected Brownian
motion in D, and the pair (X, Y) is a strong Markov process (cf. [3]).

So long as the processes X and Y have not coupled (i.e., for times t < ζ),
one can talk of a process `(t), taking values in the set of lines in the plane and
referred to as the mirror process, defined at time t as the line with respect to which
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FIGURE 2.1.
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hinge 1

hinge 2

FIGURE 2.2. A mirror and two hinges.

X(t) and Y(t) are symmetric. Clearly,m(t) is a unit vector perpendicular to the
mirror, by (3.3). It is also clear that, for each t < ζ, X(t) and Y(t) cannot lie
at any boundary point that is not active for `(t). The main result of this section
states that under the assumptions of Section 2 there is a nontrivial subset of D̄× D̄
that is left invariant under the dynamics of the pair (X, Y). It is more convenient
to state and prove this result in terms of the motion of the mirror `(t), a process
that is locally of bounded variation.

We next develop an equation for the intersection points of the mirror with
the boundary. Let P(t) andQ(t) denote the two intersection points of the mirror
`(t) with ∂D (for t < ζ). Let p(t) = ‖Q(t) − P(t)‖−1(Q(t) − P(t)) and note
that p(t) is orthogonal to m(t). We label the points in `(t)∩ ∂D in such a way
that p(t) = im(t). Recall how p(`) andm(`) have been defined in Section 2. If

(3.5) (Q(t)− P(t)) · e2 > 0,

both definitions of p and m are consistent in the sense that p(t) = p(`(t))
and m(t) = m(`(t)). This is the case, in particular, when P(t) ∈ ∂↓D and
Q(t) ∈ ∂↑D. Note that by convexity one has

(3.6) p(t) · n(P(t)) > 0, p(t) · n(Q(t)) < 0.

It will be convenient to work with the arclength parametrization of the boundary.
If A ∈ ∂↓D, then we denote by U1(A) the length of the arc from P1 to A within
∂↓D. Analogously, if A ∈ ∂↑D, then we write U2(A) to denote the length of the
arc from Q′6 to A within ∂↑D. We will write U1(t) = U1(P(t)) and U2(Q(t)) if
P(t) ∈ ∂↓D and Q(t) ∈ ∂↑D. Let

ζ0 = ζ ∧ inf
{
t ∈ [0, ζ) : P(t) ∉ ∂↓D or Q(t) ∉ ∂↑D

}
.
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The process {U(t) = (U1(t),U2(t)) : 0 ≤ t < ζ0} uniquely identifies the mirror
process `(t) for t ∈ [0, ζ0). Denote

(3.7) V(t) = ‖X(t)− Y(t)‖, θ(t) = ∠(`(t)), for t < ζ.

We will suppress the dependence on t for all quantities in the following lemma.

Lemma 3.1. We have

dU1 = (p · n(P)V)−1(−(X − P) · dL+ (Y − P) · dM),(3.8)

dU2 = (p · n(Q)V)−1((X −Q) · dL− (Y −Q) · dM),(3.9)

and

(3.10) dθ = V−1p · (dM − dL),

on the time interval [0, ζ0).

Remark. Let

(3.11) F =
(
−(p·n(P)V)−1(X−P)·n(X), (p·n(Q)V)−1(X−Q)·n(X)

)
,

for t ∈ [0, ζ0) for which X(t) ∈ ∂D (in which case n(X) is well defined), and set
F = 0 otherwise. Similarly, let

(3.12) G =
( (
p·n(P)V)−1(Y−P)·n(Y), −(p·n(Q)V)−1(Y−Q)·n(Y)

)
,

for t such that Y ∈ ∂D and G = 0 otherwise. We can write equations (3.8)–(3.9)
in the form

(3.13) dU = F d|L| +G d|M|.

Proof. By the results of [3], the processm satisfies

dm = V−1(dM − dL)− V−1m[m · (dM − dL)],

that can be written as

(3.14) dm = V−1p[p · (dM − dL)].

Fix any t0 ≥ 0 and assume that {t0 < ζ0} holds. Let n0 = n(P(t0)) and
r0 = −in0. Let J(t) be the intersection of `(t) and the line tangential to ∂D at
P(t0). Set x1(t) = r0 · (J(t) − P(t0)) and m1(t) = r0 ·m(t). It follows from
(3.14) that

(3.15) dm1 = V−1[p · r0][p · (dM − dL)].



1326 RAMI ATAR & KRZYSZTOF BURDZY

Elementary geometry can be used to check that

x1 = (X + Y − 2P(t0)) ·m
2m1

.

Applying Ito’s formula to this representation of x1 yields

(3.16) dx1 = (2m1)−1m · (dM + dL)+ (2m1)−1(X + Y − 2P(t0)) · dm

− 1
2
m−2

1 [m · (X + Y − 2P(t0))]dm1.

Consider any vector s. Since p · r0 = −n0 ·m, we have

−s ·m(p · r0 + n0 ·m) = 0.

We obtain in succession,

s · [−(p · r0)m− (n0 ·m)m] = 0,
s · [m1p − (p · r0)m− (n0 ·m)m− (n0 · p)p] = 0,
s · [m1p − (p · r0)m− n0] = 0,
m1s · p− [m · s][p · r0] = n0 · s.

This, (3.14) and (3.15) imply that

m1s · dm−m · sdm1 = V−1[n0 · s][p · (dM − dL)].

Next we substitute s = X + Y − 2P(t0) to obtain

m1[X + Y − 2P(t0)] · dm−m · [X + Y − 2P(t0)]dm1

= V−1[n0 · (X + Y − 2P(t0))][p · (dM − dL)],

and

(2m1)−1[X + Y − 2P(t0)] · dm−
1
2
m−2

1 m · [X + Y − 2P(t0)]dm1

= (2m2
1V)

−1[n0 · (X + Y − 2P(t0))][p · (dM − dL)].

We combine this with (3.16) to see that

(3.17) dx1 = (2m1)−1m · (dM + dL)

+ (2m2
1V)

−1[n0 · (X + Y − 2P(t0))][p · (dM − dL)].
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Note that m1 = p · n0 and at time t = t0, the vector p is a positive multiple of
(Y +X)/2− P . Hence, for t = t0,

m−1
1 [n0 · ((Y +X)/2− P)]p − ((Y +X)/2− P) = 0.

We obtain the following sequence of identities for t = t0,

(Y −X)/2+m−1
1 [n0 · ((Y +X)/2− P)]p − (Y − P) = 0,

Vm/2+m−1
1 [n0 · ((Y +X)/2− P)]p − (Y − P) = 0,

(2m1)−1m+ (2m2
1V)

−1[n0 · (Y +X − 2P)]p − (m1V)−1(Y − P) = 0,

(2m1)−1m · dM + (2m2
1V)

−1[n0 · (Y +X − 2P)]p · dM

= (m1V)−1(Y − P) · dM,

(2m1)−1m · dM + (2m2
1V)

−1[n0 · (Y +X − 2P)
]
p · dM(3.18)

= ([p · n0]V
)−1(Y − P) · dM.

An analogous calculation yields

(2m1)−1m · dL− (2m2
1V)

−1[n0 · (Y +X − 2P)]p · dL(3.19)

= −([p · n0]V)−1(X − P) · dL.

We combine (3.17)–(3.19) to obtain for t = t0,

dx1 = ([p · n(P)]V)−1[−(X − P) · dL+ (Y − P) · dM].

The processes x1 and U1 satisfy (dU1/dx1)(t0) = 1 because the boundary of D is
C2. Therefore (3.8) follows. The proof of (3.9) is analogous.

Finally, from p(t) = im(t) = eiθ(t) it is easily seen that dθ = p · dm, hence
by (3.14) we obtain (3.10). ❐

Construction of the Lyapunov set. We will construct a subset of the state
space for mirrors (straight lines in the plane) with the property that if it contains
`(t), then it contains `(s) for all s ≥ t, a.s. . It is convenient to encode mirror
positions using their intersection points with ∂D and arclength parametrization
U1 and U2, and so we will work with the process U = (U1, U2) and a set L ⊂ R2 in
the state space of U . Going back to the assumptions and terminology of Section 2,
if ` is an admissible line, let P and Q denote its intersection points with ∂↓D and
∂↑D, and let u1 = U1(P) and u2 = U2(Q). Let ū1 and ū2 denote the length of
∂↓D and ∂↑D. Then for i = 1, 2, ui takes values in [0, ūi]. We will define the set
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L as a subset of U = [0, ū1]×[0, ū2]. A point u ∈ L thus represents an admissible
line `. The one-to-one (not onto) map from admissible line segments to points in
U described above is denoted by ϕ, i.e., the image of [P,Q] is ϕ(P,Q). We use
the notation uk =ϕ([Pk,Qk]) and uk′ =ϕ([P ′k,Q′k]) for k = 1,2, . . . ,6, where
the special line segments with subscripts 1, 3, 4 and 6 were defined in Section 2,
and those with subscripts 2 and 5 will be defined below.

The boundary of L consists of several pieces which will be described one by
one. First, the following set will be a part of the boundary:

arc(u3, u4) := {ϕ(P,Q) : P3 ≤ P ≤ P4, ∠(P,Q) = α}.

Note that this subset of U is a curve connecting the points u3 and u4, correspond-
ing to [P3,Q3] and [P4,Q4]. See Figure 2.1(b).

Next we describe a curve that begins at the point u4. To this end we will need
the following lemma.

For A ∈ `(P,Q) \D, let

dP,Q(A) :=


‖A−Q‖, A ∈ R[Q, P),

‖A− P‖, A ∈ R[P,Q).

Lemma 3.2. For every [P,Q] ∈ A(P1, P3), there exists a left boundary point
P← = P←(P,Q) with a lower hinge H← = H←(P,Q) such that dP,Q(H←) ≤
dP,Q(H) for every lower left hinge H, and there exists a right boundary point P→
with a lower hinge H→ such that dP,Q(H→) ≥ (H) for every lower right hinge H. We
also have

(3.20) dP,Q(H←) > dP,Q(H→).

For [P,Q] ∈ A(Q4,Q6) there exist points Q← and Q→ with properties analogous to
P← and P→.

Furthermore, for every ε > 0 there exists Cε < ∞ with the following properties.
Suppose that [P,Q], [P̃ , Q̃] ∈ A(P1, P3) are such that ∠(P,Q) < ∠(P) − ε, and
assume that a similar inequality holds for [P̃ , Q̃]. Then

(3.21) ‖P← − P̃←‖ + ‖P→ − P̃→‖ ≤ Cε(‖P − P̃‖ + ‖Q− Q̃‖),

where P← = P←(P,Q) and P̃← = P←(P̃ , Q̃), etc. Similarly, if [P,Q], [P̃ , Q̃] ∈
A(Q4,Q6), ∠(P,Q) < −∠(Q)− ε, and a similar inequality holds for [P̃ , Q̃], then

(3.22) ‖Q← − Q̃←‖ + ‖Q→ − Q̃→‖ ≤ Cε(‖P − P̃‖ + ‖Q− Q̃‖).

Analogous results hold for the primes.



Mirror Couplings and Neumann Eigenfunctions 1329

Proof. Let [P,Q] ∈ A(P1, P3). Assumption 2.4 asserts the existence of a
unique point of intersection of ∂R(P,Q) and ∂̃L(P,Q). Let P→ ∈ ∂R(P,Q) denote
this point, and let P←(P,Q) ∈ ∂L(P,Q) denote its reflection about [P,Q]. By
Assumption 2.4, P→ has a lower right hinge, denoted by H→, and P← has a lower
left hinge, H←. Assumption 2.4 implies that all active points having lower right
hinges must lie on the arc(P, P→). Thus the inequality dP,Q(H→) ≥ dP,Q(H) for
lower right hinges H follows from convexity. Moreover, no active point having a
lower left hinge can lie on the arc(P←, P) (excluding P←), and thus by convexity,
dP,Q(H←) ≤ dP,Q(H) for lower left hinges H. Since by Assumption 2.4 the
intersection is nontangential, inequality (3.20) follows. Finally, let ε > 0 be given.
For all line segments [P,Q] ∈ A(P1, P3) satisfying ∠(P,Q) < ∠(P) − ε, the
intersection of ∂R(P,Q) and ∂̃L(P,Q) is nontangential, with a lower bound on
the angle of intersection. Hence by smoothness of ∂D, the dependence of the
point of intersection on P and on Q in this class is Lipschitz, with a constant
depending only on ε. It follows from this and the definition of P→ and P← that
these two points are Lipschitz functions of P and Q, with the Lipschitz constant
depending only on ε. ❐

For u ∈ U let [P(u),Q(u)] denote the corresponding line segment with
P(u) ∈ ∂↓D, and with an abuse of notation, let p(u) = p(P(u),Q(u)) =
ei∠(P(u),Q(u)). Let Q←(u) and Q→(u) denote the boundary points defined rela-
tive to [P(u),Q(u)] in Lemma 3.2 above. Note that Q←(u) has an upper left
hinge and Q→(u) has an upper right hinge. We will prove in Lemma 3.3 below
existence and some properties of a constant a∗ > 0 and a curve{

u(a) : a ∈ (0, a∗)} in U

defined by the initial condition u(0+) = u4 and the following set of ordinary
differential equations,

d
da
u1 = u̇1 = (p(u) · n(P(u)))−1

[
− (Q←(u)− P(u)) · n(Q←(u))(3.23)

− (Q→(u)− P(u)) · n(Q→(u))
]
,

d
da
u2 = u̇2 = (p(u) · n(Q(u)))−1

[
(Q←(u)−Q(u)) · n(Q←(u))(3.24)

+ (Q→(u)−Q(u)) · n(Q→(u))
]
.

These equations are obtained from (3.8)–(3.9) by formally replacing U by u, d|L|
by da, d|M| by −da, V by 1, X(t) byQ←(u) and Y(t) byQ→(u). We note that
we could have formally replaced d|L| by c1 da and d|M| by −c2 da; that would
not substantially alter the rest of the argument. The right hand sides of (3.23)–
(3.24) are well defined for u ∈ ϕ(A(Q4,Q6)) by Lemma 3.2. The number
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a∗ has the property that the line ϕ−1(u(a)) is asymptotically normal to ∂D as
a ↑ a∗; see below for a precise statement. We denote byu5 the limit lima↑a∗ u(a)
(that exists by the result below) and denote P5, Q5 accordingly.

Lemma 3.3. There exists a unique constant a∗ ∈ (0,∞) with the following
properties. The equations (3.23)–(3.24) have a unique solution on (0, a∗), and
u(a) ∈ ϕ(A(Q4,Q6)) on this interval. The limit u5 = lima↑a∗ u(a) exists and
one has Q4 < Q5 < Q6, where [P5,Q5] = ϕ−1(u5). Also, lima↑a∗ p(u(a)) ·
n(Q(u(a))) = −1, i.e., the line ϕ−1(u(a)) is asymptotically normal to ∂D at Q5.
Finally, the right hand sides of (3.23)–(3.24) are positive on (0, a∗).

Proof. By convexity of D, it follows that p · n(P) > 0 and p · n(Q) < 0 for
[P,Q] ∈A(Q4,Q6). For the same reason,

(3.25) (Q←(u)−P(u)) ·n(Q←(u)) < 0, (Q→(u)−P(u)) ·n(Q→(u)) < 0,

(Q←(u)−Q(u)) ·n(Q←(u)) < 0, (Q→(u)−Q(u)) ·n(Q→(u)) < 0.

This shows that the right hand sides of (3.23) and (3.24) are strictly positive for
[P,Q] ∈ A(Q4,Q6). Moreover, using the definition of A(Q4,Q6), one can
see that the left hand side of the first inequality in (3.25) is bounded away from
zero. As a result, the right hand side of (3.23) is bounded away from zero for
[P,Q] ∈A(Q4,Q6).

Let Q̃ ∈ ∂D be the point with n(Q̃) = ieiα. By Assumptions 2.2 and 2.3
there are small perturbations of [P4,Q4] for which there is no upper right hinge,
and there are some for which there exists an upper right hinge. It is not hard to see
that this implies that Q→(u) → Q̃ as u → u4 along every sequence for which the
hinge exists. We use this to extend the definition ofQ→(u), so thatQ→(u4) = Q̃.
Consequently, the right hand sides of (3.23) and (3.24) are extended continu-
ously to ϕ(A(Q4,Q6) ∪ {[P4,Q4]}). Let Aε denote the set of line segments in
A(Q4,Q6) having ∠(P,Q) < −∠(Q) − ε. The local Lipschitz property asserted
in (3.21)–(3.22) and the smoothness of n(·) implies that the right hand sides
of (3.23) and (3.24) are Lipschitz functions of u for u ∈ ϕ(Aε ∪ {[P4,Q4]})
(with a constant depending on ε). Let aε = inf{a > 0 : u(a) 6∈ ϕ(Aε)}.
The last assertion implies that for every ε > 0 there exists a unique solution on
an interval [0, aε), with the initial condition u(0) = u4. Since by construction
∠(P4,Q4) < −∠(Q4), and because the right hand sides are strictly positive, we
have that aε > 0 for all small ε > 0. Sinceu1 is bounded for [P,Q] ∈A(Q6,Q6),
it follows from the remark above regarding the right hand side of (3.23) being
bounded away from zero, that aε are bounded by a finite constant. The constants
aε are clearly monotone, the limit a∗ = limε→0 aε exists and is finite. The solu-
tion to (3.23)–(3.24) on [0, a∗) is thus well-defined and unique. We have already
shown that the right hand sides of (3.23) and (3.24) are positive. Hence, u1 and
u2 are monotone functions of a and it follows that the limit u5 := lima↑a∗ u(a)
exists. We let [P5,Q5] =ϕ−1(u5).
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We will show that Q5 < Q6. It follows from (3.23)–(3.24) that

(3.26)
du1

du2
= −p · n(Q)

p · n(P) ·
(Q← − P) · n(Q←)+ (Q→ − P) · n(Q→)
(Q← −Q) · n(Q←)+ (Q→ −Q) · n(Q→)

.

We can consider this as an equation for u1 as a function of u2 with the initial
condition u1|u2=u4

2
= u4

1. For comparison, we consider a curve v(a) = v =
(v1, v2) in U with the property that ∠(ϕ−1(v)) = α for all a > 0. This curve
satisfies

dv1

dv2
= −p · n(Q)

p · n(P) .

Again, we can consider the above as an equation for v1 as a function of v2,
with the same initial condition as for u1, namely, v1|v2=u4

2
= u4

1 (this is be-
cause ∠(ϕ−1(u4)) = α). The fact that Q→ has an upper hinge implies that
(Q− P) ·n(Q→) < 0. Similarly, (Q− P) ·n(Q←) < 0. It follows that the second
fraction on the right hand side of (3.26) is strictly less than 1. Standard compar-
ison results for univariate ODE’s imply that u2 < v2 whenever u1 = v1. This
shows that

(3.27) ∠
(
ϕ−1(u(a))) > α = ∠(P6,Q6) for every a ∈ (0, a∗].

We are in the middle of an argument that is supposed to show that Q5 < Q6.
We now argue by contradiction and assume that Q5 ≥ Q6. Then [P,Q6] =
ϕ−1(u(â)) for some â ∈ (0, a∗] and P . By (3.27), ∠(ϕ−1(u(â)) > α =
−∠(Q(u(â))). Hence for small ε > 0,

∠
(
ϕ−1(u(ã))) > −∠(Q(u(ã)))

for an appropriate ã < aε. This contradicts the definition of aε. We conclude
that Q5 < Q6.

Finally, note that the limit lima↑a∗ p(u(a)) · n(Q(u(a))) exists by mono-
tonicity of u and is equal to p(u(a∗)) · n(Q(u(a∗))). Since by (3.27) we have
∠(P5,Q5) > α, and since Q4 < Q5 < Q6, it follows from the definitions of
A(Q4,Q6),Aε and aε that for all small ε > 0,

∠
(
ϕ−1(u(aε))) = −∠(Q(u(aε)))− ε .

Thus ∠(P5,Q5) = −∠(Q5) i.e., p(u(a∗)) · n(Q(u(a∗))) = −1. ❐

The part of the boundary constructed above is denoted by arc(u4, u5).
Analogously to arc(u3, u4), we construct arc(u3′, u4′). Similarly to arc(u4, u5),

we construct arc(u4′, u5′), and then arc(u2, u3) and arc(u2′, u3′).
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Next, consider the two line segments [P5,Q5] and [P ′2,Q
′
2]. Since Q5 < Q6,

Assumption 2.5 implies that these two line segments intersect in D. As a result,
P5 < P ′2 and for similar reasons, Q′2 < Q5. We add the following pieces to the
boundary of L:{

ϕ(P,Q5) : P5 ≤ P ≤ P ′2
}
,

{
ϕ(P ′2,Q) : Q′2 ≤ Q ≤ Q5

}
.

We denote this by arc(u5, u2′). Note that it has the form

{
(u1, u2) ∈ U : u5

1 ≤ u1 ≤ u2
1
′, u2 = u5

2
}

∪ {(u1, u2) ∈ U : u1 = u2
1
′, u2

2
′ ≤ u2 ≤ u5

2
}
.

Finally, we construct arc(u2, u5′), the last part of the boundary of L, in a way
analogous to the construction of arc(u5, u2′).

In view of Lemma 3.3 it is easy to see that the pieces of ∂L constructed above
do not intersect each other, except for the endpoints. The Lyapunov set L is de-
fined as the simply connected, bounded, closed domain with the boundary com-
prised of all arcs constructed above.

Invariance of the set L. Recall the definitions of the mirror coupling
(X(t), Y (t)), and U(t), `(t) and ζ from the beginning of this section. The main
result of this section states that the process U remains in L if it start in L.

Theorem 3.4. Assume that X(0) 6= Y(0), U(0) ∈ L and that X(0) is on the
left of `(0). Then, with probability 1, for all t < ζ,

U(t) ∈ L and e1 · (Y(t)−X(t)) > 0.

Proof. Suppose for the moment that U(t) ∈ L for all t < ζ. Then the
assertion that e1·(Y(t)−X(t)) > 0 for t < ζ follows from sample path continuity
of X and Y and the fact that `(t) ∈ [α,π −α], t < ζ. Hence, it remains to show
that U(t) ∈ L for all t < ζ.

We define τ = inf{t ∈ [0, ζ) : U(t) 6∈ L} and E = {τ < ζ}, with the
convention inf∅ = +∞. We will show that P(E) = 0. On E, we let u∗ =
U(τ) ∈ ∂L. Note that U(tk) ∈ Lc along a sequence tk → τ+.

Consider first the case when u∗ ∈ arc(u4, u5) \ {u4, u5}. By (3.23)–(3.24),
the vector t∗ = (t∗1 , t∗2 ) given by the following formula is tangent to ∂L at u∗,

t∗1 = (p∗ · n(P∗))−1[−(Q∗← − P∗) · n(Q∗←)− (Q∗→ − P∗) · n(Q∗→)],(3.28)

t∗2 = (p∗ · n(Q∗))−1[(Q∗← −Q∗) · n(Q∗←)+ (Q∗→ −Q∗) · n(Q∗→)].(3.29)

The superscripts ∗ in the above formula indicate that all the functions are evalu-
ated at u∗. Note that V∗ > 0 since otherwise we would have τ = ζ. By Lemma
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3.3, t∗i > 0, i = 1, 2. Thus N∗ := (t∗2 ,−t∗1 ) is an inward normal vector to ∂L at
u∗. It is not necessarily true that ‖N∗‖ = 1. Note that X∗ ∈ ∂D or Y∗ ∈ ∂D (or
both) because X and Y are continuous and the mirror `(t) is not moving when
the reflected Brownian motions are inside D. In the case when X∗ ∈ ∂D, the
expression on the right hand side of (3.11) evaluated at τ will be denoted by F∗.
Similarly, in the case Y∗ ∈ ∂D, G∗ := G(τ) (cf. (3.12)).

We will now show that F∗ ·N∗ > 0 in the case X∗ ∈ ∂D. Let

γ∗ = −
([
p∗ · n(P∗)][p∗ · n(Q∗)]V∗)−1

,

and note that γ∗ > 0. Since N∗ = (t∗2 ,−t∗1 ),

(3.30) F∗1 t
∗
2 − F∗2 t∗1

= γ∗
{
(X∗−P∗) · n(X∗)[(Q∗←−Q∗)·n(Q∗←)+ (Q∗→−Q∗)·n(Q∗→)]
− (X∗−Q∗)·n(X∗)[(Q∗←−P∗)·n(Q∗←)+ (Q∗→−P∗)·n(Q∗→)]}.

By Assumption 2.3 the hinges corresponding to X∗ and to Q∗← are upper;
thus p∗ · n(X∗) < 0 and p∗ · n(Q∗←) < 0. Also, Lemma 3.2 states that the dis-
tance from the hinge corresponding to Q∗← to Q∗ is not smaller than the distance
from the hinge corresponding to X∗ to Q∗. It follows that the distance from the
hinge corresponding to Q∗← to P∗ is not smaller than the distance from the hinge
corresponding to X∗ to P∗. One can express this fact by the following inequality:

(Q∗← − P∗) · n(Q∗←)
p∗ · n(Q∗←)

≥ (X
∗ − P∗) · n(X∗)
p∗ · n(X∗) .

Since Q∗ − P∗ is a positive multiple of p∗, it follows that[
(Q∗←−P∗) · n(Q∗←)

][
(Q∗−P∗) · n(X∗)]

≥ [(X∗−P∗) · n(X∗)][(Q∗−P∗) · n(Q∗←)] ,[
(Q∗←−P∗)·n(Q∗←)

][
(Q∗−P∗)·n(X∗)− (X∗−P∗)·n(X∗)]

≥ [(X∗−P∗)·n(X∗)][(Q∗−P∗)·n(Q∗←)− (Q∗←Z−P∗) · n(Q∗←)].
This gives

(3.31)
[
(X∗−P∗)·n(X∗)][(Q∗←−Q∗) · n(Q∗←)]

− [(X∗−Q∗)·n(X∗)][(Q∗←−P∗)·n(Q∗←)] ≥ 0.

Next, by Assumption 2.3 and Lemma 3.2 (applied to A(Q4,Q6)), Q∗→ has an
upper right hinge. By Lemma 3.2, the distance of this hinge from Q∗ is strictly
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larger than that of the hinge corresponding to Q∗←, and, in turn, that correspond-
ing to X∗. It follows that the distance of the hinge corresponding to Q∗→ from P∗
is strictly larger than that of the hinge corresponding to X∗. This can be written
as

(3.32)
(Q∗→ − P∗) · n(Q∗→)

p∗ · n(Q∗→)
>
(X∗ − P∗) · n(X∗)
p∗ · n(X∗) .

A calculation similar to the one leading to (3.31) yields the strict inequality

[
(X∗−P∗)·n(X∗)][(Q∗→−Q∗)·n(Q∗→)](3.33)

− [(X∗−Q∗)·n(X∗)][(Q∗→−P∗)·n(Q∗→)] > 0.

We add (3.31) and (3.33) and combine the result with (3.30) to obtain F∗ ·N∗ >
0.

A similar calculation (that is slightly more complicated due to the fact that Y∗
can either have an upper or a lower hinge) results in the conclusion that G∗ ·N∗ >
0 in the case Y∗ ∈ ∂D.

We now go back to (3.11)–(3.13). By the sample path continuity of the
processes |L|, |M|, X, Y , p, P , Q, and the continuity of the vector field n on
∂D, the fact that F∗ · N∗ > 0 provided that X∗ ∈ ∂D implies that there exists a
(random) ε > 0 such that for all δ > 0 small enough,

∫
[τ, τ+δ]

[F(t) ·N∗]d|L|(t) > ε|L|([τ, τ+δ]).

Similarly, for sufficiently small δ > 0,

∫
[τ, τ+δ]

[G(t) ·N∗]d|M|(t) > ε|M|([τ, τ+δ]).(3.34)

Thus by (3.13), for all sufficiently small δ > 0,

(U(τ + δ)−U(τ)) ·N∗ ≥ ελ(δ),(3.35)

where λ(s) = |L|([τ, τ+s])+ |M|([τ, τ+s]).
The boundary of L is C1 in a neighborhood of u∗ so for any sequence ûk ∈

Lc with ûk → u∗, we have lim supk→∞(ûk − u∗) · N∗/‖ûk − u∗‖ ≤ 0. Since
U(tk) ∈ Lc for a sequence tk → τ+, we have λ(s) > 0 for s > 0. The last two
observations imply that

(U(tk)− U(τ)) ·N∗ ≤ Cλ(tk)r(tk),
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for some (random) C <∞ and r(t) such that r(0+) = 0. This contradicts (3.35);
thus the probability that U exits L through u∗ ∈ arc(u4, u5) \ {u4, u5} is equal
to zero.

Next consider the case when U exits L through arc(u5, u2′), excluding the
points u5 and u2′. By Assumption 2.1, X(τ) is not on the boundary. Thus

(3.36) |L|([τ−ε, τ+ε]) = 0 for an appropriate random ε > 0.

Hence only the term G d|M| is present in (3.13). It is easy to see from (3.12)
that G∗i < 0 for both i = 1, 2. The inward unit normals to ∂L at u∗ can be
either (0,−1) or (−1,0), except there is a single point (corner) where any convex
combination of these vectors points inside L. Thus G∗ · N∗ > 0 in all cases and
(3.34) holds. The argument following (3.34) can be now repeated to rule out the
possibility of exiting through arc(u5, u2′).

Consider now exit through u5 (u2′ can be treated similarly). By Lemma 3.3,
the line [P(u),Q(u)] is asymptotically normal to ∂D at Q5. This implies that
Q←(u)−Q(u) andQ→(u)−Q(u) vanish as u→ u5 along the curve arc(u4, u5).
Thus the right hand side of (3.24) vanishes in this limit, and it follows that ∂L is
C1 at u5, with the unit inward normal (0,−1) at this point. As in the preceding
paragraph, Assumption 2.1 implies (3.36). The analysis of this case can now be
finished by the same argument as in the case of an exit thorough arc(u5, u2′).

Consider now the possibility that U exits through arc(u3, u4), excluding u3

and u4. Recall θ defined in (3.7) and set θ∗ = θ(τ). Then θ∗ = α. If the
trajectory of U exits L at time τ, then the trajectory of θ exits [α,π − α] at the
same time. Thus for every ε > 0 there exist s, t such that τ ≤ s < t < τ + ε and

(3.37) θ(r) < θ(s) = α, for all r ∈ (s, t].

Recall from (3.10) that dθ = V−1p · (dM − dL). By Assumption 2.2, there is no
upper right or lower left hinge within (s, t), if ε is small enough. This means a
right hinge is necessarily lower. Thus, within this time interval,

p · dM = [p · n(Y)]d|M| and p · n(Y) ≥ 0.

Similarly, p · n(X) ≤ 0. As a result, θ(t) ≥ θ(s), contradicting (3.37). We see
that U cannot exit L through arc(u3/u4).

The discussion of the possible exit through u4 will be split into two steps—
one similar to the treatment of arc(u4, u5) and the second one similar to that of
arc(u3, u4). One can show that the interior angle formed by ∂L at u4 is less than
or equal to π but the calculation will not be provided here. If the angle is greater
than π , then the first step of the argument given below would alone suffice to
complete the proof.

Let us thus review the argument provided for arc(u4, u5). Note that, by
Lemma 3.3, the formula (3.28)–(3.29) for the one-sided tangent line to this arc
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is still valid for u∗ = u4, and that n(Q∗→) = ip∗ in this case. Consider a closed
set L′ whose boundary is the same as that of L, except that the arc joining u3

and u4 is replaced by a curve that, in the vicinity of u4, coincides with a ray
starting from u4 and is oriented as −t∗. Note that ∂L′ is C1 at u4, and, as before,
N∗ = (t∗2 ,−t∗1 ) is an inward normal to L′. Recall that we have assumed that
U(tk) 6∈ L for a sequence tk → τ+. We begin by showing that U(t) ∈ L′ for all
t ∈ (τ, τ+ε), if ε > 0 is small enough. As in the argument for arc(u4/u5), we can
achieve that by showing that F∗ ·N∗ > 0 and G∗ ·N∗ > 0. The argument leading
to (3.31) holds. The one that leads to (3.33) is not valid since p∗ · n(Q∗→) = 0
and (3.32) can not be used. To obtain (3.33), note that (P∗ −Q∗) · n(Q∗→) = 0,
and, therefore, the left hand side of (3.33) can be written as[

(Q∗→−P∗) · n(Q∗→)
][
(Q∗−P∗) · n(X∗)].

We have (Q∗→ − P∗) · n(Q∗→) < 0, and, since X∗ has an upper left hinge,

(Q∗−P∗) · n(X∗) < 0.

Thus (3.33) holds. The argument following (3.33) can be repeated and one con-
cludes that U(t) ∈ L′ for all t ∈ [τ, τ + ε), where ε > 0 is sufficiently small.

Next, note that t∗ ∈ R2+. Hence if B = B(u4, ρ) denotes a disc and C =
B ∩ {(u1, u2) ∈ R2 : u1 < u4

1, u2 < u4
2}, then for sufficiently small ρ > 0

we have B ∩ (L′ \ L) ⊂ C. As a result, if [P,Q] = ϕ−1(u) for any u ∈ C,
then P3 < P < P4 and Q3 < Q < Q4. Moreover, given any point u ∈ C,
one can find a point u′ ∈ arc(u3, u4) such that u′1 > u1 and u′2 = u2. Then
∠ϕ−1(u) < ∠ϕ−1(u′). The angle for each such u′ equals α, by construction
of arc(u3, u4). Thus, by Assumption 2.2, an upper right hinge does not exist for
ϕ−1(u). The argument that we used for arc(u3, u4) can now be adapted to show
that U cannot exit L through u4.

The proof is analogous for the other parts of the boundary of L. ❐

4. MULTIPLICITY OF THE SECOND EIGENVALUE

In this section we prove Theorem 2.6. The overall strategy of the proof is similar
to that in [3]. We begin by reformulating our main tool, Theorem 3.4, in a
convenient way.

First, given (x,y) ∈ D̄ × D̄, x 6= y , let m(x,y) be the line of symmetry
for x and y and let {Px,y ,Qx,y} =m(x,y)∩ ∂D, with the convention that the
second coordinate of Px,y is less than or equal to that of Qx,y . Let T 1 ⊂ D̄ × D̄
denote the set of pairs (x,y), x 6= y , for which ϕ(Px,y ,Qx,y) ∈ L. Let

T = {(x,y) ∈ T 1 : e1 · (y−x) > 0
}
.

For (x,y) ∈ T , let Px,y denote a probability measure under which (X(t), Y (t))
is a mirror coupling starting from (x,y), and recall that Y(t) = X(t) for all
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t ≥ ζ. Let Ex,y denote the corresponding expectation. An alternative statement
of Theorem 3.4 is that if (x,y) ∈ T , then Px,y -a.s., (X(t), Y (t)) ∈ T for all
t < ζ.

Let DL denote the connected component of D \ `(P1,Q′6) not containing
Q6 in its closure, and similarly let DR denote the connected component of D \
`(P ′1,Q6) not containingQ′6 in its closure. Because L is constructed as a subset of
U, it follows from Theorem 3.4 that, for (x,y) ∈ T , Px,y -a.s., for all t < ζ, `(t)
does not intersect DL or DR. Thus, for (x,y) ∈ T ,

(4.1) X(t) 6∈ DR and Y(t) 6∈ DL for all t < ζ, Px,y -a.s. .

We will use the following well known probabilistic representation of solutions
to the heat equation. Suppose that f0 is a bounded function on D̄. Let f : [0,∞)×
D̄ → R denote the solution to 1

2∆f = (∂/∂t)f with initial values f(0, x) = f0(x)
and Neumann boundary conditions on ∂D. Then

(4.2) f(t, x) = Exf0(X(t)).

In particular, if µ2 > 0 is the second eigenvalue for the Laplacian with Neumann
boundary conditions and ψ is any eigenfunction corresponding to µ2, then the
above formula may be applied to f(t, x) = e−µ2tψ(x) and we obtain

(4.3) ψ(x) = eµ2tExf0(X(t)).

Lemma 4.1. There exist constants c1, p1 > 0 such that for every (x,y) ∈ T ,

Px,y
(∥∥X(1)− Y(1)∥∥ ≥ c1 | ζ > 1

)
≥ p1.

Proof. The assertion is the same as in Lemma 4 of [3]. The proof is very
similar to that in [3] with minor, obvious adaptations, and is thus omitted. ❐

Let

S = {f ∈ C(D̄) : f(y)− f(x) ≥ 0 for all (x,y) ∈ T},
S̃ = {f ∈ C(D̄) : f(y)− f(x) > 0 for all (x,y) ∈ T}.

Lemma 4.2. If ψ is a second Neumann eigenfunction and ψ ∈ S, then ψ ∈ S̃.

Proof. Consider a second Neumann eigenfunctionψ and assume thatψ ∈ S.
Given (x,y) ∈ T , we shall show that ψ(y) > ψ(x). Let us begin with (x,y) ∈
T o (the interior of T ). Let ε > 0 be so small that B(x, ε) × B(y, ε) ⊂ T o. Since
ψ(x′) ≤ ψ(y ′) for (x′, y ′) ∈ T and ψ is a non-constant real analytic function



1338 RAMI ATAR & KRZYSZTOF BURDZY

on D, there must exist (x′, y ′) ∈ B(x, ε)×B(y, ε) whereψ(x′) < ψ(y ′). Thus
there also exist balls B1 ⊂ B(x, ε), B2 ⊂ B(y, ε) and δ > 0 such that

ψ(x′)+ δ < ψ(y ′) for all (x′, y ′) ∈ B1 × B2.

Consider a coupling of processes (X̃(t), Ỹ (t)), in which X̃(t) and Ỹ (t) are inde-
pendent Brownian motions starting from x and y , resp., until

τ := inf
{
t > 0 | (X̃(t), Ỹ (t)) ∈ ∂(B(x, ε)× B(y, ε))},

at which time they switch to a mirror coupling. Clearly X̃(t) and Ỹ (t) are re-
flected Brownian motions in D̄, starting from x and y . By Theorem 3.4 and the
strong Markov property applied at τ, the process (X̃(t), Ỹ (t)) does not leave the
set T for t < ζ, a.s. . Thus, using (4.3), we obtain

e−µ2(ψ(y)−ψ(x)) = Ex,y(ψ(Ỹ (1))−ψ(X̃(1))) ≥ δPx,y(H),

where H denotes the event that X̃ and, respectively, Ỹ do not leave B(x, ε) and
B(y, ε) before time 1, and X̃(1) ∈ B1, Ỹ (1) ∈ B2. By well known properties
of the standard Brownian motion, the probability of H is strictly positive. This
shows that ψ(y) > ψ(x) for all (x,y) ∈ T o.

To complete the proof, it suffices to show that for every (x,y) ∈ T , a mirror
coupling (X, Y) starting from (x,y), reaches the interior of T by time 1, and
ζ > 1, with positive probability. To this end it suffices to show that the process U ,
if it starts on ∂L, enters the interior of L before time 1, and ζ > 1, with positive
probability. We analyze different parts of ∂L separately. If U(0) ∈ arc(u3, u4),
consider z ∈ ∂D and let z′ be the mirror image of z with respect to [P,Q] =
ϕ−1(U(0)). Choose z so that it has an upper left hinge and is located so close
to Q that for some ε ∈ (0,‖z − z′‖/2) we have B(z′, ε) ⊂ D. Let D′ be the
connected component of D \ [P,Q] that is on the left of [P,Q]. Consider the
following event,

{
X(t) ∈ D′ for t ∈ [0, 1

2]; X(t) ∈ B(z, ε) for t ∈ ( 1
2 ,1];

Y(t) ∈ B(z′, ε) for t ∈ ( 1
2 ,1]; |L|([0,1]) > 0

}
.

It is standard to prove that the above event has a strictly positive probability. Since
B(z′, ε) ⊂ D, we have ζ > 1 if this event occurs. Since p · n(z) < 0, it easily
follows from (3.10) that θ(1) > θ(0) = α. Thus the trajectory U enters Lo if this
event holds.

A similar argument applies for U(0) ∈ arc(u4, u5) with z being a point on
the boundary, close enough to P , having a lower right hinge (by Assumption 2.3
there is no lower left hinge for [P,Q] ∈ A(Q4,Q6) hence a lower right hinge
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must exist). Here one uses equations (3.8)–(3.9) to show that U enters Lo. For
U(0) ∈ arc(u5, u2′), take z to be any boundary point to the right of (P,Q) and
use again (3.8) and (3.9).

Finally, consider the special boundary points u4 and u5. Now that it has
been shown that the interior is reached from anywhere in ∂L save these special
points, it suffices to show that the mirror line `(t) simply moves (with positive
probability) if it starts at the corresponding positions. However, the only way it
can happen that the mirror does not move with probability 1 is when the domain
D is symmetric with respect to `(0). This is clearly not the case for either u4 or
u5, due to our assumptions. ❐

The following lemma essentially follows from Lemma 4.1 of [1], except that it has
slightly weaker smoothness assumptions. The proof given here is shorter than that
in [1].

Lemma 4.3. If ψ is a Laplacian eigenfunction with Neumann boundary condi-
tions corresponding to µ2 in a convex bounded domain D, then

sup
x∈D

‖∇ψ(x)‖ <∞.

Proof. Consider any points x, y ∈ D̄ and let (X, Y) be a mirror coupling of
reflected Brownian motions in D. Recall that ζ stands for the coupling time of X
and Y . By (4.3),

∣∣ψ(y)−ψ(x)∣∣ = eµ2

∣∣∣Ex,y(ψ(Y(1))−ψ(X(1)))∣∣∣ ≤ eµ2‖ψ‖∞Px,y(ζ > 1).

Since D is a convex domain, ‖ψ‖∞ < ∞ (see, e.g., [4]). An application of the Itô
formula and equations (3.1)–(3.3) show that

‖X − Y‖ = ‖x −y‖ +W + V̄ ,

where W = −2
∫ ·

0
m · dW and V̄ =

∫ ·
0
(n(Y) ·md|M| − n(X) ·md|L|). The

process W is a one dimensional Brownian motion (with the diffusion constant
different from the standard one) and, by convexity of the domain, the process V̄
is non-increasing. Hence,

Px,y(ζ > 1) ≤ P
(

inf
0≤t≤1

Wt > −‖x −y‖
)
≤ c1‖x −y‖.

We see that, for some c2 <∞,∣∣ψ(y)−ψ(x)∣∣ ≤ eµ2
∥∥ψ∥∥∞c1

∥∥x −y∥∥ ≤ c2
∥∥x −y∥∥.

The lemma follows easily from this bound. ❐
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For ε > 0, let
Tε =

{
(x,y) ∈ T : ‖x −y‖ ≥ ε}.

Lemma 4.4. Let c1 be as in Lemma 4.1. For every ε1 ∈ (0, c1) such that the
interior of Tε1 is non-empty and every δ, κ > 0 there exists ε2 > 0 with the following
property. If ψ is a second Neumann eigenfunction satisfying

ψ(y)−ψ(x) ≥ δ for all (x,y) ∈ Tε1 ,(4.4)

ψ(y)−ψ(x) ≥ 0 for all (x,y) ∈ Tε2 ,(4.5)

and

(4.6) ‖∇ψ‖ ≤ κ on D,

then ψ ∈ S.

Proof. Let c1 and p1 be as in the statement of Lemma 4.1. Fix any ε1 ∈
(0, c1) such that the interior of Tε1 is non-empty and consider any δ, κ > 0. Let

(4.7) p2 = inf
(x′,y′)∈Tc1

Px′,y′
((
X(1), Y (1)

) ∈ Tε1

)
.

It follows easily from Lemma 2 of [3] that p2 > 0. Set ε2 = min(κ−1δp1p2, ε1)
and note that ε2 > 0. Let ψ be a second Neumann eigenvalue satisfying (4.4)–
(4.6). By (4.3),

e−µ2t(ψ(y)−ψ(x)) = Ex,y
[
ψ
(
Y(t)

)−ψ(X(t))], t ≥ 0.

Thus, it suffices to show that, for all (x,y) ∈ T ,

(4.8) Ex,y[ψ(Y(2))−ψ(X(2)) | ζ > 1] ≥ 0.

To this end, note that, in view of (4.6),

Ex,y
[
ψ
(
Y(2)

)−ψ(X(2)) | ζ > 1
]

≥ Ex,y
[(
ψ(Y(2))−ψ(X(2)))1{‖X(2)−Y(2)‖≥ε2} | ζ > 1

]
− κε2.

Since (X(2), Y (2)) ∈ T a.s., the indicator function on the right hand side of the
last formula can be replaced by 1{(X(2),Y (2))∈Tε2}. By (4.5), the above inequality re-
mains valid if the indicator function is further replaced by 1{(X(2),Y (2))∈Tε1}. Thus
by (4.4) and (4.7),

Ex,y[ψ(Y(2))−ψ(X(2)) | ζ > 1]
≥ Ex,y[(ψ(Y(2))−ψ(X(2)))1{(X(2),Y (2))∈Tε1} | ζ > 1]− κε2

≥ δPx,y((X(2), Y (2)) ∈ Tε1 | ζ > 1)− κε2

≥ δη(x,y)p2 − κε2,
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where
η(x,y) = Px,y

((
X(1), Y (1)

) ∈ Tc1 | ζ > 1
)
.

By Lemma 4.1, η(x,y) ≥ p1. Thus

Ex,y
[
ψ
(
Y(2)

)−ψ(X(2)) | ζ > 1
]
≥ δp1p2 − κε2 ≥ 0,

and we have shown that (4.8) holds for all (x,y) ∈ T . This completes the proof
of the lemma. ❐

Proof of Theorem 2.6. We start by showing that, whether the second Neu-
mann eigenvalue is simple or not, there exists a corresponding eigenfunction that
lies in S. The multiplicity of µ2 is either one or two, see [4, 11, 12]. Con-
sider first the case when the multiplicity of µ2 is two and let ψ and ψ′ be or-
thogonal Neumann eigenfunctions corresponding to µ2 and normalized so that∫
D
ψ2 =

∫
D
(ψ′)2 = 1. Since ψ is real analytic in D, it is impossible that it van-

ishes on all of DR; thus assume without loss of generality that it is strictly positive
in some ball B ⊂ DR. Let f0 be a continuous nonnegative, nonzero function on
D̄, supported inside B. Let f : [0,∞) × D̄ → R denote the solution to the heat
equation in D̄ with the initial values f(0, x) = f0(x) and Neumann boundary
conditions on ∂D. The function f has the following eigenfunction expansion:

(4.9) f(t, x) = C1 + (C2ψ(x)+ C′2ψ′(x))e−µ2t + R(t,x),

where C1, C2 and C′2 are suitable constants, and limt→∞ eµ2t supx∈D̄ |R(t,x)| =
0 (see [4, Proposition 2.1]). Note that C2 =

∫
D
f0ψ > 0. Therefore ψ0 :=

C2ψ + C′2ψ′ is a nonzero eigenfunction corresponding to µ2. We have by (4.9)
for (x,y) ∈ T ,

eµ2t(f (t,y)− f(t, x)) = ψ0(y)−ψ0(x)+ ε(t, x,y)

where ε(t, x,y)→ 0 as t →∞. We now use (4.2) to write

ψ0(y)−ψ0(x) = eµ2tEx,y
[
f0
(
Y(t)

)− f0
(
X(t)

)]− ε(t, x,y).
By (4.1) and the properties of f0, it follows that ψ0(y) − ψ0(x) ≥ 0 for all
(x,y) ∈ T .

In the case when µ2 is simple, we take ψ′ ≡ 0 and repeat the argument to
conclude thatψ ∈ S. Obviously, if we assume that µ2 is simple, there is no logical
need to prove any properties of eigenfunctions to finish the proof of Theorem 2.6.
However, the fact that ψ ∈ S is an interesting by-product of the proof.

In what follows, ψ0 denotes an eigenfunction in S.
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To prove that µ2 is simple, we use a variation of a proof from [3]. We argue by
contradiction and assume that µ2 is not simple. Letψ1 denote a second Neumann
eigenfunction orthogonal to ψ0. It follows from Lemma 4.2 that −ψ1 and ψ1
cannot both lie in S; we thus assume without loss of generality that ψ1 6∈ S. Let

ψa = (1− a)ψ0 + aψ1, 0 < a < 1,

a∗ = inf
{
a ∈ [0,1] : ψa 6∈ S

}
.

We claim that a∗ < 1. If a∗ = 0, then we are done. Otherwise, for a < a∗ and
(x,y) ∈ T , one hasψa(y)−ψa(x) ≥ 0. By continuity of the function a→ ψa,
ψa∗(y)−ψa∗(x) ≥ 0 for all (x,y) ∈ T . Thus

(4.10) ψa∗ ∈ S,

and, therefore, a∗ < 1. This implies that

(4.11) ∃ak ↓ a∗, ak ∈ (a∗,1), ψak 6∈ S.

For a = ak as above, let

ε(a) = sup
{∥∥x −y∥∥ : (x,y) ∈ T, ψa(y)−ψa(x) < 0

}
.

By (4.10) and Lemma 4.2, ψa∗ ∈ S̃. When k → ∞, ψak → ψa∗ uniformly in D̄.
This easily implies that,

(4.12) ε(ak)→ 0 as k →∞.

Fix some ε1 > 0 as in Lemma 4.4. Sinceψa∗ ∈ S̃, we haveψa∗(y)−ψa∗(x) > 0
for all (x,y) in the closed set Tε1 . Thus there are constants δ > 0 and k0 such
that for all k > k0 and (x,y) ∈ Tε1 , ψak(y) − ψak(x) ≥ δ. By Lemma 4.3,
κ := supD(‖∇ψ0‖ + ‖∇ψ1‖) < ∞. Let ε2 > 0 be defined relative to ε1, δ
and κ as in Lemma 4.4. By (4.12), we have that ψak(y) − ψak(x) ≥ 0 for all
(x,y) ∈ Tε2 , provided that k is large enough. Thus by Lemma 4.4, ψak ∈ S for
all large k. This contradicts (4.11). We conclude that µ2 is simple. ❐

Corollary 4.5. LetDM be the part ofD between [P3,Q′4] and [P ′3,Q4]. Suppose
that the assumptions of Theorem 2.6 hold. Consider a second eigenfunction ψ and
define β(x) by∇ψ(x) = eiβ(x). Then β(x) ∈ [α−π/2, π/2−α] for all x ∈ DM ,
or this assertion holds for −ψ.

Proof. The corollary is an easy consequence of the fact that ψ ∈ S, estab-
lished in the first part of the proof of Theorem 2.6. ❐
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Proposition 4.6. Suppose that the second eigenvalue µ2 for the Laplacian with
Neumann boundary conditions in a Lipschitz domain D ⊂ Rd is simple and there
exist disjoint subsets D′, D′′ ⊂ D̄ with non-empty interiors, non-empty open balls B′,
B′′ ⊂ D, and a coupling of reflected Brownian motions (X, Y) in D such that for any
X(0) = x ∈ B′ and Y(0) = y ∈ B′′ we have X(t) ∉ D′ and Y(t) ∉ D′′ for all
t < ζ := inf{t ≥ 0 : X(t) = Y(t)}, a.s. . Let ψ be an eigenfunction corresponding
to µ2. Then ψ(z) ≥ 0 for all z ∈ D′ and ψ(z) ≤ 0 for all z ∈ D′′, or this assertion
applies to −ψ.

Proof. Let pt(· , · ) denote the transition density for the reflected Brownian
motion in D. Consider any x, y ∈ D̄. Then, by Proposition 2.1 of [4], for some
c1 ∈ R, c2, c3 ∈ (0,∞), depending on x and y ,

(4.13) pt(x, z)− pt(y, z) = c1e−µ2tψ(z)+ R(t, z),

and |R(t, z)| ≤ c2e−(µ2+c3)t , for all t ≥ 1 and all z ∈ D. Recall that ψ is a real
analytic function that is not identically constant so it is not constant on balls B′
and B′′. Hence, we can choose x ∈ B′ and y ∈ B′′ such that ψ(x) 6= ψ(y) and,
therefore, c1 = ψ(x)−ψ(y) 6= 0. Assume without loss of generality that c1 > 0.
Consider any non-empty open ball B in the interior of D′. Then∫
B
(pt(x, z)− pt(y, z))dz = Px,y(X(t) ∈ B)− Px,y(Y(t) ∈ B)

= Px,y(X(t) ∈ B | t < ζ)− Px,y(Y(t) ∈ B | t < ζ)
= −Px,y(Y(t) ∈ B | t < ζ) ≤ 0.

This shows that pt(x, ·) − pt(y, ·) is non-positive in the interior of D′. We
combine this with (4.13) and let t →∞ to see thatψ(z) ≤ 0 for z ∈ D′. Similarly,
ψ(z) ≥ 0 for z ∈ D′′. The inequalities are reversed if c1 < 0. ❐

We note that the coupling of reflected Brownian motions in Proposition 4.6 is
not assumed to be the mirror coupling. Among currently known couplings, the
mirror coupling seems to be the only one which can satisfy the assumptions of
Proposition 4.6. However, some new couplings are proposed from time to time
(see, e.g., [2, 13]) so the proposition might be applied in the future to some other
class of couplings.

Corollary 4.7. Suppose that D is as in Theorem 2.6 and recall the definitions
of DL and DR from the beginning of this section. The second eigenfunction ψ for
the Laplacian with Neumann boundary conditions in D is non-negative on DL and
non-positive on DR, or this assertion applies to −ψ.

Proof. The corollary follows from Proposition 4.6 and (4.1). ❐

The geometric location of the nodal line (i.e., zero set of the second eigenfunc-
tion) was studied in [2]. The results of that paper are logically independent from
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Proposition 4.6 in the following sense. The techniques developed in [2] cannot be
used to prove Corollary 4.7. On the other hand, the location of the nodal line in
obtuse triangles is determined with greater accuracy in [2] than it could be done
using Proposition 4.6.

We will next show how one can remove, in a sense, the assumptions of strict
convexity and C2-smoothness from Theorem 2.6. Suppose thatD ⊂ R2 is bounded
and convex but not necessarily strictly convex and ∂D is not necessarilyC2-smooth.
Suppose that {Dk}k≥1 is a non-decreasing sequence of domains satisfying assump-
tions of Theorem 2.6 and converging to D, i.e.,

⋃
k≥1Dk = D. Let Pk1 andQ′6,k be

the points defined relative to Dk and analogous to P1 and Q′6 in ∂D. Recall that
these points are used to define the arc parametrization for parts of ∂Dk. Assume
that there exist P1 and Q′6 such that Pk1 → P1 and Q′6,k → Q′6 as k→∞. We make
similar assumptions about existence of points Qk1 and P ′6,k and their convergence
to Q1 and P ′6. Let DL, DR ⊂ D be defined as at the beginning of this section, in
terms of P1, Q′6, P ′1, and Q6 described above. Let Lk be the Lyapunov set corre-
sponding to the domain Dk and let L = lim supk→∞ Lk, i.e., L = ⋂n≥1

⋃
k≥nLk.

Let T be defined as at the beginning of this section, relative to the present defini-
tion of L.

Proposition 4.8. Assume that the above conditions for D hold and every line of
symmetry for D is horizontal or vertical (hence D may have two, one or no lines of
symmetry). Assume that D is not a rectangle, and that DL, DR and T have non-empty
interiors. Then the assertion of Theorem 2.6 holds, i.e., the second eigenvalue for the
Laplacian with Neumann boundary conditions in D is simple.

Proof. First we will prove that there exists a mirror coupling of reflected
Brownian motions (X, Y) in D for which L is a Lyapunov set, i.e., if (x,y) ∈ T
and (X(0), Y (0)) = (x,y), then (X(t), Y (t)) ∈ T a.s., for all t < ζ := inf{t ≥
0 : X(t) = Y(t)}.

Fix any (x,y) ∈ T . It follows from the definition of L and T that there
exist xk, yk ∈ Dk such that xk → x, yk → y and (xk,yk) ∈ Tk, where Tk is
defined relative to Dk. For any k, let (Xk, Yk) be the mirror coupling of reflected
Brownian motions in Dk with (Xk(0), Yk(0)) = (xk,yk) as defined in (3.1)–
(3.4). We construct all these processes on a single probability space and use the
same processW to define Xk, Yk, Zk, ζk, andmk for all k. By Theorem 2.3 of [8],
Xk’s converge in distribution in the local uniform topology to a reflected Brownian
motion in D and an analogous statement is true for Yk’s. In particular, there exists
a filtration (Ft) with respect to which the Brownian motionW is a martingale, and
there exist processes X, Y , Z, L and M such that Z is a Brownian motion and an
(Ft)-martingale, X, Y , L, and M are (Ft)-adapted, and the equations (3.1)–(3.2)
hold. Passing to a subsequence if necessary, Xk converge to X and Yk to Y locally
uniformly, with probability one. Let ζ = inf{t : lims→t−(X(s)− Y(s)) = 0}. By
the uniform convergence result, for every δ > 0 one has ζk ≥ ζ − δ for all large
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k. In particular, for all large k,mk is well-defined for t ≤ ζ − δ, and Zk satisfies

Zk(t) = W(t)− 2
∫ t

0
mk(s)mk(s) · dW(s)

for t ≤ ζ−δ. The processesmk(·∧(ζ−δ)) converge uniformly tom(·∧(ζ−δ)).
Let I =

∫ ·
0
mm · dW and Ik =

∫ ·
0
mkmk · dW . Then

(Ik − I)(· ∧ (ζ − δ)) =
∫ ·∧(ζ−δ)

0
(mkmTk −mmT )dW,

and using Burkholder’s inequality and the convergence of mk’s, the left hand side
of the last formula converges locally uniformly to zero with probability one. Since
δ > 0 is arbitrary, we have shown that the equation (3.3) holds for Z and m and
all t < ζ. We would like (X, Y) to satisfy the definition of a mirror coupling
given in Section 3 but at this point we do not know whether Y = X on [ζ,∞).
Hence, we redefine Y on [ζ,∞) as Y = X on this interval. The processes X, Y ,
Z, L, M, and m and the random variable ζ that we have constructed satisfy the
definition of a mirror coupling in D, given in Section 3. As follows from [3],
the process (X(t), Y (t)) is strong Markov. Lemma 4.1 applies to (X, Y) because
(X, Y) is a mirror coupling in D. Also (4.7) holds for (X, Y) with some p2 > 0.
It follows that the proof of Theorem 2.6 presented above applies in the present
setting, except for Lemma 4.2, whose proof uses some properties of L. Hence, it
will suffice to prove that the assertion of Lemma 4.2 holds in the present context.

Part of the proof of Lemma 4.2 uses some explicit properties of L. It might
be possible to derive the needed properties of L from those of Lk’s but that seems
to be a hard and tedious task so we will use an alternative approach.

Consider a second Neumann eigenfunction ψ and assume that ψ ∈ S. Con-
sider any (x,y) ∈ T , x 6= y , and assume that (X(0), Y (0)) = (x,y). We have
by (4.3),

ψ(y)−ψ(x) = eµ2tEx,y
(
ψ
(
Y(t)

)−ψ(X(t))).
Since ψ(x′) ≤ ψ(y ′) for (x′, y ′) ∈ T and (X(t), Y (t)) ∈ T for all t < ζ, the
right hand side is non-negative. Moreover, the right hand side is strictly positive
if for some t ≥ 0 we have Px,y(ψ(Y(t)) > ψ(X(t))) > 0. Hence, it remains
to consider only the case when Px,y(ψ(Y(t)) > ψ(X(t))) = 0 for every t. By
continuity of X and Y , this is equivalent to

(4.14) Px,y
(
∀ t, ψ(Y(t)) = ψ(X(t))) = 1.

We have assumed that x 6= y so ζ > 0, a.s. . Reflected Brownian motion spends
zero time on the boundary of D. Hence, there exists a (random) time interval
[t1, t2] with t1 < t2 < ζ such that X(t), Y(t) ∈ D for all t ∈ [t1, t2]. It follows
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that the mirror `(t) does not move during this time interval. Since ψ is a real
analytic function, we conclude from this and (4.14) that ψ is symmetric with
respect to `∗ := `(t1).

Suppose that D is symmetric with respect to `∗. Then `∗ is either vertical or
horizontal, by the assumption made in the proposition. If `∗ is horizontal, then
x and y lie on a vertical line but this is ruled out by the geometric assumptions
on Dk’s. If `∗ is vertical, then x and y are symmetric with respect to the vertical
line of symmetry of D. Then DL and DR are also symmetric and it is easy to see
that the first part of the proof of Lemma 4.2 applies and one can conclude that
ψ(x) < ψ(y).

Next suppose that D is not symmetric with respect to `∗. Then there is a
positive probability that one and only one of the processes will spend some positive
amount of local time on the boundary ofD. This will move the mirror before time
ζ and the same argument as before shows that there exists `∗∗ 6= `∗ that is a line
of symmetry for ψ. Moreover, `∗∗ can be chosen arbitrarily close to `∗. This
easily implies that either ψ is constant, which is impossible, or it is a function of
only one variable in some orthonormal coordinate system. An argument given in
the proof of Lemma 5 in [3] shows that D must be a rectangle. We have assumed
that D is not a rectangle, so the proof of the proposition is complete. ❐

We believe that the assumptions on the domainsDk converging toD eliminate the
possibility that D has a line of symmetry that is not horizontal or vertical, or that
D is a rectangle, but proving this does not seem to be useful. Hence, we added an
appropriate assumption about the shape of D into Proposition 4.8.

5. EXAMPLES

Most of the assumptions on D listed in Section 2 must be checked directly in
concrete examples; doing so is a straightforward although tedious task. However,
we would like to comment on Assumption 2.4. For any point P ∈ ∂D with
P1 < P < P3, one can find [P,Q] ∈ A(P1, P3) with ∠(P,Q) arbitrarily close to
∠(P), by the definition of A(P1, P3). It is clear, therefore, that Assumption 2.4
can be satisfied only if the curvature of ∂D is decreasing in a neighborhood of P .
Vice versa, if the curvature of ∂D is non-increasing between P1 and P3, then the
assumption is satisfied for [P,Q] ∈A(P1, P3) with ∠(P,Q) very close to ∠(P) or
“moderately” close to ∠(P). For larger angles, Assumption 2.4 has to be verified
directly.

Example 5.1. We will analyze the domain D depicted in Figure 5.1. The
following conditions uniquely define the domain.

(1) The domain D is convex and its boundary passes through points (−2
√

2,0),
(0,2), (3,0), and (0,−√2).

(2) The boundary is a piece of an ellipse between points (0,2) and (3,0), with
horizontal and vertical tangents at endpoints.
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FIGURE 5.1. A domain with simple second Neumann eigenvalue.

(3) The boundary is a piece of an ellipse between points (3,0) and (0,−√2), with
horizontal and vertical tangents at endpoints.

(4) The boundary is a circular arc with center at (0,−1) and endpoints (−2
√

2,0)
and (0,2). Note that the tangent line is horizontal at (0,2) but it is not
vertical at (−2

√
2,0).

(5) The boundary is a piece of circular arc with center at (−√2,0) and end-
points (−2

√
2,0) and (−

√
2,−
√

2), with horizontal and vertical tangents at
endpoints.

(6) The boundary is a horizontal line segment between points (−√2,−√2) and
(0,−√2).
The domain D is not strictly convex and it is not C1. We will ignore these

facts for the moment and we will proceed with a choice of parameters and special
points as in Section 2. We take α = π/4. This and the assumptions in Section 2
define uniquely points P1, P3, P4, P6, Q1, Q3, Q4, Q6, and the analogous points
with primes. We will now describe how these points can be identified. P1 is
the unique point with ∠(P1) = π/4. Q1 is the unique point on the boundary
with ∠(P1,Q1) = π/4. Q′6 is the point with ∠(Q′6) = 7π/4 and P ′6 is defined by
∠(P ′6,Q′6) = 7π/4. The line segment [P3,Q3] is chosen so that ∠(P3,Q3) = π/4
and [P3,Q3]∩ [P ′6,Q′6] is the midpoint of [P ′6,Q

′
6]. Similarly, [P ′4,Q

′
4] is chosen

so that ∠(P ′4,Q′4) = 7π/4 and [P1,Q1] ∩ [P ′4,Q′4] is the midpoint of [P1,Q1].
Other points are defined in the analogous way.

Because of the way the domain in our example is defined, the coordinates of
all special points are algebraic numbers and can be written as explicit formulas
involving only square roots. Some of the formulas are very complicated so we
give coordinates of the special points in the approximated decimal form. See also
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Figure 5.1.

P1 = (−2.41,−1.00), P3 = (−2.005,−1.28),

P4 = (−0.7,−1.41), P6 = (−0.027,−1.41),
Q1 = (0.55,1.97), Q3 = (1.13,1.85),

Q4 = (2.13,1.41), Q6 = (2.50,1.11),

P ′1 = (2.71,−0.6), P ′3 = (2.09,−1.01),

P ′4 = (0.9,−1.35), P ′6 = (0.4,−1.40),

Q′1 = (0.11,2), Q′3 = (−0.81,1.89),

Q′4 = (−1.83,1.38), Q′6 = (−2.12,1.12).

We comment now on why [P3,Q3] has been chosen so that [P3,Q3]∩[P ′6,Q′6]
is the midpoint of [P ′6,Q

′
6]. Note that if `(P ′,Q′) is parallel to [P3,Q3] and

P ′ > P3, then there are no lower left hinges for `(P ′,Q′). On the other hand,
if P ′ = P and Q′ < Q3, then there exists a lower left hinge for `(P ′,Q′). This
observation is the basis of verification of Assumptions 2.2 and 2.3.

As for other assumptions listed in Section 2, some of them are elementary
but tedious to verify so we omit the formal proof. The ones that are least trivial
have been discussed at the beginning of this section. Also, the assumptions of
Proposition 4.8 regarding the domains DR and DL follow from similar properties
for the approximating sequence of domains.

FIGURE 5.2. A domain with a line of symmetry and small di-
ameter to width ratio.

Finally, note that because a part of ∂D is a circular arc, Assumption 2.1 does
not hold for some line segments such that ∠(P,Q) = ∠(P). We have to address
this as well as the fact that D is not strictly convex and it is not C2-smooth. Ap-
proximating the circular arc by that of an ellipse, it is easy to see that one can
find a sequence of strictly convex C2-smooth domains Dk ↑ D, where Assumption
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2.1 holds for each Dk. Moreover, Dk can be chosen so that the points analogous
to Pj ’s, Qj ’s, P ′j ’s and Q′j ’s and defined relative to Dk converge to the analogous
points in D. Hence, we can apply Proposition 4.8 and we conclude that the sec-
ond Neumann eigenvalue in D is simple. Corollary 4.7 implies that the second
eigenfunctionψ (or−ψ) is positive to the left of [P1,Q′6] and negative to the right
of [P ′1,Q6]. By Corollary 4.5, ∠(∇ψ(x)) ∈ [0, π/4] ∪ (3π/4, π) for x ∈ D̄
between [P3,Q′4] and [P ′3,Q4].

Example 5.2. Our next example is related to [10], [13] and an earlier article
[4]. Jerison and Nadirashvili proved in [10] that the hot spots conjecture holds in
all convex planar domains with two perpendicular axes of symmetry for all eigen-
functions corresponding to the second eigenvalue, but they left the question of the
eigenvalue multiplicity open. Pascu proved in [13] that the hot spots conjecture
holds for planar convex domains with a single line of symmetry, i.e., the maximum
and minimum of the second Neumann eigenfunction are attained at the bound-
ary of the domain. However, his theorem is stated for only one of many possible
eigenfunctions corresponding to the second eigenvalue. The domain shown in
Figure 5.2 has the boundary consisting of two circular arcs and two line segments.
Since the ratio of its diameter to width is less than 1.53, Proposition 2.4 of [4]
does not apply and we do not think that there is any other theorem in the liter-
ature that implies that the second Neumann eigenvalue is simple in this domain.
This is indeed the case but we omit the detailed proof as it follows the lines of
Example 5.1. We conclude that, in view of [13], the hot spots conjecture holds
in its strongest form for the domain in Figure 5.2 and similar convex symmetric
planar domains with at least one axis of symmetry.

FIGURE 5.3. A snake domain.

Example 5.3. We conclude with a challenge for the reader, similar in spirit
to Exercise 4.1 in [4]. That exercise is concerned with a “snake” domain, i.e., a
twisted version of a very thin “lip domain,” defined at the beginning of Section
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1. Our present example is depicted in Figure 5.3. One can show that there exist
subsets DL and DR of D (close to the “endpoints” of D) and T ⊂ D̄ × D̄ such that
(4.1) holds. Then an argument similar to that in the proof of Proposition 4.8 can
be used to show that the second Neumann eigenvalue is simple in this domain.
We leave the details of the proof as an exercise for the reader.
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