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Abstract

In this appendix to “A diffusion regime with non-degenerate slowdown”, Op. Res. (2012), we
provide the proofs of the main results. Theorem 2.1 is proved in Subsection A.1 and Theorem
2.2 in Subsection A.2.

For the notation used in this appendix, see the end of Section 1 of the main body of the paper.
Equation and theorem numbers, such as (1), (2),..., Theorem 2.1, etc. refer to the main body of
the paper. Literature citation such as [1], [2],... refers to the bibliographic list at the end of this
appendix.

A.1 Convergence of queue-length

In this subsection we prove Theorem 2.1. Let us introduce some notation. Let

Tn(t) =
∑
k∈Kn

Tkn(t), T̄n(t) = n−1Tn(t), (A.1)

Ân(t) = n−1/2(An(t)− λnt),

Vn(t) = n−1/2
∑
k∈Kn

(Dkn(t)− Tkn(t)) = n−1/2(Dn(t)− Tn(t)), (A.2)

Z∗
n(t) = n−1/2Z(n1/2t)− t, t ≥ 0, (A.3)

Fn(t) = Z∗
n

(
γn

∫ t

0
X̂n(s)

+ds
)
+ (γn − γ)

∫ t

0
X̂n(s)

+ds, (A.4)

Wn(t) = Ân(t)− Vn(t), W̃n(t) = (λ̂n − µ̂n)t+Wn(t)− Fn(t). (A.5)

Lemma A.1. The following identities hold

X̂n(t) = X̂n(0) + W̃n(t) + Ln(t)− γ

∫ t

0
X̂n(s)

+ds, (A.6)

Tn(t) +
√
nLn(t) = µnt. (A.7)
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Proof. It follows from (11), (16), (18) and (20) that

X̂n(t) = X̂n(0) +Wn(t) + λ̂nt+ n1/2λt

− n−1/2(Tn(t)− µnt)− µ̂nt− n1/2µt− γ

∫ t

0
X̂n(s)

+ds− Fn(t).

Noting by (10) that the fourth and seventh terms on the r.h.s. of the above display cancel out,
and using the notation just introduced, we obtain (A.6). Next, (A.7) follows from the identity
Bkn + Ikn = 1, along with definitions (6), (13), (22) and (A.1).

Note the resemblance between (A.6) and the Skorohod equation (24). The main ingredient of

the proof will be to show that W̃n converge to a Brownian motion, for which we use martingale
convergence methods (see Lemma A.3). We then argue by continuity of the solution map to the
Skorohod equation (see the proof of Theorem 2.1).

It is well known that the scaled processes Ân converge in distribution, uniformly on compacts, to
a Brownian motion starting from zero, with zero mean and diffusion coefficient λ1/2CIA [5, Section
17]. We denote this limit process by wA. It easily follows that Z∗

n converges to zero in distribution,
uniformly on compacts.

In what follows fix u ∈ [1,∞). Fix also ϱ ∈ (0, 12). Let

τn = inf{t ≥ 0 : Ln(t) ≥ nϱ} ∧ u. (A.8)

We begin by proving some elementary estimates.

Lemma A.2. With T̄ (t) := µt, t ∈ [0, u], one has

T̄n → T̄ in probability, uniformly on [0, u], (A.9)

sup
n

E[(|Vn|∗u)2] < ∞, (A.10)

the random variables |X̂+
n |∗u are tight, (A.11)

Fn → 0 in probability, uniformly on [0, u], (A.12)

and
P(τn < u) → 0, as n → ∞. (A.13)

Proof. First, let us show

sup{|T̄n(t)− µt| : t ≤ τn} → 0 in probability, as n → ∞. (A.14)

Note by (13), and since Bkn take values in {0, 1}, that T̄n(t) ≤ µ̄nt, for every t (recall (7)). By
(A.8), for t ≤ τn, Ln(t) ≤ nϱ. Hence by (13), (A.1) and (22),

T̄n(t) = n−1
Nn∑
k=1

µkn

∫ t

0
(1− Ikn(s))ds ≥ µ̄nt− nϱ−1/2, t ≤ τn.
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As a result, the l.h.s. of (A.14) is bounded by |µ̄n − µ|u + nϱ−1/2, for every n. By (7), we have
(A.14).

We next show (A.10). We use the Burkholder-Davis-Gundy inequality, which states that for
any local martingale M and p ≥ 1,

E{(|M |∗t )p} ≤ cpE{[M,M ]
p/2
t }, t ∈ [0,∞),

where the constant cp depends only on p, and [M,M ] is the quadratic variation process defined
by [X,X] = X2 − 2

∫
X−dX (see [8] p. 58, and p. 175); if X has piecewise smooth sample paths,

null at zero, then [X,X]t is given by
∑

s≤t∆X(s)2 (see for example [8], Theorem 22(ii), p. 59). It
follows from the martingale assumption that Vn is an Fn-martingale. Since each of its jumps is of
size n−1/2 and the number of jumps by time t is Dn(t), it follows that

E[(|Vn|∗u)2] ≤
c

n
E[Dn(u)] =

c

n
E[Tn(u)]

=
c

n
E
[∑

k

µkn

∫ u

0
Bkn(s)ds

]
≤ cu

µn

n
,

and by (7) follows (A.10).

We now prove
the random variables |X̂+

n |∗τn are tight. (A.15)

Let r > 0 be given. Consider the event {|X̂+
n |∗τn > 2r}. On this event there exist 0 ≤ σn ≤ θn ≤ τn

such that X̂n(σn) ≤ r, X̂n(θn) ≥ 2r, while X̂n(t) > 0 for t ∈ [σn, θn]. Note that the last assertion,
in view of (11) and (20), implies that In(t) = 0 for t ∈ [σn, θn]. Hence by (22), Ln(θn) = Ln(σn).
We can now use (A.6) to bound the probability of the specified event. Indeed, by (16), (17), (21),
(A.3) and (A.4), we have that

γ

∫ t

0
X̂n(s)

+ds+ Fn(t) ≡ n−1/2Z
(
γnn

1/2

∫ t

0
X̂n(s)

+ds
)
= n−1/2Zn(t) (A.16)

is nondecreasing in t. Hence by (A.5) and (A.6), we have, on the event alluded to above, that there
exist 0 ≤ σn ≤ θn ≤ τn such that

(λ̂n − µ̂n)(θn − σn) +Wn(θn)−Wn(σn) ≥ X̂n(θn)− X̂n(σn) ≥ r.

This shows

P(|X̂+
n |∗τn > 2r) ≤ P(there exist 0 ≤ σn ≤ θn ≤ τn such that Wn(θn)−Wn(σn) ≥ r − c1), (A.17)

where
c1 = u sup

n
|λ̂n − µ̂n|. (A.18)

Note that c1 is finite by (5) and (8). However,

|Wn|∗u ≤ |Ân|∗u + |Vn|∗u,
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and since Ân converge and (A.10) holds, it follows that |Wn|∗u are tight random variables. This
shows that the r.h.s. of (A.17) tends to zero as r → ∞, whence follows (A.15).

Now we will use (A.15) to show (A.13). First, (A.15), the convergence of Z∗
n to zero, and (15)

imply
|Fn|∗τn → 0, in probability. (A.19)

By (A.6),

P(τn < u) ≤ (A.20)

P
(∣∣[X̂n(·)− X̂n(0)]

+
∣∣∗
τn

≥ nϱ/4
)
+ P(|W̃n|∗τn ≥ nϱ/4) + P

(
γ

∫ τn

0
X̂n(s)

+ds ≥ nϱ/4
)
.

The tightness of X̂n(0) (23) and of |X̂+
n |∗τn implies that the first and last terms on the r.h.s. converge

to zero. We have already argued that |Wn|∗τn are tight, thus (A.5) and (A.19) imply that the second
term converges to zero as well. This proves (A.13).

Finally, in view of (A.13), (A.14) implies (A.9), (A.15) implies (A.11), and (A.19) implies
(A.12).

The first part of the following result is key to the proof of Theorem 2.1. The second part will
only be used in the next subsection, in proving Theorem 2.2.

Lemma A.3. i. The sequence (X̂n(0), Ân, Vn) converges in distribution to (ξ0, wA, wS), where wS

is a Brownian motion that starts from zero and has zero drift and diffusion coefficient µ1/2. In
addition, the random variable ξ0, the process wA and the process wS and are mutually independent.

ii. Let t ∈ [0, u) and let t(n) ∈ [t, u], n ∈ N, be a sequence satisfying t(n) ↓ t. For some positive
integer r let Gn and G be random variables with values in (R∗

+)
r, where, for each n, Gn is measurable

on Fn(t
(n)). Assume, in addition, that (Gn, Vn, Ân) converge in distribution to (G,wS , wA). Denote

w̌S(s) = wS(t+ s)− wS(t), w̌A(s) = wA(t+ s)− wA(t), s ∈ [0, u− t].

Then G, w̌S, and w̌A are mutually independent.

Proof. i. Let us begin by commenting that the convergence of Vn to wS can be shown in a
straightforward manner using the martingale central limit theorem [6]. This, however, does not
conveniently lead to an argument that wA and wS are mutually independent, for which one has
to exploit the independence of the primitives An and {Sk}. We prove the convergence and the
independence of wA and wS via an argument that a suitable error term (En defined below) converges
to zero in finite dimensional distributions.

Toward this argument we will use a theorem of Aldous [1], stating that a sequence Mn of
martingales converges in distribution to M uniformly over [0, u], provided that M is a continuous
martingale, Mn(t) are uniformly integrable in n for each t, and the finite-dimensional distributions
of Mn converge to those of M .

Uniform integrability of Vn(t) follows from (A.10). Thus to apply the above result it suffices
that we prove convergence in finite-dimensional distributions of Vn to wS . To this end we write

Vn(t) = Ŝn(t)−En(t),

4



where
Ŝn(t) = n−1/2

∑
k

(Sk(µknt)− µknt),

En(t) = n−1/2
∑
k

[Sk(µknt)− Sk(Tkn(t))− µknt+ Tkn(t)].

Note that, for each n,
∑

k Sk(µknt) is itself a Poisson process of rate µn. Also, as follows from
the assumption regarding independence of primitive processes and initial conditions, noting that
Xn(0) = Qn(0)+

∑
k Bkn(0), the Poisson process alluded to above, the process An, and the random

variable Xn(0) are mutually independent. Thus (X̂n(0), Ân, Ŝn) converge to (ξ0, wA, wS), and ξ0,
wA and wS are mutually independent. It remains to prove that En converge to zero in the sense of
finite-dimensional distributions. To this end, it suffices to show that for each v ∈ [0, u], En(v) → 0 in
probability. Fix v. Recall that, for each n and k, Rkn(t) := Sk(Tkn(t))−Tkn(t) is an Fn-martingale.
Let

τkn = inf{t : Tkn(t) = µknv}.

Since Bkn ≤ 1, it is easy to verify that τkn ≥ v. Also, it follows from standard ergodic considerations
that τkn < ∞ a.s., for each k, n. To see that, fix n. Let L > 0 be such that P(An(L) > Nn) > 0.
Then with probability 1, there are infinitely many disjoint intervals of the form [σ, σ + L + 1] ⊂
[v,∞) with the properties (a) there are at least Nn + 1 arrivals within [σ, σ + L], (b) there are
no abandonments and no service completions within [σ, σ + L + 1]. Clearly, within each of these
intervals there are more customers than servers in the system for a unit of time, and since the
policy is work conserving, all servers are necessarily occupied for a unit of time. Since there are
infinitely many such intervals, this shows τkn < ∞ for all k, a.s.

Set
E′

n(t) = n−1/2
∑
k

(Rkn(τkn ∧ t)−Rkn(v)),

and note that En(v) = limt→∞E′
n(t). Also, E

′
n(t) is an Fn-martingale for t ∈ [v,∞), with E′

n(v) =
0. To use the Burkholder-Davis-Gundy inequality the way we did before, note that the number of
jumps of E′

n over [v,∞) is given by∑
k

(Sk(µknv)− Skn(Tkn(v))) =
∑
k

Sk(Tkn(τkn)− Sk(Tkn(v))).

Since for each n and k, τkn is a stopping time on Fn, the expected number of jumps is given by

E[
∑
k

(Tkn(τkn)− Tkn(v))] = E[
∑
k

(µknv − Tkn(v))].

Hence

E[En(v)
2] ≤ E[ sup

t∈[v,∞)
E′

n(t)
2]

≤ c

n
E[
∑
k

(µknv − Tkn(v))]

=
c

n
E[
∑
k

µkn

∫ v

0
Ikn(t)dt] =

c√
n
E[Ln(v)].
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It follows from (22), (A.8) and (A.13) that n−1/2Ln(v) converges in probability to zero. In addition,
using (22), it is bounded by the constant v supn µn/n < ∞. Hence the last expression in the above
display converges to zero. This shows that En(v) → 0 in probability. Since v ∈ [0, u] is arbitrary,
the result follows.

ii. Using Assumption 2.1(iv), for each n, V̌n, Ǎn and Gn are mutually independent, where

Ǎn(s) = n−1/2[An(ATn(t
(n)) + s)−An(ATn(t

(n)))− λns], s ≥ 0,

V̌n(s) = Vn(t
(n) + s)− Vn(t

(n)), s ≥ 0.

Note that Ǎn(s) = Ân(ATn(t) + s) − Ân(ATn(t)) for s ≥ 0. It is easy to see that ATn(t
(n)) → t

in probability. Since the limit in distribution of (Vn, Ân) is a process with continuous sample
paths, it follows that (Gn, V̌n, Ǎn) converges in distribution, and has the same limit as that of
(Gn, Vn(t+ ·)−Vn(t), Ân(t+ ·)− Ân(t)), namely (G, w̌S , w̌A). It follows that the three components
are mutually independent.

Proof of Theorem 2.1. Recall that u ∈ (0,∞) is fixed, but arbitrary. Hence it suffices to prove the
convergence in distribution in the uniform topology over [0, u]. By Lemma A.3(i), (X̂n(0), Ân, Vn)
converges in distribution to (ξ0, wA, wS), where the latter three elements are mutually independent.
Using equation (A.5), the convergence of the term Fn to zero (A.12) and of the term λ̂n − µ̂n to

λ̂ − µ̂ = β (5), (8), it follows that (X̂n(0), W̃n) converges in distribution to (ξ0, w̃) where w̃ is a
Brownian motion with drift β and diffusion coefficient σ, independent of ξ0. Using the tightness of
the random variables |X̂+

n |∗u in equation (A.6), and the positivity of Ln, shows that |Ln|∗u, and in
turn, |X̂n|∗u, are tight random variables. We argue that

|X̂−
n |∗u → 0 in probability. (A.21)

Given ε > 0, consider the event

Ωε
n = {X̂n(0) ≥ −ε, |X̂−

n |∗u > 3ε}.

On this event there exist 0 ≤ σn < θn ≤ u such that X̂n(σn) ≥ −2ε, X̂n(θn) ≤ −3ε, and X̂n(t) ≤ −ε
for t ∈ [σn, θn] (this uses the fact that the jumps of X̂n are a.s. bounded by cn−1/2). Using (11),
we have In(t) ≥ εn1/2 for t ∈ [σn, θn]. Hence by (9) and (22),

Ln(θn)− Ln(σn) ≥ µmin
n ε(θn − σn).

Next, let us use equation (A.6). Note that the last term on the r.h.s. of this equation does not
vary between the times σn and θn because X̂n is negative. Also, the process Ln is nondecreasing,
and so

−ε ≥ X̂n(θn)− X̂n(σn) ≥ W̃n(θn)− W̃n(σn).

Denote
w̄u(x, δ) = sup

s,t∈[0,u]; |s−t|≤δ
|x(t)− x(s)|,

for x : [0, u] → R, δ > 0. We obtain, for each ε and n,

P(Ωε
n) ≤ P(there exists δ > 0 such that w̄u(W̃n, δ) ≥ ε, εδµmin

n ≤ |Ln|∗u).
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By tightness of |Ln|∗u, there is a function g such that limr→∞ g(r) = 0, and, for every r > 0,

P(Ωε
n) ≤ g(r) + P

(
w̄u

(
W̃n,

r

εµmin
n

)
≥ ε

)
.

A sequence of processes defined on [0, u], with sample paths in the Skorohod space, is said to be
C-tight if it is tight, and every subsequential limit has continuous sample paths with probability
one. C-tightness of, say {Un}, implies the convergence in probability of w̄u(Un, δ) → 0, for every δ.

As processes that converge to a Brownian motion, W̃n are C-tight. Since µmin
n → ∞ (9) it therefore

follows that the last term on the r.h.s. of the above display converges to zero as n → ∞. Sending
r → ∞ shows that limn P(Ωε

n) = 0. Finally, since the weak limit ξ0 of X̂n(0) is nonnegative (23),
it follows that limn P(|X̂−

n |∗u > 3ε) = 0. This shows (A.21).

For an RCLL path y from [0,∞) to R, a pair (ξ̄, l̄) is regarded a solution to the Skorohod
equation

ξ̄(t) = y(t)− γ

∫ t

0
ξ̄(s)ds+ l̄(t), (A.22)

provided that the equation above holds for all t ≥ 0, that ξ̄(t) ≥ 0 for all t, l̄ is nondecreasing, and∫
[0,∞) 1{ξ̄(t)>0}dl(t) = 0. Note that the process ξ, that is a solution to the Skorohod equation (24) is,

with probability one, a solution to the Skorohod equation (A.22) with data y(t) = ξ0 + βt+ σw(t).
It is well known that existence and uniqueness hold for the equation (A.22) for y in the space of
RCLL paths, and that the solution map is continuous in the topology of uniform convergence on
compacts (for example, this statement follows from the results of [3]). Now, by (A.6),

X̂n(t)
+ = Yn(y)− γ

∫ t

0
X̂n(s)

+ds+ Ln(t), (A.23)

where
Yn(t) = X̂n(0) + W̃n(t) + X̂n(t)

−.

It follows from (21) and (22) that d
dtLn(t) > 0 if and only if X̂n(t) < 0. Hence (X̂+

n , Ln) form a

solution to the Skorohod equation for Yn. Recall that (X̂n(0), W̃n) → (ξ0, w̃) in distribution. Thus
by (A.21), Yn → ξ0+ w̃ in distribution. As a result of the continuity of the solution map, we obtain
convergence in distribution, uniformly on compacts, of X̂+

n , and in turn, of X̂n, to the solution to
(A.22) with y = ξ0 + w̃. If w is a standard Brownian motion independent of ξ0, then (ξ0, w̃) is
equal in law to (ξ0, {βt+σw(t), t ≥ 0}). Thus, with (ξ, l) denoting the unique solution to (24) with
data (ξ0, w), we have shown that X̂n ⇒ ξ. Recalling that Q̂n and În are the positive and, resp.,
negative parts of X̂n (21), and noting that Ln is, by (A.23), given explicitly in terms of X̂n, shows
(X̂n, Ln, Q̂n, În) ⇒ (ξ, l, ξ, 0).

A.2 Convergence of delay and service time

This subsection contains the proof of Theorem 2.2. Lemma A.4(iv) below shows that µ∆̂n is close
to Q̂n, that is the positive part of X̂n. This translates the problem into that of analyzing the joint
limit law of X̂n and Σ̂n, where X̂n ⇒ ξ is already established by Theorem 2.1. The main ingredient
of the proof is an argument that the ηi’s, which represent the limit law of the scaled service times,
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are independent across i and independent of ξ. Intuitively, given some t1 < t2, the value that the
delay experienced by the customer Cn(t1) takes should have nearly no effect on the delay and service
time experienced by Cn(t2) because the system contains many customers. However this intuition
does not appear to lead to an efficient way of proving independence. We approach this problem via
an argument by induction on the number of customers. Among other considerations, the argument
crucially uses the independence result of Lemma A.3(ii) and the uniqueness of solutions to the
Skorohod equation.

Throughout, let u ∈ (0,∞), j ∈ N and 0 < t1 < · · · < tj < u be fixed. To simplify the notation

we write X̂i
n for X̂n(ti), 1 ≤ i ≤ j, and use similar convention for Q̂i

n, ∆̂
i
n and Σ̂i

n, 1 ≤ i ≤ j. X̂n(0)
will be denoted by X̂0

n.

Recall that ATn(t) and RTn(t) denote the arrival and, resp., routing time of the customer
Cn(t). Given t, let Ωn(t) denote the event that the customer Cn(t) does not abandon, namely
Ωn(t) = {ABn(t) = ∞} = {∆n(t) < ∞}. Since the process Qn is right-continuous, the quantity
Qn(ATn(t)) represents the number of customers in the queue at the time of arrival of the customer
Cn(t), including this customer. The first item of the lemma below shows that abandonment of an
individual customer occurs according to an exponential clock. The combination of items (ii)–(iv)
shows that abandonment occurs with small probability, and that µ∆̂n is close to Q̂n. In what
follows we use the notation M [s, t] := M(t)−M(s) for any process M .

Lemma A.4. Let t ≥ 0 be fixed. Then one has the following.
i. Write ABn = ABn(t)−ATn(t) and ∆n = ∆n(t) ≡ RTn(t)−ATn(t). Then

P(ABn > s) ≡ P(ABn > s ∧∆n) = E[e−γn(s∧∆n)], s ≥ 0.

ii. On Ωn(t),

|Q̂n(ATn(t))− µ̄n∆̂n(t)| ≤ Jn(t) := |Vn[ATn,RTn]|+ Ln[ATn,RTn] + n−1/2Zn[ATn,RTn].

iii. P(Ωn(t)) → 1.
iv. |Q̂n(ATn(t))− µ̄n∆̂n(t)| → 0 in probability.

Proof. i. Using the representation

P(ABn > s) = P(N̄s = 0),

where

N̄s =

∫
[t,t+s]

1{UZn(v)Qn(v−)∈[POSn(t,v−),POSn(t,v−)+1)}dZn(v),

the claim follows from a standard result on thinning of a Poisson point process (cf. [9, Proposition
1.13]).

ii. On the event Ωn(t), RTn(t) represents the time when Cn(t) starts being served. Equivalently,
this is the time when all the Qn(ATn(t)) customers that are in the queue at time ATn(t), have left
the queue, either by starting service or by abandoning. As a result, we have on Ωn(t),

Dn[ATn,RTn] ≤ Qn(ATn) ≤ Dn[ATn,RTn] + Zn[ATn,RTn], (A.24)
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where we omit the dependence of ATn and RTn on t from the notation. Using (A.2) and then
(A.7),

n−1/2Dn[ATn,RTn] = Vn[ATn,RTn] + n−1/2Tn[ATn,RTn]

= Vn[ATn,RTn]− Ln[ATn,RTn] +
µn

n
∆̂n(t),

holds on the event Ωn(t). This shows (ii).

iii. Let
θn = θn(t) = inf{s ≥ ATn : Dn[ATn, s] ≥ Qn(ATn)}.

Let us first argue that θn − ATn → 0 in probability. Roughly speaking, this should hold since the
queue-length is of order n1/2 while the rate at which the departure process increases is of order n.
Toward a rigorous argument, note that Q(ATn) = D[ATn, θn]. Thus given ε > 0,

P(θn −ATn > ε) ≤ P(θn > t+ 2ε, ATn < t+ ε) + P(ATn ≥ t+ ε)

≤ P
(Dn[t+ ε, t+ 2ε]

n
≤ |Qn|∗u

n

)
+ P(ATn ≥ t+ ε).

Recall from Lemma A.2 the notation T̄ (s) = µs, s ≥ 0. By (A.2), (A.9), (A.10), we have that
n−1Dn → T̄ in probability, uniformly in [0, u]. Hence Dn[t + ε, t + 2ε]/n → εµ in probability. By
Theorem 2.1, |Q̂n|∗u are tight r.v.s, hence |Qn|∗u/n → 0 in probability, and the first term on the
r.h.s. of the above display converges to zero. So does the second term, by the fact that ATn → t
(as follows from the speeding up of the inter-arrival times). Since ε is arbitrary, this shows that
θn −ATn → 0 in probability, as claimed.

Note that on the event Ωn(t)
c = {ABn(t) < ∞}, one necessarily has ABn ≤ θn − ATn. Hence,

given ε > 0, there exist αn ↓ 0, such that

P(Ωn(t)
c) ≤ P(ABn ≤ θn −ATn) ≤ P(ABn ≤ ε) + αn

= 1− P(ABn = ∞)− P(ABn ∈ (ε,∞)) + αn

= 1− P(ABn = ∞)− P(ABn > ε ∧∆n,∆n = ∞) + αn,

where we used the fact that ∆n = ∞ if and only if ABn < ∞. Thus, using item (i),

P(Ωn(t)
c) ≤ 1− P(ABn > ε ∧∆n) + αn

= 1− E[e−γn(ε∧∆n)] + αn

≤ 1− e−γnε + αn ≤ 1− eγ̄ε + αn,

where γ̄ = supn γn < ∞. Taking n → ∞ and then ε → 0 gives zero on the r.h.s. This proves item
(iii).

iv. In view of items (ii) and (iii), it suffices to prove that Jn(t) → 0 in probability. An
argument as in item (iii) above, using the fact Dn[ATn,RTn] ≤ Qn(ATn) on Ωn(t) (A.24), shows
that RTn − ATn → 0 in probability. Hence by item (ii) of the lemma, the convergence of Jn(t)
to zero will follow provided C-tightness of the processes Vn, Ln and n−1/2Zn. And indeed, Vn

are C-tight as processes that converge to a Brownian motion (Lemma A.3(i)), and so are Ln as
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processes that converge to the boundary term l of equation (24) (Theorem 2.1). Finally, by (A.11),
(A.12) and (A.16), the processes n−1/2Zn are C-tight. This shows Jn(t) → 0 in probability and
establishes item (iv).

The theorem will be proved by first showing

(X̂1
n, Σ̂

1
n, X̂

2
n, Σ̂

2
n . . . , X̂

j
n, Σ̂

j
n) ⇒ (ξ(t1), η1, ξ(t2), η2, . . . , ξ(tj), ηj). (A.25)

Once the above is established, the result will follow by an easy implementation of Lemma A.4.

Toward proving (A.25), consider the statements

X̂1
n ⇒ ξ(t1), (A.26)

(X̂1
n, Σ̂

1
n, X̂

2
n, Σ̂

2
n, . . . , X̂

i
n) ⇒ (ξ(t1), η1, ξ(t2), η2, . . . , ξ(ti)), (A.27)

(X̂1
n, Σ̂

1
n, X̂

2
n, Σ̂

2
n, . . . , X̂

i
n, Σ̂

i
n) ⇒ (ξ(t1), η1, ξ(t2), η2, . . . , ξ(ti), ηi), (A.28)

where ξ and η are as in the statement of the theorem.

Claim A. (A.26) holds.

Claim B. Given i ∈ {1, 2, . . . , j}, if (A.27) holds then (A.28) holds.

Claim C. Given i ∈ {1, 2, . . . , j − 1}, if (A.28) holds then (A.27) holds for i+ 1.

Clearly, by induction on i, Claims A–C imply (A.25). In what follows we shall prove these
claims.

First, note that Claim A follows directly from Theorem 2.1.

To prove Claim C we will need the following.

Lemma A.5. Let ξ be a solution to the Skorohod equation (24) with data (ξ0, w). Given 0 ≤ t < u
there exists a measurable map H : R× C([t, u] : R) → C([t, u] : R) such that, with probability one,
ξ|[t,u] = H(ξ(t), (w|[t,u] − w(t))).

Proof. It is well-known that the result follows from pathwise uniqueness and weak existence of
solutions (cf. [7, Cor. 5.3.23]). By [2], pathwise uniqueness and, in fact, strong existence do hold
for equation (24).

Let us now prove Claim C. Fix 1 ≤ i ≤ j − 1. We are given that (A.28) holds and are required
to prove that

(X̂1
n, Σ̂

1
n, X̂

2
n, Σ̂

2
n, . . . , X̂

i+1
n ) ⇒ (ξ(t1), η1, ξ(t2), η2, . . . , ξ(ti+1)). (A.29)

Moreover, by Lemma A.3(i) and Theorem 2.1, we have (Xn, Vn, Ân) ⇒ (ξ, wS , wA). We write w for
the standard Brownian motion related to wS and wA by wS−wA = σw (note that βs+σw(s) is what
we denoted by w̃(s) in the previous section). As a result, every subsequence of (X̂n, Vn, Ân, (Σ̂

l
n)

i
l=1)

has a further subsequence that is convergent, and if (ξ∗, w∗
S , w

∗
A, (η

∗
l )

i
l=1) is a subsequential limit

then the following relations must hold:

10



• (ξ∗, w∗
S , w

∗
A) has the same law as (ξ, wS , wA); in particular, ξ∗ is a solution to the Skorohod

equation with data (ξ∗(0), w∗), (ξ∗(0), w∗) is equal in law to (ξ0, w), and w∗
A − w∗

S = σw∗;

• ((ξ∗(tl))
i
l=1, (η

∗
l )

i
l=1) has the same law as ((ξ(tl))

i
l=1, (ηl)

i
l=1).

Clearly, Claim C will follow once we show that ((ξ∗(tl))
i+1
l=1, (η

∗
l )

i
l=1) and ((ξ(tl))

i+1
l=1, (ηl)

i
l=1) are

equal in law, which, in view of the second bullet, is equivalent to the statement

(ξ∗(tl))
i+1
l=1 and (η∗l )

i
l=1 are mutually independent. (A.30)

And indeed by Lemma A.5 and the first bullet, there exists a map H ′ such that, with probability
one, ξ∗(ti+1) = H ′(ξ∗(ti), w̌

∗) and ξ(ti+1) = H ′(ξ(ti), w̌), where w̌∗ = w∗|[ti,u] − w∗
ti and a similar

definition is used for w̌. Thus by the second bullet, (A.30) will follow provided we show that w̌∗ and
((ξ∗(tl))

i
l=1, (η

∗
l )

i
l=1) are mutually independent. This is established in the following lemma, which

completes the argument.

Lemma A.6. Let (G,wS , wA), where G = (ξ(tl), ηl)
i
l=1, be a limit in distribution of a convergent

subsequence of
((X̂ l

n, Σ̂
l
n)

i
l=1, Vn, Ân).

Then G, w̌S := wS |[ti,u] − wS(ti) and w̌A := wA|[ti,u] − wA(ti) are mutually independent.

Proof. The result will follow from Lemma A.3(ii) once its hypotheses are verified. To this end, for
each n, let t(n) = ti + nγ , where γ ∈ (−1/2, 0) is a constant. All statements regarding convergence
will be understood as convergence along the given subsequence.

Recall that EXn(t) denotes the time when customer Cn(t) leaves the system (either by com-
pleting service or by abandoning), namely

EXn(t) = DEPn(t) ∧ABn(t). (A.31)

Define, for 1 ≤ l ≤ i,
El

n = {EXn(tl) < t(n)}, Σ̃l
n = Σ̂l

n1El
n
,

where we interpret infinity times zero as zero. It will be convenient to work with the random
variables Σ̃l

n because they are (as we will show) measurable on Fn(t
(n)), and at the same time close

to the original quantities Σ̂l
n.

The assumptions of the lemma imply

Gn := (X̂1
n, Σ̃

1
n, X̂

2
n, Σ̃

2
n . . . , X̂

i
n, Σ̃

i
n) ⇒ G = (ξ(t1), η1, ξ(t2), η2, . . . , ξ(ti), ηi), (A.32)

provided we show, for 1 ≤ l ≤ i,
P(El

n) → 1. (A.33)

Let us then argue that (A.33) holds. Fix l. By (A.31), it suffices to show that (i) P(ATn(tl)− tl <
nγ/3) → 1, (ii) P(∆n(tl) < nγ/3) → 1 and (iii) P(Σn(tl) < nγ/3) → 1. Claim (i) is an easy
consequence of the fact that the acceleration parameter λn of the arrival process An is of the order
of n (5). Claim (iii) holds due to the validity of (A.28), by which P(n1/2Σn(tl) > an) → 0, for any
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sequence an ↑ ∞. To see that claim (ii) holds, note that Q̂n ≤ |X̂n| (by (11)), hence using the fact
ATn(tl) → tl and Theorem 2.1, we have that Q̂n(ATn) form a tight sequence of random variables.
By Lemma A.4 and the fact µ̄n → µ (7), it follows that ∆̂l

n are tight. As a result, n−γ∆n(tl) → 0
in probability, which gives (ii). We have thus shown that items (i)–(iii) hold. This implies (A.33)
and, in turn, (A.32).

Next we show that all components of Gn are measurable on Fn(t
(n)), which, for this discussion

we abbreviate by F . We also fix l and drop the l and tl from the notation of X̂ l
n, Σ̂

l
n, E

l
n, ∆n(tl),

etc. By Assumption 2.1(i), X̂n is F-measurable. To show that so is Σ̃n, note that for arbitrary
a ∈ [0,∞),

{Σ̃n < a} = (En ∩ {Σ̂n < a}) ∪ Ec
n,

where one uses the fact that, on the specified event, EXn = DEPn (because ∆n = ∞ in case
the minimizer on the r.h.s. of (A.31) is the second term). First, by Assumption 2.2, {DEPn ≤
δ} ∪ {ABn ≤ δ} are both in F provided δ < t(n), hence so is the union of these events over
δ = δk ↑ t(n). This shows En ∈ F . Next, denoting an = an−1/2, note that

En ∩ {Σ̂n < a} = {RTn +Σn < t(n), Σn < an}

=
∪

b∈Q: b<t(n)−an

{RTn > b} ∩ {RTn +Σn < b+ an}.

By Assumption 2.2, each of the sets over which the union is taken, is F-measurable. Consequently,
so is the event on the l.h.s. of the above display. This shows Σ̃n is F-measurable.

We can now apply Lemma A.3(ii). We have (Gn, Vn, Ân) ⇒ (G,wS , wA), and, for each n, Gn is
Fn(t

(n))-measurable. Consequently, G, w̌S and w̌A are mutually independent.

As argued above, this completes the proof of Claim C.

Finally we turn to the proof of Claim B. Recall that ti is fixed. The main idea of the proof is
that if Cn(ti) ever gets to be the first in line, since service time and abandonment are exponential,
the probability that it is routed to server k is proportional to µk. Another important part of the
proof is to show that, with probability tending to one, this customer indeed reaches the head of
the line (recall that in Subsection 2.2 we have imposed the first-come-first-served discipline).

Recall that POSn(s, t) represents the position ∈ {1, 2, 3, . . .} at time t of Cn(s) if this customer
is in the queue at time t, and it takes the value ∞ otherwise. Define

κn = inf{t : POSn(ti, t) = 1},

κ̄n = κn ∧ EXn(ti).

Lemma A.7. i. κ̄n is a finite Fn-stopping time.
ii. One has {κn < ∞} ∈ Fn(κ̄n).
iii. P(κn < ∞) → 1.

Proof. i. Since EXn(ti) < ∞ a.s., κ̄n is finite a.s. By assumption, POSn(ti, t) ∈ Fn(t), and
therefore {κn < t} ∈ Fn(t) for every t. Hence κn is a stopping time, and since we have already
shown that EXn is a stopping time, so is κ̄n.
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ii. To prove the statement we need to show that, for any u, Eu = {κn < ∞}∩{κ̄n < u} ∈ Fn(u).
Now,

Eu = {κn < u} ∪ {κn < ∞,EXn < u} = {κn < u},
since clearly κn < ∞ implies κn ≤ EXn. Since we have already shown that κn is a stopping time,
it follows that Eu ∈ Fn(u).

iii. Given t > 0, denote by Ω′
n(t) the event {Qn(ATn(t)) > 0}, namely that, at the time when

the customer Cn(t) arrives, the queue is non-empty. Let us show that the probability of this event,
for fixed t, tends to one. Indeed,

P(Ω′
n(t)

c) = P(Qn(ATn) = 0) = P(X̂n(ATn) ≤ 0),

and, since X̂n(ATn) ⇒ ξ(t), lim supn P(Ω′
n(t)

c) ≤ P(ξ(t) ≤ 0) = P(ξ(t) = 0). It is well-known for a
non-degenerate reflected diffusion such as (24) that P(ξ(t) = 0) = 0, for every t > 0. As a result,

P(Ω′
n(t)) → 1, t > 0. (A.34)

Now, P(κn < ∞) ≥ P(Ω′
n(ti)∩{ABn(ti) = ∞}), because any customer that arrives to a non-empty

queue and never abandons, will, with probability one, eventually get to position 1. Hence by (A.34)
and Lemma A.4, P(κn < ∞) → 1.

As mentioned earlier, the calculation of the chances that customer Cn(ti) is routed to each of
the servers is based on the fact that, starting at κn, a competition between exponentials takes
place. Note however that it is the conditional distribution of the service time given Gn that we
are required to compute, and there is no guarantee that the service times that are elements of Gn

correspond to services completed earlier than κn. We need a truncated version of service times.

Write Ēl
n = {EXn(tl) < ti}, for 1 ≤ i ≤ i− 1. An argument similar to the one

that proves (A.33) gives
P(Ēl

n) → 1, 1 ≤ l ≤ i− 1. (A.35)

Let
Ḡn = (X̂1

n, Σ̂
1
n1Ē1

n
, X̂2

n, Σ̂
2
n1Ē2

n
, . . . , X̂i

n), Ḡ = (ξ(t1), η1, ξ(t2), η2, . . . , ξ(ti)).

Recall that we are given that (A.27) holds. Because the measure induced by Ḡ on R2i−1 does not
charge the boundary of any set of the form M = (−∞, a1]× (−∞, a2]× · · · × (−∞, a2i−1], and in
view of (A.35), we have, for every such set M , with the notation Mn = {Ḡn ∈ M},

P(Mn) → P(Ḡ ∈ M) =: p(M). (A.36)

We are required to prove (A.28). For a similar reason, (A.28) is equivalent to the statement that,
for every M as above, and a ∈ [0,∞),

P(Mn ∩ {Σ̂i
n > a}) → p(M)P(ηi > a). (A.37)

We will prove (A.37) in what follows.

To this end, write M ′
n = Mn ∩ {κn < ∞}, and note that

P(Σ̂i
n > a|M ′

n) =
∑
k∈Kn

P(Σ̂i
n > a|M ′

n,RDn = k)P(RDn = k|M ′
n).
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Toward computing P(RDn = k|M ′
n) for some fixed k ∈ Kn, denote, for r ∈ Kn, vrn = Trn(κ̄n), and

set
τrn = inf{s > vrn : ∆Sr(s) > 0}, τ̄rn = µ−1

rn (τrn − vrn).

On the event {κn < ∞}, the routing decision RDn takes the value k if and only if

τ̄kn < τ̄rn for all r ̸= k, and ABn < ∞.

Now, since κ̄n is a finite stopping time (Lemma A.7(i)), it follows from Assumption 2.1(iii) that,
conditioned on Fn(κ̄n), the random variables (τr − vr) are i.i.d. standard exponentials. Using this
along with Lemma A.4(i), we have a.s. on {κn < ∞},

P(RDn = k|Fn(κ̄n)) =
µkn

γn +
∑

r∈Kn
µrn

=
µkn

γn + µn
.

Let us argue that M ′
n ∈ Fn(κ̄n). First, the argument provided in the proof of Lemma A.6 which

shows that Gn are measurable on Fn(t
(n)) can be used, with small modifications, to show that Ḡn

are measurable on Fn(ti). Since κ̄n ≥ ti a.s., it follows by P-completeness of the filtration that
Ḡn ∈ Fn(ti) ⊂ Fn(κ̄n). Also, {κn < ∞} ∈ Fn(κ̄n) by Lemma A.7. Thus M ′

n ∈ Fn(κ̄n). It follows
that

P(RDn = k|M ′
n) =

µkn

γn + µn
.

Next, Denote RTn = RTn ∧ EXn. Since κn ≤ RTn, clearly κ̄n ≤ RTn. Thus M ′
n ∈ Fn(RTn).

Now, RTn is a finite stopping time, and so Sk(Tk(RTn)+ ·)−Sk(Tk(RTn)), under the conditioning
on Fn(RTn), is a Poisson process with rate µk. In addition, on {RDn = k}, RTn = RTn. Hence
a.s. on {RDn = k},

P(Σi
n > a|Fn(RTn)) = e−aµkn .

Therefore
P(Σi

n > a|M ′
n,RDn = k) = e−aµkn .

As a result,

P(Σ̂i
n > a|M ′

n) =
∑
k

e
−aµkn√

n
µkn

γn + µn
=

1

µ̄n + n−1γn

Nn√
n

1

Nn

∑
k

e−aµ̂kn µ̂kn.

Using (7), (15), and (25), the limit of the above expression is

ν

µ

∫
e−ayym(dy).

We have thus shown convergence in distribution to a nonnegative r.v., say η, for which P(η > a) =∫
(a,∞) f(x)dx, a > 0, where

f(a) =
ν

µ

∫
e−ayy2m(dy).

In other words, comparing with (30)–(31), we have shown P(Σ̂n > a|M ′
n) → P(ηi > a). In view

of (A.36) and P(κn < ∞) → 1 (Lemma A.7(ii)), this implies (A.37). This completes the proof of
Claim B.

Proof of Theorem 2.2. Claims A–C establish (A.25). Since Q̂n and X̂n both converge in
distribution to the same limit, and since ATn(t) → t in probability for each t, the theorem follows
by Lemma A.4(iv) and the fact µ̄n → µ.
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