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Abstract

We provide a new, concise proof of weak existence and uniqueness of solutions to the stochastic differen-
tial equation for the multidimensional skew Brownian motion. We also present an application to Brownian
particles with skew-elastic collisions.
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1. Introduction

Let Σ denote the hyperplane {x ∈ Rd
: x1 = 0} in Rd , d ≥ 1, and let a vector field b : Σ →

Rd be given on it. Consider the stochastic differential equation (SDE), for a process X taking
values in Rd , of the form

X (t) = x + W (t)+

 t

0
b(X (s))d L(s), t ≥ 0, (1.1)

where x ∈ Rd , W is a standard d-dimensional Brownian motion, L is the symmetric local time
of the first component of X at 0, b is bounded and Lipschitz, and writing b = (b1, . . . , bd)

′,
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b1(x) ∈ [−1, 1] for all x ∈ Σ . This paper provides a new proof of weak existence and unique-
ness of solutions to (1.1). A more general equation that allows for a bounded, measurable drift
coefficient is also treated. These results are known by the work of Takanobu [19,18]. Our purpose
here is to provide a much shorter proof. In the one-dimensional case this process is known as skew
Brownian motion, first described by Itô and McKean [6], and further studied by Walsh [21] and
treated by means of a SDE by Harrison and Shepp [5]. Moreover, the equation can be viewed as
an extension of reflected Brownian motion. Indeed, if b1(x) = 1 for all x ∈ Σ then the equation
describes a reflected Brownian motion in the half space with a reflection vector field given by b,
a case first treated by Anderson and Orey [1]. See Lejay [9] for a comprehensive survey on skew
Brownian motion and SDE involving local time.

The first to consider multidimensional skew Brownian motion is Portenko in [13–15]. The
point of view of these papers is to consider a diffusion for which the drift term has a singularity
localized at a (not necessarily flat) surface. This generalized drift coincides with the classical
local time whenever the latter is well defined. Existence of solutions to the SDE is provided
in [14]. Existence of weak solutions of stochastic differential equations with singular drift is
now known in a very general setting. The paper [17] proves weak existence in a setting with
unbounded and discontinuous drift given as a sum of countably many local times. This work in
particular leads to a construction of a countably skew reflected Brownian motion with singular
drift in bounded and unbounded multi-dimensional domains.

Zaitseva [24] studies an equation similar to (1.1) with b for which b1(x) does not depend on x
and with an additional term σ(Xs)d B̃(L(s)), and obtains strong existence and uniqueness. In the
special case σ = 0, the additional term alluded to above disappears, and one obtains precisely
the form (1.1) with b1 constant. In this case the first component of X is a one-dimensional
skew Brownian motion and thus the questions of existence and uniqueness of solutions are
considerably simpler than in the situation studied in the present paper. Additional works on
multidimensional skew Brownian motion include Oshima [11], Trutnau [20] and Anulova [2].
The most relevant work for us is by Takanobu [19,18], where an equation of the form (1.1) with
general drift and diffusion coefficients is treated. The first paper treats existence of weak solutions
and the second proves uniqueness. Existence is shown by constructing a suitable approximating
diffusion with a non-singular drift while uniqueness relies on rather involved arguments from
Brownian excursion theory [22]. While the results of the present article are a special case of
those established by Takanobu, the proof (of both existence and uniqueness) provided here is
much shorter and more elementary.

Existence of solutions is established by constructing a ‘skew random walk’ and showing that
in diffusion scaling it converges in distribution to a weak solution of the equation. The proof of
weak uniqueness provided here is inspired by the technique used in [23] in a one-dimensional
setting with time-varying skewness. Specifically, [23] considers the equation

X (t) = x + W (t)+

 t

0
α(s)d L(s), t ≥ 0, (1.2)

where d = 1 and α : [0,∞) → [−1, 1] is a measurable function. The key idea is to compute
the conditional characteristic function E(eıλX (T )

| Ft ), for 0 ≤ t ≤ T < ∞, λ ∈ R where
Ft = σ {X (s),W (s), L(s) : 0 ≤ s ≤ t}. In the setting of [23] this calculation reduces to
characterizing the conditional law of L(T )− L(t) given Ft , which turns out to be simply the law
of the local time (at time instant T − t) of a one-dimensional reflected Brownian motion. This is
relevant to the multidimensional setting of (1.1) if one regards (1.2) as an equation for the first
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component X1, and replaces the time-dependent skewness α by the state-dependent coefficient
b1(X). Implementing this is, however, somewhat more involved than in [23]. In particular, the
calculation of the conditional characteristic function requires a characterization of the joint law
of (X2(T )− X2(t), L(T )− L(t)) given Ft , where we write X (t) = (X1(t), X2(t)) ∈ R×Rd−1.
Lemmas 3.1 and 3.2 provide this characterization, by which the argument can be completed. We
note that [23] in fact proves pathwise uniqueness. The proof of this result relies on the observation
that if X and X̃ are two solutions of (1.2) with associated local times L and L̃ and common
Brownian motion W then X ∨ X̃ is also a solution, an idea that goes back to [8,12]. However,
this approach fails in our setting.

The following notation will be used. For a Polish space S , BM(S) will denote the space of
real bounded measurable functions on S , B(S) the Borel σ -field on S and P(S) will denote
the space of probability measures on S equipped with the topology of weak convergence. Also
CS = C([0,∞); S) (resp. DS = D([0,∞); S)) will denote the space of continuous functions
(resp. RCLL functions) from [0,∞) to S equipped with the usual local uniform topology (resp.
Skorohod topology). A sequence of DS -valued random variables will be said to be C-tight if
the corresponding sequence of probability laws on DS is relatively compact and any weak limit
point of the sequence is supported on CS . For g ∈ BM(S), ∥g∥∞ = supx∈S |g(x)|. Elements in
Rd will be regarded as row vectors.

The rest of this paper is organized as follows. In Section 2 we state the main result and present
some open problems related to it. The proof is provided in Section 3. Finally, Section 4 presents
an application to a recent model of [4] for Brownian particles undergoing skew-elastic collisions.

2. Main result

Let (Ω ,F ,P, {Ft }t≥0) be a filtered probability space and let {W (t)}0≤t<∞ be a standard
d-dimensional {Ft }-Brownian motion. Given a continuous {Ft }-semimartingale {Z(t)}t≥0,
define an {Ft }-adapted continuous process {L Z (t)}t≥0 as

L Z (t) = |Z(t)| − |Z(0)| −

 t

0
sgn(Z(s))d Z(s), t ≥ 0, (2.1)

where for x ∈ R, sgn(x) = 1(0,∞)(x)−1(−∞,0)(x). L Z is a nondecreasing process and is referred
to as the symmetric local time of Z at 0 (see [16, Chapter VI]).

We consider a stochastic differential equation for a multidimensional process that involves its
local time at the surface Σ = {x ∈ Rd

: x1 = 0}. The equation takes the form

X (t) = x + W (t)+

 t

0
a(X (s))ds +

 t

0
b(X (s))d L(s), t ≥ 0, (2.2)

where X = (X1, . . . , Xd), x ∈ Rd , a : Rd
→ Rd is bounded and measurable, b : Σ → Rd is a

bounded Lipschitz function satisfying b1(x) ∈ [−1, 1] for all x ∈ Σ where b1 denotes the first
coordinate of b, and L is the symmetric local time of X1 at 0. Note that L increases only at time
instants t at which X1(t) = 0. Thus in (2.2) the third integral is meaningful even though b is
only defined on Σ . However to avoid confusion, for the rest of this work we will fix an arbitrary
Lipschitz extension of b to all of Rd and denote it once more as b. Our goal is to show that there
exists a unique weak solution of (2.2). We recall below the definition of a weak solution. Let
CRd = C([0,∞); Rd), CR = C([0,∞); R) and C̄ = CRd × CRd × CR. Denote by {Gt }t≥0 the
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canonical filtration on C̄ and introduce canonical processes x,w, ℓ defined by

w(t)(ω̄) = ω1(t), x(t)(ω̄) = ω2(t),

ℓ(t)(ω̄) = ω3, ω̄ = (ω1, ω2, ω3) ∈ C̄, t ≥ 0.
(2.3)

Definition 2.1. (a) A probability measure P ∈ P(C̄) is said to be a weak solution of (2.2) if
(i) P-a.s.,

x(t) = x + w(t)+

 t

0
a(x(s))ds +

 t

0
b(x(s))dℓ(s), t ≥ 0.

(ii) Under P , w is a {Gt }-Brownian motion.
(iii) Under P , ℓ is the symmetric local time of the first component of x at 0.

(b) We say that (2.2) has a unique weak solution if whenever P1, P2 ∈ P(C̄) are two weak
solutions of (2.2), one has P1 = P2.

The following is our main result.

Theorem 2.1. There exists a unique weak solution of (2.2).

We end this section with a discussion of open problems addressing natural extensions of the
above result.

Problem 1a. Determine whether pathwise uniqueness holds for (2.2).

An affirmative answer to the above might lead to strong existence by appealing to the well-
known argument of Yamada and Watanabe.

Next, it is natural to consider a setting where Σ is replaced by a smooth surface of co-
dimension 1, Σ̂ . In fact, this setting goes back to the aforementioned papers by Portenko. Let
such a surface be given along with a vector field b : Σ̂ → Rd , and assume

b(x) · n(x) ∈ [−1, 1] for every x ∈ Σ̂ ,

where n denotes a unit normal to Σ̂ . Then Eq. (2.2), with L denoting the local time of X at Σ̂ ,
is indeed more general than the one treated in this paper (one defines local time here by means
of limits of occupation time in the vicinity of the surface as e.g. in [3]). Note that this equation
includes as a special case Brownian motion reflected on a smooth surface, i.e. when b · n = 1 on
Σ̂ , for which existence and uniqueness is well-understood [1,10]. One may address this equation
by flattening Σ̂ to Σ , that is, by applying a twice continuously differentiable, invertible map
ϕ : Rd

→ Rd that maps (locally) Σ̂ into Σ . Setting Y = ϕ(X) one obtains an equation for Y of
the form

Y (t) = y +

 t

0
σ(Y (s))dW (s)+

 t

0
a(Y (s))ds +

 t

0
c(Y (s))d L(s), (2.4)

where L denotes the local time of Y at Σ and the coefficients σ , a and c depend on b and
on derivatives, up to second order, of ϕ. This translates the equation into one that involves the
local time on a flat surface, and SDE with coefficients, and so weak existence and uniqueness
are available by [19,18]. However, strong form of uniqueness is missing, which leads us to the
following extended version of Problem 1a.

Problem 1b. Determine whether pathwise uniqueness holds for (2.4) for a smooth surface Σ̂ .



R. Atar, A. Budhiraja / Stochastic Processes and their Applications 125 (2015) 1911–1925 1915

Finally, consider Eq. (2.2) in dimension 2 with discontinuous coefficient b = (1, 0)′ on {x1 =

0, x2 ≤ 0} and b = (−1, 0) on {x1 = 0, x2 > 0} (say, with a = 0). The authors are not aware
of uniqueness results for this nonstandard, yet simple equation of a reflected Brownian motion.
It would be interesting to understand this equation in the following broader context.

Problem 2. Determine whether any form of uniqueness holds for (2.2) beyond Lipschitz conti-
nuity of the coefficient b.

3. Proof

The proof has three parts. We begin by showing that the problem can be reduced to the case
where a = 0. Namely, we show, in Section 3.1 that Theorem 2.1 follows from

Proposition 3.1. Suppose that a = 0. Then (2.2) has a unique weak solution.

Then we turn to proving Proposition 3.1. Setting a = 0, we prove uniqueness and then existence
in Sections 3.2 and 3.3, respectively.

3.1. Reduction to the case a = 0

Theorem 2.1 follows from Proposition 3.1 by a straightforward application of Girsanov’s
theorem, as we now show.

Proof of Theorem 2.1. Let P0 be the unique solution of (2.2) with a = 0. Define P̃ ∈ P(C̄) as

P̃(A) =


A

ET d P0, A ∈ GT , T > 0,

where

ET = exp
 T

0
a(x(s)) · dw(s)−

1
2

 T

0
|a(x(s))|2ds


.

Let w̃(t) = w(t) −
 t

0 a(x(s))ds, t ≥ 0 and let P ∈ P(C̄) be defined as P = P̃ ◦ (w̃, x, ℓ)−1.
Then by Girsanov’s theorem P is a weak solution of (2.2).

To see uniqueness of a weak solution, let P1 be another weak solution of (2.2). Define

P̃1(A) =


A

ẼT d P1, A ∈ GT , T > 0,

where

ẼT = exp

−

 T

0
a(x(s)) · dw(s)−

1
2

 T

0
|a(x(s))|2ds


.

Let w̃1(t) = w(t) +
 t

0 a(x(s))ds. Then P̃0 = P̃1 ◦ (w̃1, x, ℓ)−1 is a weak solution of (2.2) with
a = 0 and so by Proposition 3.1 P̃0 = P0. Finally for all T > 0 and f ∈ BM(C̄)

E1 [ f (w(· ∧ T ), x(· ∧ T ), ℓ(· ∧ T ))] = Ẽ1


f (w(· ∧ T ), x(· ∧ T ), ℓ(· ∧ T )) Ẽ −1

T


= Ẽ0


f


w(· ∧ T )−


·∧T

0
a(x(s))ds, x(· ∧ T ), ℓ(· ∧ T )


ET


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= E0


f


w(· ∧ T )−


·∧T

0
a(x(s))ds, x(· ∧ T ), ℓ(· ∧ T )


ET


= Ẽ


f


w(· ∧ T )−


·∧T

0
a(x(s))ds, x(· ∧ T ), ℓ(· ∧ T )


= E [ f (w(· ∧ T ), x(· ∧ T ), ℓ(· ∧ T ))] .

Thus we have P1 = P . �

For the rest of the section we assume that a = 0.

3.2. Weak uniqueness

For x = (x1, . . . , xd) ∈ Rd write

y = (y1, y2) ∈ Rd where y1 = |x1|, y2 = (x2, . . . , xd).

Define β : Rd−1
→ Rd as β(z) = b(0, z1, . . . , zd−1), z = (z1, . . . , zd−1) ∈ Rd−1. Write

β(z) = (β1(z), β2(z)) ∈ R × Rd−1, z ∈ Rd . Consider the equations

S(t) = y1 + B1(t)+ V (t), (3.1)

Y (t) = y2 + B(t)+

 t

0
β2(Y (s))dV (s). (3.2)

Here B1 and B are independent 1- and (d − 1)-dimensional Brownian motions, respectively, S is
a continuous nonnegative process and V is a continuous nondecreasing process with V (0) = 0,
which increases only when S = 0.

The following lemma shows that (3.1)–(3.2) has a unique weak solution. Recall the coordinate
processes w, x, ℓ on C̄ introduced in (2.3) and write w = (w1,w2) and x = (x1, x2), where w1
and x1 take values in R while w2 and x2 take values in Rd−1.

Lemma 3.1. (a) There exists a Q ∈ P(C̄) such that
(i) Q-a.s., x1(t) ≥ 0 for all t , and t → ℓ(t) is nondecreasing and ℓ(0) = 0.

(ii) Q-a.s.,
x1(t) = y1 + w1(t)+ ℓ(t),

x2(t) = y2 + w2(t)+

 t

0
β2(x2(s))dℓ(s), t ≥ 0.

(iii) Under Q, w1 and w2 are independent 1- and (d − 1)-dimensional {Gt }-Brownian
motions.

(iv) Q-a.s.,

[0,∞)

1(0,∞)(x1(t))dℓ(t) = 0.
(b) Let Q1 and Q2 be two probability measures as in part (a). Then Q1 = Q2.

Proof. The result is an immediate consequence of the following two observations:

• Given a 1-dimensional Brownian motion B1, there is a unique pair of processes (S, V )
that satisfies (3.1) and is such that S(t) ≥ 0, V (0) = 0, V is nondecreasing and
[0,∞)

1(0,∞)(S(t))dV (t) = 0. This unique pair is given explicitly as

S(t) = y1 + B1(t)− inf
0≤s≤t

{y1 + B1(s)} ∧ 0,

V (t) = (S(t)− y1 − B1(t)), t ≥ 0.
(3.3)
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• Given a (d − 1)-dimensional Brownian motion B and V defined as above, we have, using the
Lipschitz property of β and a standard argument based on Gronwall’s lemma, that there exists
a unique continuous process Y that solves (3.2). �

In order to indicate the dependence of Q in Lemma 3.1 on the initial condition (y1, y2) ∈

R+ × Rd−1 we will denote this probability measure as Q y1,y2 . It is easy to see that (y1, y2) →

Q y1,y2 is a continuous function. Indeed, let B̃ = (B1, . . . , Bd)
′ be a d dimensional Brownian

motion given on some probability space and let yn
→ y in Rd . Define Sn , V n as in (3.3) replacing

y1 with the first component yn
1 of yn . Also define S, V by (3.3). Then clearly (Sn, V n) → (S, V )

a.s. in CR2 . Next, letting B = (B2, . . . , Bd)
′, let Y n be the unique solution of the equation

Y n(t) = yn
2 + B(t)+

 t

0
β2(Y

n(s))dV n(s), t ≥ 0

where yn
2 is the (d − 1) dimensional vector consisting of the last d − 1 components of yn . Define

Y similarly by replacing yn
2 with y2 and V n with V . Then for some κ ∈ (0,∞) and for all T ≥ 0

sup
0≤t≤T

|Y n(t)− Y (t)| ≤ θn(T )+ κ

 T

0
sup

0≤u≤s
|Y n(u)− Y (u)|dV n(u),

where

θn(T ) = |yn
2 − y2| + sup

0≤t≤T

 t

0
β2(Y (s))dV n(s)−

 t

0
β2(Y (s))dV (s)

 .
An application of Gronwall’s lemma now gives

sup
0≤t≤T

|Y n(t)− Y (t)| ≤ θn(T )eκV n(T ).

Since yn
→ y and V n

→ V a.s. in CR we have that the right side of the above display converges
a.s. to 0 for every T ≥ 0. Thus Y n

→ Y a.s. in CR. Finally note that Q yn
1 ,y

n
2

[resp. Q y1,y2 ] is

the probability law of (B̃, (Sn, Y n), V n) [resp. (B̃, (S, Y ), V )] proving that Q yn
1 ,y

n
2

converges to
Q y1,y2 . This proves the continuity of the map (y1, y2) → Q y1,y2 .

Let P be a weak solution of (2.2) (recall that we are taking a = 0) and for t ≥ 0 consider the
following stochastic processes on (C̄,B(C̄), P)

b̂t (·) =

 t+·

t
sgn(x1(s))dw1(s), ŵt

2(·) = w2(t + ·)− w2(t),

x̂t
1(·) = x1(t + ·), x̂t

2(·) = x2(t + ·), ℓ̂
t
(·) = ℓ(t + ·)− ℓ(t).

Also let z = (w, x, ℓ), zt (·) = z(· ∧ t), ẑt
= (b̂t , ŵt

2, |x̂
t
1|, x̂t

2, ℓ̂
t
) and ut

= (zt , ẑt ). Note that, for
each t , ut is a random variable with values in C̄× C̄. Let Qt

= P ◦ (ut )−1 and disintegrate Qt as

Qt (dω̄, dω̂) = Rt (dω̄)P t (ω̄, dω̂), (ω̄, ω̂) ∈ C̄ × C̄.

Note that Rt is the probability law of zt under P and P t (zt , ·) is the conditional law under P of
ẑt given zt .

With the above notation we have the following lemma.

Lemma 3.2. Fix t ≥ 0. Then for Rt -a.e. ω̄, P t (ω̄, dω̂) = Q|x̄1(t)|,x̄2(t)(dω̂), where we write
ω̄ = (ω̄1, ω̄2, ω̄3) ∈ CRd × CRd × CR, (x̄1(t), x̄2(t)) = ω̄2(t) ∈ R × Rd−1.
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Proof. Using Tanaka’s formula (2.1) and the fact that ℓ̂
t

is the symmetric local time of x̂t
1, (as

follows from Definition 2.1(iii)), we have

|x̂t
1(·)| = |x1(t)| +


·

0
sgn(x̂t

1(s))d x̂t
1(s)+ ℓ̂

t
(·).

Using Lemma 3.1(a)(iv) and the property sgn(0) = 0 one has

[0,∞)

sgn(x1(s))dℓ(s) = 0. Hence
by the expression for x1 from Definition 2.1(i), P-a.s.,

|x̂t
1(·)| = |x1(t)| + b̂t (·)+ ℓ̂

t
(·),

x̂t
2(·) = x2(t)+ ŵt

2(·)+


·

0
β2(x̂t

2(s))d ℓ̂
t
(s).

In view of Lemma 3.1 it suffices to show that for each fixed t ≥ 0, under P , conditionally on
zt , ŵt

2 and b̂t are independent (d − 1)-dimensional and 1-dimensional Brownian motions and are
adapted to the filtration generated by ẑt , and have future increments independent of that filtration.
Namely,

P

(b̂t , ŵt

2) ∈ A | σ(zt )


= P(w ∈ A), for all A ∈ B(CRd ),

for all f ∈ BM(CR × CRd−1) and t1 ≥ 0

E


f (b̂t (· ∧ t1), ŵt
2(· ∧ t1)) | σ(zt ) ∨ σ(ẑt (s) : 0 ≤ s ≤ t1)


= f (b̂t (· ∧ t1), ŵt

2(· ∧ t1)),

and for all 0 ≤ t1 ≤ t2 < ∞, g ∈ BM(C̄), h ∈ BM(Rd)

E

g(ẑt (· ∧ t1))h(b̂t (t2)− b̂t (t1), ŵt (t2)− ŵt (t1)) | σ(zt )


= E


g(ẑt (· ∧ t1)) | σ(zt )


E

h(b̂t (t2)− b̂t (t1), ŵt (t2)− ŵt (t1)) | σ(zt )


.

The above properties are immediate from the definitions. �

We can now prove the following.

Proposition 3.2. With a = 0, there is at most one weak solution of (2.2).

Proof. It suffices to show that for every m ≥ 1 and 0 ≤ t1 ≤ t2 ≤ · · · ≤ tm < ∞ the
probability law P ◦ (x(t1), . . . , x(tm))−1 on (Rd)m is the same for any weak solution P of (2.2).
For simplicity we only consider the case m = 2 and write t1 = t, t2 = T . Fix λ ∈ Rd . Then
z(·) = exp(ıλ · x(·)) satisfies for all 0 ≤ t ≤ s

z(s) = z(t)+ ı
 s

t
z(u)λ · dw(u)−

|λ|2

2

 s

t
z(u)du + ı

 s

t
z(u)λ · β(x2(u))dℓ(u).

Thus writing for s ≥ t, E(z(s) | Gt ) = G(s), we have

G(s) = G(t)−
|λ|2

2

 s

t
G(u)du

+ E


ı
 s−t

0
exp(ıλ2 · x̂t

2(u))λ · β(x̂t
2(u))d ℓ̂

t
(u)

Gt


(3.4)
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where λ = (λ1, λ2) ∈ R×Rd−1. For (y1, y2) ∈ R+ ×Rd−1 denote the expectation under Q y1,y2

as E Q
y1,y2 and let

E Q
y1,y2


ı
 s−t

0
exp(ıλ2 · x2(u))λ · β(x2(u))dℓ(u)


= H t,s(y1, y2).

Then from Lemma 3.2 and (3.4) we have for all s ≥ t

G(s) = G(t)−
|λ|2

2

 s

t
G(u)du + H t,s(|x1(t)|, x2(t)).

Thus we have shown that for all 0 ≤ t ≤ T < ∞ and λ ∈ Rd there is a measurable function
H t,T
λ from R+ × Rd−1 to the complex plane such that for every weak solution P of (2.2)

E

exp(ıλ · x(T )) | Gt


= H t,T

λ (|x1(t)|, x2(t)), P-a.s.

By a standard approximation argument it now follows that for all 0 ≤ t ≤ T < ∞ and for every
ϕ ∈ BM(Rd) there is a function H t,T

ϕ ∈ BM(R+ × Rd−1) such that for every weak solution P
of (2.2)

E [ϕ(x(T )) | Gt ] = H t,T
ϕ (|x1(t)|, x2(t)), P-a.s. (3.5)

Finally let ϕ1, ϕ2 ∈ BM(Rd) and let P be a weak solution of (2.2). Then

E [ϕ1(x(t))ϕ2(x(T ))] = E [ϕ1(x(t))E [ϕ2(x(T )) | Gt ]]

= E

ϕ1(x(t))H t,T

ϕ2
(|x1(t)|, x2(t))


.

Note that

ψ(z) = ϕ1(z)H
t,T
ϕ2
(|z1|, z2), z = (z1, z2) ∈ R × Rd−1

is in BM(Rd). Thus from (3.5)

E [ϕ1(x(t))ϕ2(x(T ))] = H0,t
ψ (|x1|, x2).

As a result, for every weak solution P of (2.2), the probability law P ◦ (x(t), x(T ))−1 does not
depend on P . The result follows. �

3.3. Weak existence

Proposition 3.3. With a = 0, there exists a weak solution to (2.2).

Proof. Recall the function β introduced in Section 3.2. Fix x ∈ Rd . In order to prove the exis-
tence of a weak solution of (2.2) it suffices to construct continuous stochastic processes X,W, L
taking values in Rd , Rd and R respectively on some probability space such that
• W is a standard d-dimensional Brownian motion adapted to the filtration

{Ft = σ {X (· ∧ t),W (· ∧ t), L(· ∧ t)}}t≥0

and having increments Wt1 − Wt independent of Ft , t1 > t .
• For all t ≥ 0

X (t) = x + W (t)+

 t

0
β(Y (s))d L(s)

where X (t) = (U (t), Y (t)) ∈ R × Rd−1,
• L is the symmetric local time of U at 0.



1920 R. Atar, A. Budhiraja / Stochastic Processes and their Applications 125 (2015) 1911–1925

Write β(ξ) = (β1(ξ), . . . , βd(ξ)), ξ ∈ Rd−1. For ξ ∈ Rd−1 and i = 2, . . . , d , let β̄i (ξ)

= 2⌊(βi (ξ) + 1)/2⌋ and β̂i (ξ) = βi (ξ) − β̄i (ξ). Note that β̄i takes values in 2Z and β̂i in
[−1, 1]. Let

pi,1(ξ) =
1 + β̂i (ξ)

2
, pi,−1(ξ) =

1 − β̂i (ξ)

2
, i = 2, . . . , d, ξ ∈ Rd−1.

Also let

p1,1(ξ) =
1 + β1(ξ)

2
, p1,−1(ξ) =

1 − β1(ξ)

2
, ξ ∈ Rd−1.

Let {xn
}n∈N be a sequence in Zd such that x̄n

= xn/
√

n converges to x . For each n define a
Markov chain {Xn

k }k∈N0 such that Xn
0 = xn and for k ≥ 0, v ∈ Zd

P(1Xn
k = u | Xn

k = v) =
1
2d , u ∈ {−1, 1}

d , if v1 ≠ 0

P


1Xn

k =

d
i=2

ei β̄i (v
′/

√
n)+ u | Xn

k = v



=

d
i=1

pi,ui (v
′/

√
n), u = (u1, . . . , ud) ∈ {−1, 1}

d , if v1 = 0. (3.6)

Here v = (v1, v
′) ∈ Z × Zd−1, {ei }

d
i=1 is the standard coordinate basis in Rd and 1Zk =

Zk+1 − Zk for an Rd -valued sequence {Zk}. Since the transition probabilities of this chain agree
with those of a homogeneous random walk (RW) away from {v1 = 0} we can couple this chain
with a d-dimensional RW {W n

k }k∈N0 such that the following identity holds:

Xn
k = xn

+

k−1
i=0


1W n

i 1U n
i ≠0 +1Xn

i 1U n
i =0


(3.7)

where we write Xn
i = (U n

i , Y n
i ) ∈ R × Rd−1. Letting F n

k = σ {Xn
j ,W n

j , j ≤ k} we have

E(1Xn
k | F n

k ) = β(Y n
k /

√
n)1U n

k =0.

We can therefore write

Xn
k = xn

+ W n
k +

k−1
i=0


β(Y n

i /
√

n)+ Mn
i


1U n

i =0 (3.8)

where |Mn
i | ≤ (3 + 2 supξ |β(ξ)|)

√
d ≡ c1 and M̂n

k =
k−1

i=0 Mn
i 1U n

i =0 is a martingale.

Define Ln
0 = 0 and for k ≥ 1, Ln

k =
k−1

i=0 1U n
i =0. Note that the increasing process associated

with M̂n is bounded by 2c2
1 Ln , and thus by Burkholder’s inequality,

E[max
i≤k

(M̂n
i )

2
] ≤ c2 E[Ln

k ] (3.9)

where c2 = 8c2
1. Next note that

∆|U n
k | = 1U n

k 1U n
k >0 −1U n

k 1U n
k <0 + 1U n

k =0.
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Thus

|U n
k | = |xn

1 | + Zn
k + Ln

k , (3.10)

where Zn
k =

k−1
i=0 sgn(U n

i )1U n
i . Recalling (3.6) and that sgn(0) = 0 we see that

E(Zn
k ) = E


k−1
i=0

1U n
i ≠0 sgn(U n

i )E(1U n
i | F n

i )


= 0. (3.11)

Next let {ζi } be an i.i.d. sequence of {−1, 1}-valued random variables, independent of all the
sequences introduced above, such that P(ζi = 1) = P(ζi = −1) = 1/2 and let

Z∗,n
k = Zn

k +

k−1
i=0

ζi 1U n
i =0.

By construction {Z∗,n
k } is a simple random walk on Z. Also, as for (3.9)

E[max
i≤k

(Z∗,n
i − Zn

i )
2
] ≤ 8E[Ln

k ]. (3.12)

Define now a continuous time process

W̄ n(t) =
1

√
n

W n
⌊nt⌋, t ∈ [0,∞)

and use the same rescaling to define continuous time versions X̄n, Ū n, Ȳ n, L̄n, Z̄n, Z̄∗,n of the
discrete time processes Xn,U n, Y n, Ln, Zn, Z∗,n . Then, from (3.8),

X̄n(t) = x̄n
+ W̄ n(t)+



0, ⌊nt⌋

n

 β(Ȳ n(s−))d L̄n(s)+ εn(t), (3.13)

where by (3.9)

E[max
s≤t

(εn(s))2] ≤
c2
√

n
E[L̄n(t)]. (3.14)

By (3.10) and (3.11) we have

E(L̄n(t)) ≤ E |U n(t)| ≤ |x̄n
1 | +

√
t,

where the last inequality follows on observing that |U n
| has the same law as the absolute value

of a RW starting from x̄n
1 . Thus

sup
n

E(L̄n(t)) < ∞ for all t ≥ 0. (3.15)

Using this in (3.14) we get that εn converges to 0 in probability, uniformly on compacts (u.o.c.).
Also, recalling that {Z∗,n

k } is a simple random walk, we have by Donsker’s theorem that Z̄∗,n

converges in distribution in DR to a standard Brownian motion Z . From (3.12) and (3.15) we have
that Z̄∗,n

−Z̄n converges to 0 in probability, u.o.c. and so Z̄n converges to Z weakly in DR as well.
Consider the 1-dimensional Skorohod map Γ : DR → DR+

,

Γ (g)(t) = g(t)− inf
0≤s≤t

(g(s) ∧ 0), t ≥ 0, g ∈ DR
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and recall that − inf0≤s≤t (g(s) ∧ 0) is the unique nonnegative, nondecreasing RCLL function h
that satisfies f (t) = g(t)+ h(t) ≥ 0 for all t ≥ 0 and


[0,∞)

1(0,∞)( f (t))dh(t) = 0. Writing

|Ū n(t)| =


|x̄n

1 | + Z̄n(t)−
1

√
n

1Ū n(t)=0


+ L̄n


⌊nt⌋ + 1

n


,

we see that

|Ū n(t)| = Γ (|x̄n
1 | + Z̃n)(t), where Z̃n(t) = Z̄n(t)−

1
√

n
1Ū n(t)=0.

Since |Z̃n(t)− Z̄n(t)| ≤ 1/
√

n, we have that Z̃n converges to Z weakly in DR. By the continuity
of Γ , we now have that (Z̄n, |Ū n

|, L̄n) converges in distribution in DR3 to (Z , R, L), where

R = |x1| + Z − min
s≤·

[(|x1| + Z(s)) ∧ 0], L = − min
s≤·

[(|x1| + Z(s)) ∧ 0].

Next, using again Donsker’s theorem, W̄ n converges in distribution to a d-dimensional
standard Brownian motion. In particular, W̄ n is C-tight. Combining this with (3.13) and the
weak convergence of εn to 0 and L̄n to L we see that X̄n is C-tight as well. Denote by
(W, X,U, Y, Z , R, L) a subsequential weak limit of (W̄ n, X̄n, Ū n, Ȳ n, Z̄n, |Ū n

|, L̄n). The in-
tegral in (3.13) converges to


·

0 β(Y (s))d L(s) by Theorem 2.2 of [7]. Indeed, from (3.15) and
since β is bounded

sup
0≤t≤T




0, ⌊nt⌋

n

 β(Ȳ n(s−))d L̄n(s)−


[0,t]

β(Ȳ n(s−))d L̄n(s)

 → 0

in probability as n → ∞, for every T > 0. We now note that from (3.15), Condition C2.2(i)
in Theorem 2.2 of [7] is satisfied on taking Xn, Yn, δ,Mδ

n , Aδn, τ
α
n there equal to β(Ȳ n),

L̄n,∞, 0, L̄n,∞, respectively, for all δ, α > 0.
In fact we have the joint convergence of

W̄ n, X̄n,



0, ⌊n·⌋

n

 β(Ȳ n(s−))d L̄n(s)


to (W, X,


·

0 β(Y (s))d L(s)). We therefore obtain

X (t) = x + W (t)+

 t

0
β(Y (s))d L(s), t ≥ 0.

Since R is the limit of |Ū n
|, the relation R = |U | must hold. Also X = (U, Y ). For a continuous

and bounded function G : C̄ × CR → R and 0 ≤ t ≤ s < ∞E G 
W̄ n(· ∧ t), X̄n(· ∧ t), L̄n(· ∧ t), Z̄n(· ∧ t)

 
W̄ n(s)− W̄ n(t)

 ≤
2∥G∥∞

√
n

and thus

E

G

W̄ (· ∧ t), X̄(· ∧ t), L̄(· ∧ t), Z̄(· ∧ t)

 
W̄ (s)− W̄ (t)


= 0.

Consequently W is a standard d-dimensional Ft -Brownian motion where {Ft = σ {X (· ∧ t),
W (· ∧ t), L(· ∧ t), Z(· ∧ t)}}t≥0. Similarly Z is a 1-dimensional Ft -Brownian motion. Next note
that

|U (t)| = |x1| + Z(t)+ L(t)
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and by Tanaka’s formula, since L increases only when |U | = 0,

|U (t)| = |x1| +

 t

0
sgn(U (s))dW1(s)+ LU (t),

where LU is the symmetric local time of U at 0. Combining the above two displays we have
L = LU . Thus the processes (X,W, L) satisfy all the properties listed at the beginning of the
subsection and consequently we have proved the existence of a weak solution. �

4. Brownian particles with skew-elastic collisions

As an application we consider a model introduced by Fernholz et al. [4] for the dynamics
of a pair of 1-dimensional Brownian particles X1 and X2 that exhibit various possible types of
interaction when they collide. The equations involve the local time at zero of the relative position,
and the types of interaction are determined by the coefficients in front of the local time terms.
For a continuous real semimartingale Z , let L Z

+ be defined by the relation

L Z
+(t) = Z+(t)− Z+(0)−

 t

0
1{Z(s)>0}d Z(s)

and let L Z
− = L−Z

+ . Then the symmetric local time of Z at 0, L Z , is given as L Z
= L Z

+ + L Z
−.

The motion of the particles is described by the set of equations

d X1(t) = k1(X (t))dt +
1

√
2

d B1(t)+
1 − ζ1(X (t))

2
d L X1−X2

+ (t)

+
1 − η1(X (t))

2
d L X2−X1

+ (t)

d X2(t) = k2(X (t))dt +
1

√
2

d B2(t)+
1 − ζ2(X (t))

2
d L X1−X2

+ (t)

+
1 − η2(X (t))

2
d L X2−X1

+ (t).

(4.1)

Here (B1, B2) is a planar Brownian motion, X = (X1, X2) and ki , ζi , ηi , i = 1, 2, are bounded
measurable functions from R2 to R (additional conditions on ζi , ηi , i = 1, 2 will be introduced
below). In [4] the coefficients ζi and ηi are assumed to be constant rather than state-dependent.
Different types of behavior are obtained by different choices of these constants. For example,
when ζ1 = η1 = 1 (resp., ζ2 = η2 = 1), the local times disappear from the equation for X1 (resp.,
X2) and so the collisions do not affect the first (resp., second) particle. When both conditions
hold, the motions are completely frictionless. On the other extreme, when ζ2 = η2 = 1 and ζ1 =

η1 = −1, the trajectory of X1 bounces off that of X2 as if it were a perfectly reflecting boundary.
See [4] for more general conditions under which frictionless motion and perfect reflection are
attained. Other combinations of the constants give rise to a whole range of elastic collisions.

The equations presented here have state-dependent local time coefficients. This allows one to
model variability in the type of collision, where the type is determined by the collision position.
(The paper [4] also emphasizes rank-dependent motion, and to this end the drift and diffusion
coefficients considered are constant on each of the sets {X1 ≤ X2} and {X1 > X2}. Such a drift
can be realized in our model by selecting ki suitably. However, we only consider constant diffu-
sion coefficient here.) For the equations with constant local time coefficients, [4] obtain strong
existence and pathwise uniqueness. Our goal here is to exhibit weak existence and uniqueness
for Eqs. (4.1).
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For x ∈ R2 let

ζ(x) = 1 +
ζ1(x)− ζ2(x)

2
, η(x) = 1 −

η1(x)− η2(x)

2
,

ζ̄ (x) = 1 −
ζ1(x)+ ζ2(x)

2
, η̄(x) = 1 −

η1(x)+ η2(x)

2
.

We assume that for all x ∈ R2,

ζ(x) ≥ 0, η(x) ≥ 0, η(x)+ ζ(x) ≠ 0, α(x) =
η(x)

η(x)+ ζ(x)
∈ [0, 1].

Consider the equations associated with the linear transformations

Y = X1 − X2, U = X1 + X2.

If X = (X1, X2) solves (4.1) then (Y,U ) will solve

dY (t) = (k1(X (t))− k2(X (t)))dt + dW1(t)+ (1 − ζ(X (t)))d LY
+(t)

+ (η(X (t))− 1)d LY
−(t)

dU (t) = (k1(X (t))+ k2(X (t)))dt + dW2(t)+ ζ̄ (X (t))d LY
+(t)+ η̄(X (t))d LY

−(t),

(4.2)

where W1 =
1

√
2
(B1 − B2),W2 =

1
√

2
(B1 + B2). Using the relations

LY
+(t)− LY

−(t) =

 t

0
1{Y (s)=0}dY (s), LY (t) = (LY

+(t)+ LY
−(t)), t ≥ 0,

and

[0,∞)

1{Y (s)=0}ds = 0, we see that

LY
+(t) =

 t

0
α(X (s))d LY (s), LY

−(t) =

 t

0
(1 − α(X (s)))d LY (s).

Define ψ : R2
→ R2 as ψ(u, y) = (

u+y
2 ,

u−y
2 ). Then (4.2) can be rewritten as

dY (t) = a1(U (t), Y (t))dt + dW1(t)+ b1(U (t))d LY (t)

dU (t) = a2(U (t), Y (t))dt + dW2(t)+ b2(U (t))d LY (t),
(4.3)

where

a1(u, y) = (k1 − k2) ◦ ψ(u, y), a2(u, y) = (k1 + k2) ◦ ψ(u, y),

b1(u) = β1 ◦ ψ(u, 0), b2(u) = β2 ◦ ψ(u, 0),

β1(x) = (2α(x)− 1), β2(x) = ζ̄ (x)α(x)+ η̄(x)(1 − α(x)).

The following is now an immediate consequence of Theorem 2.1.

Theorem 4.1. Suppose that ζi , ηi , i = 1, 2 and α are Lipschitz. Then Eqs. (4.3) and (4.1), with
any given initial conditions, have a unique weak solution.

Proof. Note our assumptions ensure that b is Lipschitz with b1 taking values in [−1, 1]. Thus ex-
istence of a unique weak solution of (4.3) is an immediate consequence of Theorem 2.1. Unique
solvability of (4.1) follows on observing that (X1, X2) solves (4.1) with driving Brownian mo-
tions (B1, B2) if and only if (Y,U ) solves (4.3) with driving Brownian motions (W1,W2), where
Y = X1 − X2,U = Y1 + Y2,W1 =

1
√

2
(B1 − B2),W2 =

1
√

2
(B1 + B2). �
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