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Abstract. We consider optimal control of a stochastic network, where service is controlled to prevent
buffer overflow. We use a risk-sensitive escape time criterion, which in comparison to the ordinary escape
time criteria heavily penalizes exits which occur on short time intervals. A limit as the buffer sizes tend
to infinity is considered. In [2] we showed that, for a large class of networks, the limit of the normalized
cost agrees with the value function of a differential game. In this game, one player controls the service
discipline (who to serve and whether to serve), and the other player chooses arrival and service rates in the
network. The game’s value is characterized in [2] as the unique solution to a Hamilton–Jacobi–Bellman
Partial Differential Equation (PDE). In the current paper we apply this general theory to the important case
of a network of queues in tandem. Our main results are: (i) the construction of an explicit solution to the
corresponding PDE, and (ii) drawing out the implications for optimal risk-sensitive and robust regulation
of the network. In particular, the following general principle can be extracted. To avoid buffer overflow
there is a natural competition between two tendencies. One may choose to serve a particular queue, since
that will help prevent its own buffer from overflowing, or one may prefer to stop service, with the goal of
preventing overflow of buffers further down the line. The solution to the PDE indicates the optimal choice
between these two, specifying the parts of the state space where each queue must be served (so as not to
lose optimality), and where it can idle. Referring to those queues which must be served as bottlenecks, one
can use the solution to the PDE to explicitly calculate the bottleneck queues as a function of the system’s
state, in terms of a simple set of equations.
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1. Introduction

In a previous work [2] we considered a stochastic control problem for a Markovian
queueing network with deterministic routing, where the service stations may provide
service to one or more queues, with each queue being limited by a finite buffer. The con-
trol refers to the service discipline at the service stations, and the cost involves the time
till one of the queues first reaches its buffer limit. Such a problem can be regarded as the
control of a Markov process up to the time it exits a domain, the domain being the rec-
tangle associated with the buffer sizes. The cost is chosen so as to obtain a risk-sensitive
(or rare-event) control problem: one considers Exe−cσ as a criterion to be minimized,
where c > 0 is fixed and σ denotes the exit time (the time when any one of the buffers
first overflows). Such a criterion penalizes short exit times more heavily than ordinary
escape time criteria (such as Exσ , a criterion to be maximized). While the main result
of [2] is the characterization of a limiting problem as the buffer sizes tend to infinity,
the current work focuses on finding explicit solutions to this limit problem and on the
interpretation thereof.

There are at least two motivations for the use of risk-sensitive criteria when de-
signing policies for the control of a network. The first is that in many communication
networks performance is measured in terms of the occurrence of rare but critical events.
Buffer overflow is a principal example of such an event. The second motivation fol-
lows from the connection between risk-sensitive controls and robust controls. Indeed, as
discussed in [8], the optimization of a single fixed stochastic network with respect to a
risk-sensitive cost criteria automatically produces controls with specific and predictable
robust properties. In particular, these controls give good performance for a family of per-
turbed network models (where the perturbation is around the design model and the size
of the perturbation is measured by relative entropy), and with respect to a corresponding
ordinary (i.e., not risk-sensitive) cost.

In many problems, one considers the limit of the risk-sensitive problem as a scaling
parameter of the system converges, in the hope that the limit model is more tractable.
This is the path followed in [2], in the asymptotic regime where time is accelerated
and buffer lengths are enlarged by a factor n. The limit of the normalized cost was
characterized both as the value function of a differential game, and as the solution to
a corresponding nonlinear PDE. Both interpretations are important and useful. It is
the interpretation as the value function of a differential game that is key in quantifying
the robust aspects of the resulting control policy. However, because the PDE gives a
necessary and sufficient characterization of the (a priori unknown) value function, it can
provide qualitative information on the structure of the value function and the optimal
controls. In particularly favorable circumstances one can go even further, and use the
PDE for exact calculation and control policy synthesis. Indeed, if one can by any means
guess a proper parametric form of the value function, then it is sometimes possible to use
the PDE to verify that this is the correct form, and identify the unknown parameters in the
representation for the value function. The instances in the control theory literature where
this has been carried out are few and far between, especially when the state space of the
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system has dimension greater than two. However, important information is obtained
from these instances on the structure of optimal controls.

In this paper the focus is on applying the PDE obtained in [2] in the manner
just described. In particular, we treat in detail the general case of a tandem queueing
network, and construct an explicit solution to the PDE. In a system of queues in tan-
dem, each server offers service to exactly one queue, and therefore the service control
refers simply to whether each station should provide service or remain idle. Naturally,
it is important to provide service to a queue in order to keep it from reaching the buffer
limit. On the other hand, if the next buffer in line is nearly full, it might be necessary
to idle the first queue in order to keep the second from overflowing. Besides factoring
in how close all buffers are to their respective limits, one must consider the mean ser-
vice rates and the likelihood of significant deviations from those mean service rates. Is
it likely that the next queue down will stall and simply stop serving for a while? It is
also possible that one will have to look even further ahead, and consider buffers further
downstream.

Although the optimal control problem for the Markovian queueing system is fully
described by a dynamic programming equation [2], such equations are typically solved
numerically. It is hard to extract any global structural information from the exact equa-
tion, and even a numerical solution may not be feasible when buffers are large or the di-
mension of the state space is moderate. As discussed previously, the solution to the PDE
for the limiting problem turns out to simplify things significantly. Roughly speaking, the
PDE indicates the following structure of the asymptotic optimally controlled network.
In the interior of the domain (i.e., when all buffers are away from their maximum capac-
ity), and depending on the state of the system, service must be provided at certain service
stations, while other stations may idle without causing loss of optimality. In that sense,
the limit problem sharpens the control policy by emphasizing the importance of serving
those “bottleneck” buffers (it is crucial to serve the bottleneck buffers, and completely
unimportant to serve the others). The identification of the bottlenecks is nontrivial, and
indeed queues with the smallest service rate are not necessarily bottlenecks. Instead, as
hinted above, identification of the bottlenecks must include consideration of at least the
following: (i) the relative closeness of all buffers to their maximum value, (ii) relative
mean service rates, and (iii) relative uncertainties in the service rates. We identify a
system of algebraic equations whose solution identifies all bottlenecks.

There is relatively little work on risk-sensitive and robust control of networks. Ball
et al. have considered a robust formulation for network problems arising in vehicular
traffic [4], where the cost structure is qualitatively different. Dupuis studies a robust
control problem for networks in a deterministic setting and obtains explicit solutions for
the value function [7]. The cost there is, in a sense, antipodal to the one considered
in the current work, namely, the time till the system becomes empty (a criterion to be
minimized). For other recent work on queueing control in a large deviation regime
see [15], where a single server non-Markovian system (with quite general stationary
increments input flows) is studied, and a particularly simple scheduling control policy is
shown to be asymptotically optimal (see also an extension of the work in [14]).
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The paper is organized as follows. Section 2 introduces the model and the PDE
and states the main result. Section 3 contains discussion and interpretation. In section 4
we prove the main result.

Notation. The symbol ∨ stands for maximum, while ∧ stands for minimum. Denote
scalar product between two vectors as x · y. For integers i � j , let [i, j ] .= {1, . . . , j}.

2. Model and preliminaries

The queueing network control problem. We consider the following tandem network.
There are J queues and J servers. Customers present at queue i at a certain time are said
to be of class i at that time. Customers arrive to queue 1 according to a Poisson process of
rate λ � 0. Service at queue i is provided by server i at exponential time with parameter
µi > 0, mutually independent and independent of the arrivals. After a customer is served
by server i, it moves to queue r(i), where r(i) = i + 1, i = 1, . . . , J − 1, r(J ) = 0, and
i = 0 is used to denote the “outside”. The state of the network is the vector of queue
lengths, denoted by X. Let {ei; i = 1, . . . , J } denote the unit coordinate vectors, let
e0 = 0 and denote

γi = ei − er(i). (1)

Note that γi = ei − ei+1 for i = 1, . . . , J − 1, γJ = eJ , and that following ser-
vice to queue i the state changes by −γi . The control is specified by the vector
u = (u1, . . . , uJ ), where ui = 1 if customers in queue i are given service and ui = 0
otherwise. We next consider the scaled process Xn under the scaling which accelerates
time by a factor of n and down-scales space by the same factor. We are interested in a
risk-sensitive cost functional that is associated with exit from a bounded set. Let G be
the rectangle defined through

G = {
(x1, . . . , xJ ): 0 � x1 < z1; 0 � xi � zi, i = 2, . . . , J

}
, (2)

for some zi > 0, i = 1, . . . , J . Note that G contains parts of, but not all of its boundary.
Let

σ n .= inf
{
t : Xn(t) /∈ G

}
.

The control problem is to minimize the cost Exe−ncσn

, where Ex denotes expectation
starting from x, and c > 0 is a constant. With this cost structure “risk-sensitivity” means
that a typically short exit times are weighted heavily by the cost. As a result, even if exit
within short time occurs with small probability, it may have a noticeable effect on the
cost, and thus a “good” control will attempt to avoid such events as much as possible.

Although this paper do not directly treat the stochastic control problem but the cor-
responding PDE, we give here the precise formulation of the former, for completeness.
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For each n, the state space is Gn .= n−1
Z

J+ ∩ G. The control (or action) space is given
by

U
.= {

(ui), i = 1, . . . , J : 0 � ui � 1, i = 1, . . . , J
}
.

One considers state processes Xn that are similar to those defined for the original queue-
ing network, except that time is accelerated (equivalently, arrival and service rates are
multiplied) by a scaling parameter n, and space is scaled down by the same factor. More
precisely, for u ∈ U and f : Z

J+ → R, let

Luf (x) = λ
[
f (x + e1) − f (x)

] +
J∑

i=1

uiµi1{x−γi∈Z
J+}

[
f (x − γi) − f (x)

]
, x ∈ Z

J
+.

For n ∈ N let

Ln,uf (x) = nLug(nx),

where f : n−1
Z

J+ → R and g(·) = f (n−1·). A controlled Markov process starting from
x ∈ Gn will consist of a complete filtered probability space (�,F, (Ft ), P

n,u
x ), a state

process Xn taking values in Gn and a control process u taking values in U , such that Xn

is adapted to Ft , u is measurable and adapted to Ft , Pu,n
x (Xn(0) = x) = 1, and for every

function f : Gn → R

f
(
Xn(t)

) −
∫ t

0
Ln,u(s)f

(
Xn(s)

)
ds

is an Ft -martingale. En,u
x denotes expectation with respect to Pn,u

x . For a parameter
c > 0, the value function for the stochastic control problem is defined by

V n(x)
.= − inf n−1 log Eu,n

x e−ncσn, x ∈ Gn, (3)

where the infimum is over all controlled Markov processes.

The domain and its boundary. It is possible for the controller to prevent any but the
first queue from exceeding zi , simply by turning off service to the preceding queue.
However, the controller cannot prevent overflow of the first queue. Although it is in prin-
ciple possible that the dynamics could exit through the portion of the boundary defined
by queues 2, . . . , J , it is always optimal for the controller to not allow this. Consider the
simple two-class network illustrated in figure 1. The controller can prevent exit through
the dashed portion of the boundary simply by stopping service at the first queue. As a
consequence, there are, in general, three different types of boundary – the constraining
boundary due to non-negativity constraints on queue length, the part of the boundary
where exit can be blocked, and the remainder. These three types of boundary behav-
ior result in the PDE in three types of boundary conditions. The three portions of the
boundary are explicitly given as

∂cG = {
(x1, . . . , xJ ): 0 � x1 < z1, and xi = zi for some i > 1

}
,
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Figure 1. A simple queueing network, a rectangular domain and three types of boundary. Full line: ∂+G,
dashed line: ∂cG, and dotted line: ∂oG.

∂oG = {
(x1, . . . , xJ ): x1 = z1, and 0 � xi � zi for all i > 1

}
,

∂+G = {
(x1, . . . , xJ ): xi < zi for all i, and xi = 0 for some i

}
.

Note that ∂cG, ∂oG and ∂+G partition the boundary ∂G of G. Also, ∂cG ⊂ G while
∂oG ∩ G = ∅. As usual, we will denote Go = G \ ∂G and G = G ∪ ∂G.

The Hamiltonian, PDE and viscosity solutions. It is a standard fact that the value
functions V n of the stochastic control problem considered above can be characterized
by a dynamic programming equation. The results of [2] show that also the limit of V n

as n → ∞ can be characterized by a certain equation, namely, a Hamilton–Jacobi–
Bellman PDE, that can in fact be regarded as the dynamic programming equation for a
certain deterministic game problem. For details on this PDE we need some notation (the
reader is referred to [2] for details on the game). Let l : R → R+ ∪ {+∞} be defined as

l(x)
.=

{
x log x − x + 1, x � 0,
+∞, x < 0,

where 0 log 0
.= 0. Define

M = {
m = (

λ̄, µ̄1, . . . , µ̄J

)
: λ̄ � 0, µ̄i � 0

}
. (4)

For u ∈ U and m ∈ M define

v(u,m)
.= λ̄e1 −

J∑
i=1

uiµ̄iγi,

ρ(u,m)
.= λl

(
λ̄

λ

)
+

J∑
i=1

uiµil

(
µ̄i

µi

)
,

where γi are as in (1). Let

H(p, u,m)= c + p · v(u,m) + ρ(u,m)

= c +
[
λ̄p1 + λl

(
λ̄

λ

)]
+

J∑
i=1

ui

[
−µ̄iγi · p + µil

(
µ̄i

µi

)]
(5)
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and let the Hamiltonian be defined as

H(p) = sup
u∈U

inf
m∈M

H(p, u,m) = inf
m∈M

sup
u∈U

H(p, u,m), (6)

where the last identity, expressing the Isaacs condition is proved in [2]. The following
simplification in the structure of the Hamiltonian will be useful. Using convexity and
the fact that the slope of l at 0+ is −∞, the minimum over m is attained at λ̄ = λe−p1 ,
µ̄i = µieγi ·p. A straightforward calculation then shows that

H(p, u)
.= inf

m
H(p, u,m) = c + [(

λ − λ̄
) + ui(µi − µ̄i)

]
= c + λ

(
1 − e−p1

) +
J∑

i=1

uiµi

(
1 − eγi ·p)

. (7)

Define I (x) = {i: xi = 0}. The PDE of interest is the following:


H
(
DV (x)

) = 0, x ∈ Go,
DV (x) · γi = 0, i ∈ I (x), x ∈ ∂+G,
V (x) = 0, x ∈ ∂oG.

(8)

Since typically such equations do not possess classical solutions, the framework of vis-
cosity solutions is useful (see [5]). This framework allows for functions that are merely
continuous to be regarded as solutions. For x ∈ G, the set of superdifferentials D+V (x)

and the set of subdifferentials D−V (x) are defined as

D+V (x) =
{
p: lim sup

y→x

V (y) − V (x) − p · (y − x)

|y − x| � 0

}
, (9)

D−V (x) =
{
p: lim inf

y→x

V (y) − V (x) − p · (y − x)

|y − x| � 0

}
. (10)

Definition 1. V is a viscosity solution to (8) if

H(p) ∨ max
i∈I (x)

p · γi � 0, p ∈ D+V (x), x ∈ G, (11)

H(p) ∧ min
i∈I (x)

p · γi � 0, p ∈ D−V (x), x ∈ G \ ∂cG, (12)

and V (x) = 0 for x ∈ ∂oG.

The following is a special case of [2, theorem 2].

Theorem 1. There exists a unique Lipschitz viscosity solution V to (8). Moreover, if
xn ∈ Gn, n ∈ N are such that xn → x ∈ G, then limn→∞ V n(xn) = V (x).

For i = 1, . . . , J , let βi denote the unique positive solution to

c + λ
(
1 − eβi

) + µi

(
1 − e−βi

) = 0. (13)

Set bi = βi

∑i
j=1 ej . Our main result is the following:
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Theorem 2. Assume c > 0. Then the viscosity solution to the PDE (8) is given by

V (x) = min
i=1,...,J

bi · (z − x). (14)

3. Some remarks

3.1. Interpretation

As commented above, it is possible to characterize the value function V n as the solu-
tion to a dynamic programming equation on the discrete space Gn. Moreover, if V n is
available in explicit form, one can use the dynamic programming equation to specify an
optimal control policy for the problem. The results above provide an explicit expression
only to the limit V = limn V n, and therefore we are unable to specify an optimal pol-
icy for the problem with finite n. Instead, we shall use the quantity V along with the
HJB equation (8) to propose a policy for the queueing network problem (and the corre-
sponding value V n). It is plausible that the proposed policy is, in a sense, asymptotically
optimal as n → ∞ but we do not attempt to prove such a statement here. Instead, the
discussion below could be regarded as a natural interpretation of the result. Moreover,
since V can be considered as a good approximation to V n (for large n), it can be used
as an initial condition in a value iteration procedure that calculates V n and an optimal
policy.

The solution to the PDE stated here may be interpreted as follows. Let x be an
interior point of G, and assume that V is differentiable at x. The form (14) implies that
for some j = j (x),

DV (x) = −bj = −βj

j∑
i=1

ei . (15)

Hence by (7), the equation H(−bj ) = 0 has the form

sup
u∈U

[
c + λ

(
1 − eβj

) + ujµj

(
1 − e−βj

)] = 0.

It is seen that the supremum is attained at any u for which uj = 1 and ui ∈ [0, 1],
i �= j . The interpretation in terms of the service policy is that it is important to serve
class j , while optimality does not depend on the service given to other classes. The
station j = j (x) can therefore be regarded as a bottleneck: it is crucial to serve station
j when at state x. Since the PDE describes the limit of the stochastic control problem,
one expects the bottleneck stations to have a similar property in the stochastic problem:
Although it may be optimal for all servers to not idle when the system is near an interior
point x, it is significant for the bottleneck server to work while if the other servers idle
the cost is affected only by little.



EXPLICIT SOLUTION FOR A NETWORK CONTROL PROBLEM 167

A closer look at (15) reveals that all bottleneck stations belong to a certain set A′
defined below. More precisely, given an interior point x where V is differentiable and
denoting y = z − x, using (14), we see that (15) holds for j if and only if j satisfies

βj(y1 + · · · + yj ) � βi(y1 + · · · + yi) ∀i �= j. (16)

We claim that a necessary condition for j to satisfy (16) (for some y) is j ∈ A′, where

A′ = {
k ∈ [1, J ]: µk � µl, for all l < k

}
,

and by convention, 1 ∈ A′. To this end, write the explicit form of the solution to (13) as

eβi = (2λ)−1
[
c + λ + µi + (

c2 + λ2 + µ2
i + 2c(λ + µi)

)1/2]
,

and note that the positive solutions βi to (13) are monotone in µi , in the sense that

µi < µj ⇐⇒ βi < βj . (17)

If (16) holds then βi � βj for j = 1, . . . , i, and it follows from (17) that j ∈ A′.
It should be emphasized that the condition j ∈ A′ is only necessary for j to be

a bottleneck, and being a bottleneck is really a function of the system’s state. A more
complicated necessary condition is given in section 4, which is of the form j ∈ A(x).
One interesting and perhaps counterintuitive phenomenon is that it is possible that a
station is nearly empty while others are far from being empty, and still it is a bottleneck.

In the rest of this subsection we discuss a different queueing system for which a
similar analysis is possible, including an explicit form for the limit of the value function
and a clear interpretation of it regarding nearly optimal service policies for the queueing
system (see [2] for proof of the results quoted below). Consider a single server that pro-
vides service to J classes (each customer requires service once). Service rate to queue i

is exponential with rate µi , and the arrival process to class i is Poisson of parameter
λi > 0, i = 1, . . . , J . All arrival and service processes are mutually independent. One
considers the control space

U =
{
u:

J∑
i=1

ui � 1, ui � 0, i = 1, . . . , J

}
,

where ui represents the fraction of service allocated to class i by the single server. Anal-
ogously to the problem discussed above, one defines a domain G = {(x1, . . . , xJ ): 0 �
xi < zi, 1 = 1, . . . , J }, scaled queueing processes Xn and exit time σ n, and attempts
minimizing the cost Exe−ncσn

over an appropriate class of control processes. Let V n(x)

denote the infimum. One can then show that limn V n(xn) exits whenever xn → x ∈ G.
Moreover, the limit V is characterized in terms of a PDE of the form (8), where now
γi = ei , i = 1, . . . , J , and H(p) = supu∈U H(p, u). Here H(p, u) has the form (anal-
ogous to (7)):

H(p, u) = c +
J∑

i=1

[
λi

(
1 − e−pi

) + uiµi

(
1 − epi

)]
, (18)
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Figure 2. Priority to class i when the state is in Gi , i = 1, 2.

and the limit V (x) can be explicitly calculated provided c is large enough as follows.
For i = 1, . . . , J , define αi as the unique positive solution to c + λi(1 − eαi ) +
µi(1 − e−αi ) = 0, namely,

eαi = (2λ)−1
[
c + λ + µi + (

(c + λ + µi)
2 − 4λµi

)1/2]
.

Then if c is large enough one has

V (x) = min
i=1,...,J

αi(zi − xi). (19)

Let x be a point in the interior of G where the gradient of V is well defined. Then the
PDE is satisfied in the classical sense at this point. Thus, H(DV (x)) = H(−αjej ) = 0,
where j = j (x). Using (18), the equation H(−αiej ) = 0 takes the form

sup
u∈U

[
c + λj

(
1 − eαj

) + ujµj

(
1 − e−αj

)] = 0.

Clearly the supremum is attained at ui = 1i=j , i = 1, . . . , J . This means that it is
optimal to serve class j (x) at the state x. In the totally symmetric case, where µi = µ,
λi = λ, zi = z for all i, the solution takes the form V (x) = α mini(z − xi), and the op-
timal service discipline can be interpreted as “serve the longest queue.” An asymmetric
two dimensional example is given in figure 2, where the domain G is divided into two
subdomains G1 and G2 in accordance with the structure (19), and the optimal service
discipline corresponds to giving priority to class i when the state is within Gi , i = 1, 2.
This discipline gives priority to the queue with the (weighted) shortest free buffer space.

3.2. The perturbed rates

In the asymptotic analysis of rare events it is often the case that most of the probabil-
ity mass of an event of interest is concentrated on the event that the stochastic process,
say Xn, nearly follows a certain deterministic path, for large values of n. For example,
the most likely way a stable M/M/1 queue overflows is by nearly following a deter-
ministic path that is the solution to a fluid model in which arrival and service rates are
reversed. This appears as a consequence of time-reversal arguments in [12]. For many
other cases where one can compute deterministic paths about which most mass is con-
centrated see [13]. Similarly, in the current stochastic control problem, when the system
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operates under the optimal control most contribution to the cost is obtained when the
process Xn nearly follows a certain deterministic path. This path is now the solution to a
fluid model with a control u and perturbed arrival and service rates m = (λ̄, µ̄1, . . . , µ̄J ).
At a point x where the viscosity solution V to (8) is differentiable, the correct values of u

and m are those that achieve the max–min in H(DV (x)) = supu infm H(DV (x), u,m)

(cf. (6)).
We remark that in the example of tandem queues the optimal perturbed rates sat-

isfy certain relations with the unperturbed rates, as shown in the two equations below.
By (7), the relation H(DV ) = 0 implies

λ̄ +
J∑

i=1

uiµ̄i = c + λ +
J∑

i=1

uiµi. (20)

Moreover, by (7), by the fact that the minimum over m is attained at λ̄ = λe−p1 ,
µ̄i = µieγi ·p, and using

∑J
i=1 γi = e1, we have

λ̄

J∏
i=1

µ̄i = λ

J∏
i=1

µi. (21)

Relation (20) was noticed by Avram [3]. The relation (21) appears to be new. A gen-
eralization of these equations to a more general network is possible and will appear
elsewhere.

Remark. An interesting relation between the roots αi and βi and the busy cycle period
was pointed out to us by Boxma [6]. For example, if B denotes the busy cycle period for
an M/M/1 queue under the stationary distribution, then EecB = eβ , where

c + λ
(
1 − eβ

) + µ
(
1 − e−β

) = 0

(compare with (13)).

4. Proof of the main result

Recall that I (x) = {i ∈ [1, J ]: xi = 0}, and denote B(x) = {i ∈ [1, J ]: xi = zi}. Note
that I (x) and B(x) do not intersect. Since points x for which x1 = z1 are not in G, we
have 1 /∈ B(x) for all x ∈ G.

We show that the minimum over i = 1, . . . , J in (14) can equivalently be per-
formed over a smaller (state-dependent) set. As in section 3, let

A′ = {
i ∈ [1, J ]: µi � µj , for all j < i

}
, (22)

and by convention let 1 ∈ A′. Let also

A(x) = {
i ∈ A′: either i + 1 /∈ B(x); or j > i and [i + 1, j ] ⊂ B(x) imply µi < µj

}
.
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Lemma 1. The minimum in (14) is obtained over the indices in the set A(x) defined
above. More precisely,

V (x) = min
i=1,...,J

bi · (z − x) = min
i∈A(x)

bi · (z − x) .

Proof. Fix x ∈ G and recall that z1 − x1 > 0. If

bi · (z − x) � min
j �=i

bj · (z − x), (23)

then βi � βj for j ∈ [1, i], and it follows from (17) that i ∈ A′. Thus

V (x) = min
i=1,...,J

bi · (z − x) = min
i∈A′ bi · (z − x)

for all x ∈ G (although not every i ∈ A′ is a minimizer). Fix now i ∈ A′, and suppose
that

there is some j > i so that [i + 1, j ] ⊂ B(x) and µi � µj . (24)

Since i ∈ A′, if i + 1 /∈ A′ then µi+1 > µi . But then, if in addition i + 2 /∈ A′ we have
µi+2 > µi . So, if k /∈ A′ for all i + 1 � k � j − 1 then µk > µi , and together with
µj � µi we have that j ∈ A′. We conclude that under (24),

there is k ∈ [i + 1, j ] such that k ∈ A′. (25)

By (24), βi � βj and so

bi · (z − x) � bj · (z − x). (26)

Therefore, for k as in (25) and under the assumptions in (24),

bi · (z − x) � bk · (z − x),

and since k ∈ A′, we need not consider i in the minimum. As a result, (14) is equivalently
given as

V (x) = min
i∈A(x)

bi · (z − x), x ∈ G,

where A(x) is obtained from A′(x) by deleting those i ∈ A′(x) which are followed by
empty queues, [i + 1, j ] ⊂ B(x), and such that µi � µj . This leaves in A(x) an index i

from A′(x) only if either zi+1 > xi+1, or zk = xk for i + 1 < k � j implies µi < µj .
More formally,

A(x) = A′ \ {
i ∈ A′: ∃j > i, [i + 1, j ] ⊂ B(x), µi � µj

}
= {

i ∈ A′: either i + 1 /∈ B(x); or j > i and [i + 1, j ] ⊂ B(x) imply µi < µj

}
.

(27)
�

The form of the proposed solution is the minimum of smooth functions. The set
of superdifferentials at a point where the function is not smooth can be seen (using the
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definition (9)) to consist of the convex hull of the gradients of the smooth functions
defining it, at that point. Also, at the boundary, the fact that there are less constraints
introduced by (9) on p ∈ D+V than there are when x is in the interior, has an effect
of enlarging the set further. Thus, for example, the set of superdifferentials of the zero
function from R+ to R at zero is R+. Using these considerations and the rectangular
structure of the domain, one finds the general form for the superdifferential as follows.
Let x ∈ G be fixed. Set A = A(x), I = I (x), B = B(x), and O = {1, . . . , J } \ (I ∪B).
Then any element p ∈ D+V (x) is given as

p = −
∑
i∈A

νibi + δ,

for some {νi}, where

δi � 0, i ∈ I, δi � 0, i ∈ B, δi = 0, i ∈ O, (28)

and

νi � 0, i ∈ A, νi = 0, i /∈ A,
∑
i∈A

νi = 1. (29)

If we denote

δJ+1 = 0, (30)

then, using (7), the Hamiltonian is expressed as

H(p)= c + λ
(
1 − e−p1

) +
J∑

i=1

0 ∨ µi

(
1 − ep·γi

)

= c + λ
(
1 − e

∑
i∈A νiβi−δ1

) +
J∑

i=1

0 ∨ µi

(
1 − e−νiβi+δi−δi+1

)
. (31)

Proof of theorem 2. Verifying the PDE for superdifferentials. To verify (11), it suffices
to show that H(p) � 0 whenever p ∈ DV +(x) and p · γi < 0 for all i ∈ I .

Step 1. We show first that H(p) � 0 whenever p ∈ DV +(x) and p · γi � 0 for
all i = 1, . . . , J . The forms of bi and γi = ei − ei+1 imply the last inequality can be
rewritten

−νiβi + δi − δi+1 � 0, i = 1, . . . , J. (32)

In this case, (31) becomes

H(p) = h(ν, δ)
.= c + λ

(
1 − e

∑
i∈A νiβi−δ1

) +
J∑

i=1

µi

(
1 − e−νiβi+δi−δi+1

)
. (33)

The constraints we have put on (ν, δ) define a convex set S, namely, the set of (ν, δ) ∈
R

J ×R
J+1 satisfying (28)–(30) and (32). The set S is bounded for the following reasons.
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First, since ν is a probability vector (see (29)) we have νi ∈ [0, 1]. Next, by (28) and
1 /∈ B, δ1 � 0. Finally, it follows from (32) (using the convention

∑t
s = 0 if t < s) that

δ1 −
i−1∑
j=1

νjβj � δi �
J∑

j=i

νjβj , i = 1, . . . , J.

This shows the boundedness.
The function (ν, δ) �→ h(ν, δ) is concave, and therefore to prove h � 0 on S it

suffices to check the inequality on the set E of extreme points of S, which contains a
finite number of points since the constraints are linear.

Lemma 2. All points (ν, δ) ∈ E have the following form:

νk = 1 for some k, and

δ
(r,k)
i = βk(1i�r+1 − 1i�k+1), i = 1, . . . , J, r = s, . . . , t − 1,

where t, s are defined below.

Proof. We will first obtain the general form of ν and then that of δ.
We claim that for any (ν, δ) ∈ E, ν is of the form ν = 1k (short for νi = 1i=k,

i = 1, . . . , J ), for some k ∈ A. Assume this is false. Then there are l, m ∈ A, l < m,
for which νl, νm ∈ (0, 1). We will show that there is a vector 7m, such that replacing
(ν, δ) by (ν′, δ′) = (ν − εem, δ + ε7m) maintains the relations (28), (30) and (32) for
both ε > 0 and ε < 0 (provided |ε| is small). A similar statement will hold also for
(ν′′, δ′′) = (ν + εel − εem, δ − ε7l + ε7m), and as a result all of (28)–(30) and (32)
will hold for both ε > 0 and ε < 0, a contradiction to (ν, δ) being an extreme point
of S. The construction of 7m based on (ν, δ) can be mimicked to construct 7l based on
(ν′, δ′) (in particular, no use is made of the fact that νi sum to one, but only that some of
its components are within (0, 1)), and therefore the latter construction is omitted.

Case 1. Inequality (32) holds as a strict inequality for i = m, i.e., −νmβm + δm −
δm+1 < 0. Then −(νm − ε)βm + δm − δm+1 � 0 also holds (for both ε positive and
negative), provided that |ε| is small. Here we take 7m = 0. We see that (ν − εem, δ)

satisfies the requirements.
Case 2. Inequality (32) holds with equality for i = m, i.e., −νmβm+δm−δm+1 = 0.

Since νmβm > 0, either δm > 0 or δm+1 < 0. Assume δm > 0 (the case δm+1 < 0 can
be treated analogously, and is therefore omitted). Let m′ be the smallest j ∈ [1,m] for
which (32) holds with equality for all i ∈ [j,m]. For i ∈ [m′,m − 1] (the set being
empty and the statement void if m′ = m) we have −νiβi + δi − δi+1 = 0, hence if
δi+1 > 0 then δi > 0. Together with the fact that δm > 0, this shows that

δi > 0, i ∈ [m′,m]. (34)

Moreover,

−νm′−1βm′−1 + δm′−1 − δm′ < 0 (35)
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(the statement being void in case that m′ = 1). Set 7m = −βm

∑m
i=m′ ei , ν′ = ν + εem,

and δ′ = δ + ε7m. The perturbation ε7m is chosen to cancel the change in −νmβm, and
to preserve the left-hand side of (32) for all i > m′ − 1. However, by (35) the inequality
is maintained for i = m′ − 1 as well, by taking |ε| sufficiently small. Similarly, by (34),
(28) and (30) are also maintained on taking |ε| small.

This completes the construction of 7m. As described above, this leads to a contra-
diction, and we conclude that any extreme point (ν, δ) ∈ E satisfies ν = 1k for some
k ∈ A.

When ν = 1k for some k ∈ A, inequalities (32) can be rewritten as

δi � δi+1, i �= k, δk � βk + δk+1. (32′)

In particular, 0 � δ1 � · · · � δk. Let s denote the largest j � k for which j ∈ B ∪ O

(and s = 0 if there is no such j ). The definitions of O and B imply δs = 0, and thus

δj = 0 for 1 � j � s. (36a)

Similarly, δk+1 � · · · � δJ � 0, and if t denotes the least j ∈ [k + 1, J ] for which
j ∈ I ∪ O (and t = J + 1 if empty), then

δj = 0, t � j � J. (36b)

Hence δ must satisfy{
0 � δs+1 � · · · � δk � βk + δk+1, when s � k − 1,
0 � δk, when s = k.

(36c)

In addition, {
δk+1 � · · · � δt−1 � 0, when t � k + 2,
δk+1 � 0, when t = k + 1.

(36d)

We have just shown that (28), (30) and (32′) imply (36a–d). On the other hand, clearly
(36a–d) implies (32′). Moreover, as follows directly from the definition of s and t ,

i ∈ I for all i ∈ [s + 1, k] and i ∈ B for all i ∈ [k + 1, t − 1]. (37)

This shows that (36a–d) implies (28) and (30). Thus (28), (30) and (32′) are equivalent
to (36a–d). Now, the set of δ satisfying the constraints (36a–d) is easy to analyze. In
particular, it is not hard to see that it has the following t − s extreme points, indexed by k

and r ∈ [s, . . . , t − 1], namely,

δ
(r,k)
i = βk(1i�r+1 − 1i�k+1), i = 1, . . . , J, r = s, . . . , t − 1. (38)

�

We now calculate h (cf. (33)) at each extreme point. To this end, note that if
(ν, δ) = (1k, δ

(r,k)) then by (38)

−νiβi + δi − δi+1 =
{−βk, i = r,

0, i �= r,
i = 1, . . . , J,
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and

δ1 =
{

βk, r = 0,
0, r > 0.

Substituting in (33), we have the following possibilities. If r = 0 then δ
(r,k)
i = βk1i∈[1,k]

thus
∑

νiβi − δ1 = 0, and −νiβi + δi − δi+1 = 0, i = 1, . . . , J . Hence h(1k, δ
(r,k)) =

c > 0. Otherwise,

h
(
1k, δ

(r,k)
) = c + λ

(
1 − eβk

) + µr

(
1 − e−βk

)
. (39)

In case that r = k, the right-hand side of (39) vanishes owing to the definition of βk

(see (13)). In case that r < k, recall that k ∈ A, and in particular, k ∈ A′. By (22)
we therefore have µk � µr , hence by (13), h(1k, δ

(r,k)) � 0. Finally, consider the case
where k < r � t − 1. By (37), [k + 1, r] ⊂ B. Since k ∈ A, (27) implies that µk < µr ,
and we again conclude that h(1k, δ

(r,k)) > 0. Having shown that h(ν, δ) � 0 for all
extreme points of the set S, we conclude that the inequality holds for all (ν, δ) ∈ S.

Step 2. We now relax the condition (32). Let then (ν, δ) satisfy (28)–(30), and
assume that the inequality in (32) holds for all i ∈ I (relaxing the assumption made in
step 1, that it holds for all 1 � i � J ). Let P = P(ν, δ) denote the set of i such that

−νiβi + δi − δi+1 > 0. (40)

If P is empty then the results of step 1 apply and H(p) � 0. Hence assume P is not
empty. Let j = j (ν, δ) be the least element in P .

Note that J /∈ P . For if J ∈ P then using (40) and (30) we find δJ > 0, and
therefore J ∈ I . However, we get to assume (32) for all i ∈ I , which means that
−νJβJ + δJ − δJ+1 � 0. This contradicts J ∈ P .

We proceed by backward induction on the value of j (ν, δ). Note that the sets B

and I depend on x. The argument below treats simultaneously all x ∈ G by considering
all possible sets B and I .

Induction step. Assumption: for all (I, B, ν, δ) satisfying (28)–(30), such that
P(ν, δ) ∩ I = ∅ and j (ν, δ) ∈ [i + 1, i + 2, . . . , J − 1], one has H(p) � 0. Let
(I, B, ν, δ) be such that P(ν, δ) ∩ I = ∅ and j (ν, δ) = i (i � 1). Then −νiβi +
δi − δi+1 > 0. Modify δi+1 by increasing it so as to get equality, i.e., set δ′

i+1 > δi+1

so that −νiβi + δi − δ′
i+1 = 0. This modification does not change the value of

0∨µi(1−e−νiβi+δi−δi+1) (but keeps it zero), and it can only decrease (or leave unchanged)
the value of 0 ∨ µi+1(1 − e−νi+1βi+1+δi+1−δi+2). Hence by (31), the value of H(p) is only
decreased. At the same time, j (ν, δ′) > j (ν, δ). Note that in modifying δ, (28) need not
hold for B and I . However, clearly there are other sets, B ′ and I ′ with which it holds.
For example,

B ′ = {
i ∈ [1, J ]: δ′

i < 0
}
, I ′ = {

i ∈ [1, J ]: δ′
i � 0

}
, O ′ = ∅. (41)

Moreover, 1 /∈ B ′, since we had 1 /∈ B and δ1 was not modified. By the induction
assumption we therefore obtain that H(p) � 0.
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Induction base. We show that for all (I, B, ν, δ) satisfying (28)–(30), such that
P(ν, δ)∩ I = ∅ and j (ν, δ) = J −1, one has H(p) � 0. We have −νJ−1βJ−1 + δJ−1 −
δJ > 0. Similar to before, we set δ′

J > δJ so that −νJ−1βJ−1 + δJ−1 − δ′
J = 0. We claim

that P(ν, δ′) = ∅. Indeed, since P(ν, δ) = {J − 1}, clearly P(ν, δ′) ⊂ {J }. However,

−νJβJ + δ′
J = −νJβJ − νJ−1βJ−1 + δJ−1 � 0,

where we have used the fact that J − 1 ∈ P(ν, δ) implies J − 1 /∈ I , and hence by (28)
δJ−1 � 0. This shows that P(ν, δ′) = ∅. As in the previous paragraph, because of
the modification of δ, (28) need not hold for the I and B we started with, but there are
other sets I ′ and B ′ (defined, e.g., as in (41)) with which it holds. The results of step 1
therefore apply, and therefore H(p) � 0.

This completes the argument by induction and establishes (11) for superdifferen-
tials.

Verifying the PDE for subdifferentials. We are required to show that (12) holds for
p ∈ D−V (x), where x ∈ G \ ∂cG (and hence B(x) = ∅). Unless D−V (x) is empty, the
general form of p ∈ D−V (x), x ∈ G is

p = −bk + δ,

where k ∈ A, and

δi � 0, i ∈ I, δi = 0, i /∈ I. (42)

Here we have used the fact that V is the minimum of smooth functions, and therefore
away from the boundary D−V (x) can have at most one element, equal to the gradient
of any minimizing function. It suffices to show that H(p) � 0 whenever p · γi =
−1i=kβk + δi − δi+1 > 0 for all i ∈ I . Using (31), (42) and (13), we find

H(p)= c + λ
(
1 − eβk−δ1

) +
J∑

i=1

0 ∨ µi

(
1 − e−1i=kβk+δi−δi+1

)
= c + λ

(
1 − eβk−δ1

) +
∑
i /∈I

µi

(
1 − e−1i=kβk−δi+1

)
� c + λ

(
1 − eβk

) +
∑
i /∈I

µi

(
1 − e−1i=kβk

)
� c + λ

(
1 − eβk

) + µk

(
1 − e−βk

)
= 0.
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