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Abstract: A two-player stochastic differential game representation has recently been ob-
tained for solutions of the equation −∆∞u = h in a C2 domain with Dirichlet boundary
condition, where h is continuous and takes values in R \ {0}. Under appropriate assump-
tions, including smoothness of u, we identify a family of diffusion processes that may arise
as the vanishing δ limit law of the state process, when both players play δ-optimally. We
also identify the limit law of the state process under a sequence of near saddle points.
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1. Introduction and main result

Consider the equation 



−2∆∞u = h in G,

u = g on ∂G,

(1.1)

where, for an integer m ≥ 2, G ⊂ Rm is a bounded C2 domain, and g ∈ C(∂G,R) and the
functions h ∈ C(Ḡ,R \ {0}) are given. The infinity-Laplacian is defined as

∆∞f =
1

|Df |2
m∑

i,j=1

Dif Dijf Djf =
Df ′

|Df | D
2f

Df

|Df | ,

provided Df 6= 0, where for a C2 function f we denote by Df the gradient and by D2f the
Hessian matrix. We refer the

reader to [1, 2, 4, 6, 7, 10] for background on the infinity-Laplacian and some related PDE
theory. This paper is motivated by recent work of Peres et. al. [8], where a discrete time
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random turn game, referred to as Tug-of-War, is developed in relation to (1.1). This game,
parameterized by ε > 0, has the property that the vanishing-ε limit of the value function
uniquely solves (1.1) in the viscosity sense (a result that is valid also in the homogenous case,
h = 0, excluded from the current paper). The stochastic differential equation (SDE)

dXt = 2p̄(Xt)dWt + 2q(Xt)dt, (1.2)

where
p̄ =

Du

|Du| , q =
1

|Du|2 (D2uDu−∆∞uDu), (1.3)

is suggested in [8] as the game’s dynamics in the vanishing-ε limit. The relation is rigorously
established in examples, but only heuristically justified in general. Denote p = Du. Note that
p · q = 0 in G, and thus (1.2) is a special case of the family of SDE

dXt = 2p̄(Xt)dWt + 2r(Xt)dt, (1.4)

as r ranges over R, where
R = {r ∈ C(Ḡ : Rm) : r · p = 0}.

In [3], a two-player zero-sum stochastic differential game (SDG) is considered, for which the
value function uniquely solves (1.1) in the viscosity sense. The goal of the present paper is to
show that, under appropriate conditions, (1.2) can be rigorously interpreted as the optimal
dynamics of the SDG. In fact we will establish a stronger result, namely, that any member of
the family of SDE (1.4) (satisfying some regularity conditions) can be realized as the optimal
dynamics of the SDG. Defined in the Elliott-Kalton sense, the SDG of [3] is formulated in such
a way that one of the players selects a strategy, and then the other selects a control process
(see Definition 1.1 below). We will assume in this paper that the equation possesses a classical
solution u i.e., C2 with non-vanishing gradient. Given any r ∈ R, we specify, for each δ > 0, a
δ-optimal strategy βδ, and a control process Y δ that is δ-optimal for play against βδ (such a
(βδ, Y δ) is referred to as a δ-optimal play), in terms of r and the first and second derivatives
of u. We then identify the vanishing δ limit law of the state process under (βδ, Y δ), as the
solution X to the SDE (1.4), stopped when X hits the boundary ∂G.

A stronger result, of identifying the limit under any vanishing δ sequence of δ-optimal plays,
is of interest but appears to be difficult, and is not treated in this paper.

The construction of near optimal strategy-control pairs is based on an interpretation of (1.1)
as the following Bellman-Isaacs type equation (see also (2.4))

sup
|b|=1,d≥0

inf
|a|=1,c≥0

{
− 1

2
(a− b)′(D2u)(a− b)− (c + d)(a + b) ·Du

}
= h. (1.5)

In this form there is a natural way to construct strategy and control, by associating the supre-
mum and infimum with the two players. The variables a, b, c and d selected by the players
dictate the coefficients of the game’s state process, and, as we prove, the coefficients con-
verge to those of equation (1.4) in the limit as the supremum and infimum are achieved. This
convergence is then lifted to the convergence of the underlying processes to the diffusion (1.4).
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Although the SDE (1.4) represents an optimal play for every r ∈ R, the case r = q (1.2)
does have a special role in our proof. The supremum in (1.5) can be reached within precision δ
by selecting b = −Du/‖Du‖ and a large constant d = dδ. For this choice of (b, d), the infimum
in (1.5) can be attained by selecting c = 0 and some particular a, which we will denote aδ

(see Proposition 2.1 as well as the construction of the map aδ in (2.22)). The case of the
SDE with r = q arises as the limiting trajectory when the minimizing player selects a nearly
optimal strategy based on the selection (b, dδ), and the maximizing player responds by choosing
a control process according to the optimal map (aδ, 0). However, it turns out that the notion
of δ-optimality leaves enough room for other limit processes to arise. Indeed, a general r is
achieved upon introducing a small perturbation of the map aδ to the action of the minimizing
player.

The plays (βδ, Y δ) described above do not represent saddle points in the sense of game
theory. Indeed Y δ is only guaranteed to be δ-optimal when played against βδ. To analyze
approximate saddle points for the game, we consider a game formulation in which the two
players choose controls Y and Z that are only allowed to depend on the game’s history via
‘feedback’ from the state through suitable maps y, z, mapping the state space to the control
space. For this formulation of the game, we show that the case r = 0 is obtained as the limit
state process under a sequence of plays in which (y, z) represents a near saddle point.

Solutions of (1.1), in general, need not be C2. The study of regularity properties of solutions
of ∞-Laplace equations is a research program in progress. The papers [5, 9] have recently es-
tablished C1,α smoothness of solutions in planar domains and outlined some general approaches
for treating the problem in dimension 3 and higher. It is of interest to identify near optimal
plays without making smoothness assumptions on u. In particular, since only the first deriva-
tive of u appears in the coefficients of (1.4), it is natural to conjecture that Theorem 1.1 holds
for C1 solutions (in the viscosity sense). Our proof, however, relies on C2 smoothness. It is
tempting to approach the problem for non-C2 solutions by using the recipe for constructing
δ-optimal pairs, obtained in this work, on C2 approximations to the solution. As we discuss
at the end of this section, the success of such an approach appears to depend upon an open
problem (Problem 1.1 below).

In the rest of this section, we describe the setting and state the main results. Throughout,
we will make the following

Assumption 1.1. There exists a C2(Ḡ) function u, with Du 6= 0 on Ḡ, that solves (1.1) in
the classical sense.

As a consequence of [8], that proves uniqueness (and existence) of viscosity solutions to (1.1)
under the above assumptions on h, the function u of Assumption 1.1 is the unique classical
solution of (1.1).

We now present the SDG. Let (Ω,F , {Ft},P ) be a complete filtered probability space with
right-continuous filtration, supporting an (m + 1)-dimensional {Ft}-Brownian motion W =
(W, W̃ ), where W and W̃ are 1- and m-dimensional Brownian motions, respectively. Denote
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by E the expectation with respect to P . Let Xt be a process taking values in Rm, given by

Xt = x +
∫ t

0
(As −Bs)dWs +

∫ t

0
(Cs + Ds)(As + Bs)ds, t ∈ [0,∞), (1.6)

where x ∈ G, At and Bt take values in the unit sphere Sm−1 ⊂ Rm, and Ct and Dt take values
in [0,∞). Denote

Y 0 = (A,C), Z0 = (B, D). (1.7)

The processes Y 0 and Z0 take values in H = Sm−1 × [0,∞). These processes will correspond
to control actions of the maximizing and minimizing player, respectively. For a process H0 =
(A,C) taking values in H we let S(H0) = ess sup supt∈[0,∞) Ct. In the formulation below, each
player initially declares a bound S, and then plays so as to keep S(H0) ≤ S.

Definition 1.1. (i) A pair H = ({H0
t }, S), where S ∈ N and {H0

t } is a process taking values in
H, is said to be an admissible control if {H0

t } is {Ft}-progressively measurable, and S(H0) ≤ S.
The set of all admissible controls is denoted by M . For H = ({H0

t }, S) ∈ M , denote S(H) = S.
(ii) A mapping % : M → M is said to be a strategy if, for every t, and H, H̃ ∈ M ,

P (H0
s = H̃0

s for a.e. s ∈ [0, t]) = 1 and S = S̃

implies
P (I0

s = Ĩ0
s for a.e. s ∈ [0, t]) = 1 and T = T̃ ,

where (I0, T ) = %[(H0, S)] and (Ĩ0, T̃ ) = %[(H̃0, S̃)]. The set of all strategies is denoted by Γ̃ .
For % ∈ Γ̃ , let S(%) = supH∈M S(%[H]). Let

Γ = {% ∈ Γ̃ : S(%) < ∞}.

Note that the Brownian motion W̃ does not appear explicitly in the state dynamics, however
the control processes may depend on W̃ . Such a formulation where the underlying filtration
is rich enough to support an (m + 1)-dimensional Brownian motion originates from Swiech’s
construction [12], and is crucially used in the proof of wellposedness of the SDG (see [3] for
details).

We will use the symbols Y and α for a generic control and strategy for the maximizing
player, and Z and β will denote the same for the minimizing player. For a process ξ taking
values in Rm and a set A ⊂ Rm, we will write τA(ξ) for

inf{t ≥ 0 : ξt /∈ A}

(where the infimum over an empty set is ∞). Let

τ = τG(X).

We write
X(x, Y 0, Z0) [resp., τ(x, Y 0, Z0)] (1.8)
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for the process X [resp., the random time τ ] when it is important to specify the explicit
dependence on (x, Y 0, Z0). If τ < ∞ a.s., then the payoff J(x, Y 0, Z0) is well defined with
values in [−∞,∞], where

J(x, Y 0, Z0) = E

[∫ τ

0
h(Xs)ds + g(Xτ )

]
, (1.9)

and X is given by (1.6). When P (τ(x, Y 0, Z0) = ∞) > 0, we set, consistent with the ex-
pectation of the first term in (1.9), J(x, Y 0, Z0) to be +∞ [−∞] for the case h > 0 [resp.,
h < 0].

If Y = (Y 0,K), Z = (Z0, L) ∈ M , we sometimes write J(x, Y, Z) = J(x, (Y 0,K), (Z0, L))
for J(x, Y 0, Z0). Similar conventions will be used for X(x, Y, Z) and τ(x, Y, Z). Occasionally,
with an abuse of terminology, when Y = (Y 0,K) ∈ M , we will write Y 0 ∈ M . Let

Jx(Y, β) = J(x, Y, β[Y ]), x ∈ Ḡ, Y ∈ M, β ∈ Γ,

Jx(α, Z) = J(x, α[Z], Z), x ∈ Ḡ, α ∈ Γ, Z ∈ M.

Define analogously Xx(Y, β), Xx(α, Z), τx(Y, β) and τx(α,Z) via (1.8). Define the lower value
of the SDG by

V (x) = inf
β∈Γ

sup
Y ∈M

Jx(Y, β), (1.10)

and the upper value by
U(x) = sup

α∈Γ
inf

Z∈M
Jx(α,Z). (1.11)

The game is said to have value if U = V .

Theorem 1.1 of [3] shows that the SDG has value, and that U = V = u on Ḡ.

Let x ∈ Ḡ and δ > 0 be given. We say that a policy β ∈ Γ is δ-optimal for the lower
game and initial condition x if supY ∈M Jx(Y, β) ≤ V (x) + δ. When a strategy β ∈ Γ is
given, we say that a control Y ∈ M is δ-optimal for play against β with initial condition x,
if Jx(Y, β) ≥ supY ′∈M Jx(Y ′, β)− δ. A pair (Y, β) is said to be a δ-optimal play for the lower
game with initial condition x, if β is δ-optimal for the lower game and Y is δ-optimal for play
against β (both considered with initial condition x). Note that for such a (Y, β) pair

Jx(Y, β)− δ ≤ V (x) ≤ Jx(Y, β) + δ.

An (α, Z) δ-optimal play for the upper game with initial condition x is defined in a similar
manner.

Our first main result is the following.

Theorem 1.1. Let Assumption 1.1 hold. Fix r ∈ R. Assume, in addition, that there exist
uniformly continuous, bounded extensions of p̄ and r to all of Rm such that, for every x ∈ Rm,
weak uniqueness holds for solutions of (1.4) starting from x. Fix x ∈ Ḡ and let X and τ denote
such a solution and, respectively, the corresponding exit time from G. Then, given any sequence
{δn}n≥1, δn ↓ 0, there exists a sequence of strategy-control pairs (βn, Y n) ∈ Γ × M , n ≥ 1,
with the following properties.
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i. For every n, the pair (βn, Y n) forms a δn-optimal play for the lower game with initial
condition x;

ii. Denoting Xn = Xx(Y n, βn) and τn = τG(Xn), one has that (Xn(·∧τn), τn) converges in
distribution to (X(· ∧ τ), τ), as a sequence of random variables with values in C([0,∞) :
Ḡ)× [0,∞].

An analogous result holds for the upper game.

Remark 1.1. One can always find uniformly continuous bounded extensions of p̄ and r,
however, in general, without additional conditions weak uniqueness may not hold. A sufficient
condition for uniqueness to hold is that p and r are Lipschitz on Ḡ, since then these functions
admit a Lipschitz extension to Rm. In the case r = q, a sufficient condition is that D2u is
Lipschitz on Ḡ, since then p̄ and q are Lipschitz.

Next we introduce the notion of an approximate saddle point. There appears to be no
natural definition of a saddle point in a formulation where each player selects two different
types of actions (a strategy and a control) in the two games (upper and lower). In this regard,
a formulation based on ‘feedback’ controls, that we now describe, is more convenient.

Denote by H the set of all pairs y = (a, c), where a and c are Lipschitz maps from Ḡ to
Sm−1 and (0,∞), respectively. Given x ∈ Ḡ and a pair (y, z) ∈ H2, there exists a unique
process X = X(x,y, z) such that

X(t) = x +
∫ t

0
(a(Xs)− b(Xs))dWs +

∫ t

0
(c(Xs) + d(Xs))(a(Xs) + b(Xs))ds, t ≥ 0, a.s.

Let J(x,y, z) represent the corresponding cost (1.9), with the same convention regarding the
case P (τ = ∞) > 0 as before. One can then talk of a game where the two players select the
feedback functions y and z, and define the corresponding lower value

V fb(x) = sup
y∈H

inf
z∈H

J(x, y, z),

and upper value
U fb(x) = inf

z∈H
sup
y∈H

J(x, y, z).

Note that V fb(x) ≤ U fb(x). When the two are equal, we can find, for every δ > 0, a y∗ [z∗]
that is δ-optimal for the lower [resp., upper] game, so that

J(x,y, z∗)− δ ≤ V fb(x) = U fb(x) ≤ J(x,y∗, z) + δ, y, z ∈ H.

A pair (y∗, z∗) satisfying the above is said to be a δ-saddle point (for x).

Theorem 1.2. Let Assumption 1.1 hold. Then V fb = U fb = V = U = u on Ḡ. Moreover, fix
x ∈ Ḡ and a positive sequence δn → 0. Then, for each n, one can choose cn and dn in (0,∞),
such that, with

yn = (p̄, cn), zn = (−p̄, dn),

(yn, zn) is a δn-saddle point. As a consequence, for each n, the corresponding process Xn is
equal to the solution X of

dXt = 2p̄(Xt)dWt, X0 = x. (1.12)
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We end this section with a discussion on the possibility to extend our results to C1 solutions,
based on the following.

Problem 1.1. Let u ∈ C1(Ḡ) be a viscosity solution to ∆∞ = h on a bounded, smooth domain
G ⊂ Rm, where h is continuous, and Du 6= 0 in Ḡ. Does there exists a sequence, un, of C2

functions converging to u in W 1,∞, such that ∆∞un → h uniformly in G?

This is closely related to a problem posed in [8] (Section 8, problem (4)), and solved by Yu
[13]: Let u : U → R be Lipschitz, let h1, h2 : U → R be continuous on an open set U ⊂ Rm,
and assume that ∆∞u = h1 and ∆∞u = h2, both in the viscosity sense. Does it follow that
h1 = h2?

If Problem 1.1 is answered in the affirmative, it will be possible to extend Theorem 1.1 to
C1 solutions. Indeed, given a C1 solution to (1.1) with non-vanishing gradient, one can define a
sequence un of C2 approximations in W 1,∞, which would then satisfy, classically, −2∆∞ = hn

in G and un = gn on ∂G, where hn → h and gn → g uniformly. Our results yield SDE’s
of the form dXt = 2p̄n(Xt)dWt + 2rn(Xt)dt, where p̄n = Dun/‖Dun‖ and rn · pn = 0 as
limiting trajectories under a nearly optimal play for the game associated with (hn, gn). From
this paper’s technique, it is easy to deduce (using uniform estimates on the exit time such as
(2.15)) that a near optimal play for the (hn, gn) game is also near optimal for the original (h, g)
game. Since p̄n → p̄, and given r ∈ R one can find rn as above, converging to r, this would
yield the SDE dXt = p̄(Xt)dWt + 2r(Xt)dt as a limiting trajectory for the (h, g) game, thus
extending Theorem 1.1.

2. Proofs

The proofs of Theorem 1.1 and 1.2 appear in Subsections 2.1 and 2.2, respectively.

2.1. Near optimal play under the Elliott-Kalton SDG

In this subsection we prove Theorem 1.1 and so throughout this subsection the hypothesis of
Theorem 1.1 will be in force and will not be stated explicitly in statements of results.

Recall that q is defined in (1.3). Most of the subsection will be concerned with proving the
following special case of Theorem 1.1 in which r = q.

Theorem 2.1. Theorem 1.1 is valid in the special case where r = q.

The organization of this subsection is as follows. We begin by recalling the Bellman-Isaacs
form of (1.1), which is given in (2.4). Proposition 2.1 analyzes near maximizing and minimizing
variables in (2.4). Following the construction of a strategy-control pair (that is later slightly
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modified, in the proof of Theorem 2.1), Proposition 2.2 proves its near optimality. Proposition
2.3 shows that, under this pair, the coefficients of the state process converge to those of (1.2).
This result, along with Lemmas 2.2–2.4, is then used to prove weak convergence of the corre-
sponding processes and exit times, and these results are combined to establish Theorem 2.1.
The proofs of Propositions 2.1 and 2.3 appear near the end of the subsection. At the end of
the subsection, we prove Theorem 1.1.

For (a, c), (b, d) ∈ H, p ∈ Rm and S ∈ S(m) (the set of symmetric m×m matrices), let

φ(a, b, c, d; p, S) = −1
2
(a− b)′S(a− b)− (c + d)(a + b) · p, (2.1)

and denote
Λ+(p, S) = sup

(b,d)∈H
inf

(a,c)∈H
φ(a, b, c, d; p, S). (2.2)

It has been shown in [3] (see Proposition 5.1 therein) that for every p ∈ Rm, p 6= 0 and
S ∈ S(m), one has

Λ+(p, S) = Λ(p, S) := −2|p|−2p′Sp. (2.3)

Throughout, we denote

p(x) = Du(x), p̄(x) =
p(x)
|p(x)| , S(x) = D2u(x),

q(x) =
1

|p(x)|2 (D2u(x) Du(x)−∆∞u(x) Du(x))

and
ψ(x, y, z) = −h(x) + φ(a, b, c, d; p(x), S(x)), y = (a, c), z = (b, d).

Since u satisfies (1.1) in the classical sense, and since Λ+ = Λ, we have

sup
z∈H

inf
y∈H

ψ(x, y, z) = 0, x ∈ Ḡ. (2.4)

Identity (2.4) will be the basis for the construction of a δ-optimal play for the lower game.
To present the construction we first need the following result. Its proof appears at the end of
the subsection.

Proposition 2.1. For every δ ∈ (0,∞) there exist dδ ∈ (0,∞) and aδ : Ḡ → Sm−1 such that
the following holds.

i. For x ∈ Ḡ, let zδ(x) ≡ (bδ(x), dδ(x)) = (−p̄(x), dδ). Then

inf
y∈H

ψ(x, y, zδ(x)) = min
y∈Sm−1×{0}

ψ(x, y, zδ(x)) ∈ [−δ, 0]. (2.5)

Moreover, dδ →∞ as δ → 0.
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ii. With yδ(x) = (aδ(x), 0),

ψ(x, yδ(x), zδ(x)) ∈ [−δ, δ], x ∈ Ḡ. (2.6)

Moreover, aδ is Lipschitz in x for every δ. Finally,

aδ → p̄, uniformly, as δ → 0, (2.7)

and
dδ(aδ − p̄) → 2q, uniformly, as δ → 0. (2.8)

To define βx,δ ≡ βδ (the dependence on the initial condition is suppressed in some instances),
let Y = (Y 0,K) ∈ M , with Y 0 = (A,C), be given, and consider the equation

dX = (A− bδ(X))dW + (C + dδ(X))(A + bδ(X))ds, X0 = x (2.9)

where bδ(x) = −p̄(x), and dδ(x) = dδ. By the Lipschitz property of bδ, this equation has a
unique solution. This defines a process Zδ = (bδ(X), dδ(X)), hence a mapping, Y 7→ (Zδ, dδ) ∈
M , which is easily seen to be a strategy. This strategy will be denoted by βδ.

Next, consider the equation

dX = P δ(X)dW + Qδ(X)ds, X0 = x (2.10)

where
P δ(x) = aδ(x)− bδ(x) = aδ(x) + p̄(x),

Qδ(x) = (cδ(x) + dδ(x))(aδ(x) + bδ(x)) = dδ(aδ(x)− p̄(x)), cδ = 0.

Since the coefficients P δ, Qδ are Lipschitz, there is a unique solution to (2.10). Define Ȳ δ,x =
Ȳ δ = (aδ(X), cδ(X)). Clearly (Ȳ δ, 1) ∈ M and βδ(Ȳ δ, 1) = ((bδ(X), dδ), dδ).

Towards arguing that the strategy-control pair constructed above forms a nearly optimal
play, we shall use the following

Lemma 2.1. For every x ∈ Ḡ, Y, Z ∈ M , one has

u(x) = E
[
u(Xt∧τ ) +

∫ t∧τ

0
(ψ(Xs, Ys, Zs) + h(Xs))ds

]
, t ≥ 0, (2.11)

and, if E[τ ] < ∞, one has

J(x, Y, Z) = V (x)−E
[ ∫ τ

0
ψ(Xs, Ys, Zs)ds

]
, (2.12)

where X = X(x, Y, Z) and τ = τG(X).

Proof. The two identities are immediate consequences of Ito’s formula applied to the smooth
function u, the boundary condition u = g on ∂G, and the equality u = V .
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In what follows, let c0 < ∞ be a constant such that

|h(x)|+ |g(y)|+ |u(x)|+ |Du(x)|+ Lip(p̄) ≤ c0, x ∈ Ḡ, y ∈ ∂G. (2.13)

Denote h = infx∈G |h(x)|.
Proposition 2.2. Fix x ∈ Ḡ. There exist η, c ∈ (0,∞) such that for every δ ∈ (0, η),
(Ȳ x,δ, βx,δ) forms a cδ-optimal play for the initial condition x.

Proof. Fix Y = (Y 0,K) ∈ M with Y 0 = (A,C). Let X denote the unique solution of (2.9)
with this choice of (A,C) and let Zδ, dδ be as introduced above (2.10). Then βδ(Y ) = (Zδ, dδ).
By (2.5), for every s,

ψ(Xs, Y
0
s , Zδ

s ) = ψ(Xs, Y
0
s , zδ(Xs)) ≥ −δ. (2.14)

Let η = h/2. Consider first the case h > 0. For δ < η, we have by (2.11)

E[t ∧ τ ] ≤ c1 := 4h−1c0, (2.15)

and consequently E[τ ] ≤ c1, where τ = τx[Y, βδ]. Hence using (2.14) in (2.12),

Jx(Y, βδ) ≤ V (x) + δE[τ ] ≤ V (x) + c1δ. (2.16)

Since Y ∈ M is arbitrary, this shows that βδ is c1δ-optimal.

Consider now the case h < 0. Fix e ∈ Sm−1 and let (e, 1) = Ỹ ∈ M . It is easily checked
(see Lemma 3.1 of [3]) that infβ∈Γ Jx(Ỹ , β) > −∞. Thus infδ C(βδ) := c > −∞, where for
β ∈ Γ, C(β) = supY ∈M Jx(Y, β). Let Mδ = {Y ∈ M : Jx(Y, βδ) > c − 1}. Then C(β) =
supY ∈Mδ

Jx(Y, β). Note that for Y ∈ Mδ, τ = τx(Y, βδ) < ∞ a.s. and

c− 1 < Jx(Y, βδ) ≤ −hE[τ ] + c0.

Thus for the case h < 0 as well, βδ is c2δ-optimal, for some c2 ∈ (0,∞).

Recall that Ȳ δ
s = yδ(Xs), where X is the unique solution of (2.10) and note that

βδ((Ȳ δ, 1)) = (Zδ(X), dδ).

By (2.6),
ψ(Xs, y

δ(Xs), zδ(Xs)) ≤ δ. (2.17)

Observing that E[τ ] ≤ c1, where τ = τx(Ȳ δ, βδ), we have using (2.17) in (2.12),

Jx(Ȳ δ, βδ) ≥ V (x)− c1δ ≥ sup
Y ∈M

Jx(Y, βδ)− 2(c1 ∨ c2)δ, (2.18)

where the last inequality follows from the (c1 ∨ c2)δ-optimality of βδ. The result follows.

The proof of the following proposition is given towards the end of the subsection. Denote
by p∗ and q∗ the continuous, bounded extensions of p̄ and q to Rm, satisfying the hypotheses
of Theorem 2.1.
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Proposition 2.3. Let {δn}n≥1 be a sequence in R+ such that δn → 0 as n →∞. Then there
exists a sequence of (open) domains Gn−1 ⊂⊂ Gn ⊂ G, Gn ↑ G as n → ∞ and continuous,
uniformly bounded maps p∗n, q∗n from Rm to itself, p∗n → p∗, q∗n → q∗, uniformly on Rm, such
that p∗n = p̄n and q∗n = q̄n on Gn, where p̄n = 1

2(aδn + p̄) and q̄n = 1
2dδn(aδn − p̄).

Lemma 2.2. With notation as in Proposition 2.3, let X̄n, X̄ be solutions of

dX̄n = 2p∗n(X̄n)dW + 2q∗n(X̄n)dt, dX̄ = 2p∗(X̄)dW + 2q∗(X̄)dt,

respectively, starting from x, and given on suitable filtered probability spaces. Denote

τ̄(n, k) = τGk
(X̄n), τ̄(k) = τGk

(X̄), τ̄ = τG(X̄).

Then there exists a sequence {`n}n≥1, `n ↑ ∞ as n →∞, such that

(X̄n(· ∧ σ̄n), σ̄n) ⇒ (X̄(· ∧ τ̄), τ̄)

as a sequence of C([0,∞) : Ḡ)× [0,∞] -valued random variables, where σ̄n = τ̄(n, `n).

Proof. The coefficients p∗n and q∗n converge uniformly on Rm to p∗ and q∗, respectively, by
Proposition 2.3. Moreover, by assumption, weak uniqueness holds for solutions to the SDE
associated with (p∗, q∗), starting from x, for any x ∈ Rm. Thus Theorem 11.1.4 of [11] is in
force, and we can deduce that X̄n converges to X̄ in distribution, as n →∞.

We now assume without loss of generality that X̄n, X̄ are given on a common probability
space and X̄n → X̄, a.s., in C([0,∞)). For t > 0 let Et = {ω : τ̄(ω) ≤ t}. Fix ω ∈ Et. Given
k ∈ N, choose δ > 0 such that |y1 − y2| > δ for all y1 ∈ Gk, y2 ∈ ∂G. Let n0 = n0(δ, t, ω) be
such that, for all n ≥ n0, |X̄n − X̄|∗t < δ. Note that X̄(τ̄(ω)) ∈ ∂G and so X̄n(τ̄(ω)) /∈ Gk. In
particular, τ̄(n, k)(ω) ≤ τ̄(ω). Letting n → ∞, we get lim supn→∞ τ̄(n, k) ≤ τ̄ , for all ω ∈ Et.
Since t > 0 is arbitrary, we have that for every k ∈ N, lim supn→∞ τ̄(n, k) ≤ τ̄ a.s. Using lower
semi-continuity property of exit times we then have a.s.,

τ̄(k) ≤ lim inf
n→∞ τ̄(n, k) ≤ lim sup

n→∞
τ̄(n, k) ≤ τ̄ .

Also note that τ̄(k) → τ̄ a.s., as k →∞.

Let F = {τ̄ < ∞}. In what follows, for an event E, we will write P (EF ) as P F (E). P F c is
defined similarly. From the above display we have that for every ε > 0

lim sup
k→∞

lim sup
n→∞

P F (|τ̄(n, k)− τ̄ | > ε) = 0.

We can then find a sequence {ε(k)}k≥1, ε(k) ∈ (0,∞) such that ε(k) ↓ 0 as k →∞ and

lim sup
k→∞

lim sup
n→∞

P F (|τ̄(n, k)− τ̄ | > ε(k)) = 0.

Finally, choose a sequence {`n}n≥1 such that `n ↑ ∞ as n →∞ and

lim
n→∞P F (|τ̄(n, `n)− τ̄ | > ε(`n)) = 0.
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In a similar fashion, by choosing a further subsequence if needed, we have that for every r > 0

lim
n→∞P F c(τ̄(n, `n) ≤ r) = 0.

Combining the above displays we have σ̄n = τ̄(n, `n) → τ̄ in probability as n →∞. The result
follows.

Lemma 2.3. Let Xn be the (pathwise) unique solution of (2.10) with δ = δn (stopped when
the boundary is reached). Let (Gn, p∗n, q∗n)n≥1, p∗, q∗ be as in Proposition 2.3 and {`n}n≥1 be as
in Lemma 2.2. Let X solve (1.2) with initial condition x. Then

(Xn(· ∧ ηn), ηn) ⇒ (X(· ∧ τ), τ),

where ηn = τGn∧`n (Xn) and τ = τG(X).

Proof. Let X̄n, X̄ be as in Lemma 2.2. Then from Proposition 2.3 (X̄(· ∧ τ̄), τ̄) has the same
law as (X(· ∧ τ), τ) and (X̄n(· ∧ η̄n), η̄n) has the same law as (Xn(· ∧ ηn), ηn), where η̄n is
defined similarly to ηn by replacing Xn with X̄n. By lower semi-continuity of exit times,
lim infn τ̄(n, n) ≥ τ̄ a.s. The result now follows from Lemma 2.2 on noting that η̄n = τ̄(n, n)∧
σ̄n.

Lemma 2.4. Let X be a solution of (1.2) given on some filtered probability space, with X0 =
x ∈ Ḡ. Let τ = τG(X). Then E[τ ] < ∞ and

u(x) = E

[
g(Xτ ) +

∫ τ

0
h(Xs)ds

]
.

Proof. Applying Itô’s formula to u(X) and recalling that u is a classical solution of (1.1), we
obtain

u(x) = E
[
u(Xτ∧t) +

∫ τ∧t

0
h(Xs)ds

]
,

for every t > 0. The property E[τ ] < ∞ is now immediate on recalling that h is either positive
or negative, and bounded away from zero. The result follows on sending t →∞.

Proof of Theorem 2.1. We will only prove the statement concerning the lower game. The
proof for the upper game is analogous. Fix x ∈ Ḡ. Let {Xn, Gn, p∗n, q∗n, `n, ηn} be as in Lemma
2.3. Let (Ȳ n, βn) = (Ȳ x,δn , βx,δn) where, for δ > 0, (Ȳ x,δ, βx,δ) is as in Proposition 2.2. Note
that Xn = Xx(Ȳ n, βn). We assume, without loss of generality, that δn < h/2 for n ≥ 1. Then,
as in the proof of Proposition 2.2, we deduce that

E(ηn) ≤ E(τG(Xn)) ≤ 4h−1c0, (2.19)

where c0 was introduced in (2.13). From Lemma 3.2 of [3], there exist Ỹ n ∈ M and {δ1
n}n≥1,

δ1
n ↓ 0, such that Ỹ n

t∧ηn
= Ȳ n

t∧ηn
and

E{τ̃n − ηn |Fηn} ≤ δ1
n, E{|X̃n −Xn(ηn)|2∗|Fηn} ≤ δ1

n, (2.20)

where X̃n = Xx(Ỹ n, βn), τ̃n = τx(Ỹ n, βn) and |X̃n−Xn(ηn)|∗ = supt∈[ηn,τ̃n] |X̃n(t)−Xn(ηn)|.
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Recall that βn is cδn-optimal. We now show that Ỹ n is δ∗n-optimal for play against βn, for
some sequence δ∗n → 0. From Lemma 2.3 and (2.19) we have that

∣∣∣∣E
[ ∫ ηn

0
h(Xn(s))ds + V (Xn

ηn
)
]
−E

[ ∫ τ

0
h(X(s))ds + V (Xτ )

]∣∣∣∣ = δ2
n → 0, as n →∞.

From (2.20)
∣∣∣∣∣E

[ ∫ τ̃n

0
h(X̃n(s))ds + V (X̃n

τ̃n
)
]
−E

[ ∫ ηn

0
h(Xn(s))ds + V (Xn

ηn
)
]∣∣∣∣∣ = δ3

n → 0, as n →∞.

Setting δ∗n = δ2
n + δ3

n + cδn, we have on combining the above two displays

Jx(Ỹ n, βn) = E
[ ∫ τ̃n

0
h(X̃n

s )ds + g(X̃n(τ̃n))
]

≥ E
[ ∫ τ

0
h(Xs)ds + V (X(τ))

]
− (δ2

n + δ3
n)

= V (x)− (δ2
n + δ3

n)
≥ sup

Y ∈M
Jx(Y, βn)− δ∗n,

where the equality in the third line above follows from Lemma 2.4 and the last inequality is a
consequence of cδn-optimality of βn. Finally, from (2.20) sup0≤t<∞ |Xn(t∧ηn)−X̃n(t∧τ̃n)| → 0
and |ηn − τ̃n| → 0 in probability as n → ∞. Thus, from Lemma 2.3 (X̃n(· ∧ τ̃n), τ̃n) ⇒
(X(· ∧ τ), τ) and the result follows.

Proof of Proposition 2.3. For d ∈ N, let fn, f : Ḡ → Rd be uniformly bounded continuous
maps such that fn → f uniformly on Ḡ. Let F : Rm → Rd be a uniformly continuous bounded
extension of f . Consider a sequence {En} of (open) domains with En−1 ⊂⊂ En ⊂ G, En ↑ G
as n → ∞. We will show that there is a collection of uniformly bounded, continuous maps
{F k

n : n ≥ 1, k ≥ 1} such that F k
n agrees with fn on Ek and along some subsequence {kn}n≥1,

F kn
n → F , uniformly on Rm. The result will then follow, on setting F = (p∗, q∗), f = (p̄, q),

fn = (p̄n, q̄n)′, with Gn = Ekn .

Define
F̃n(x) = fn(x)1x∈Ḡ + F (x)1x∈Rm\Ḡ.

Let ψ be a C∞ function on Rd such that 0 ≤ ψ(x) ≤ 1, supp(ψ) ⊂ B1(0) and
∫
Rd ψ(x)dx = 1,

where Br(0) is the ball of radius r in Rm, centered at 0. Let ψk(x) = kmψ(kx). Define

F̄ k
n (x) =

∫

Rm
F̃n(x− y)ψk(y)dy, F̄ k(x) =

∫

Rm
F (x− y)ψk(y)dy, x ∈ Rm.

Let ρk ∈ C∞(Rm) be such that 0 ≤ ρk(x) ≤ 1 and

ρk(x) =





1 if x ∈ Ek

0 if x ∈ Gc.
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Define
F k

n (x) = ρk(x)fn(x) + (1− ρk(x))F̄ k
n (x), x ∈ Rm

and
F k(x) = ρk(x)F (x) + (1− ρk(x))F̄ k(x), x ∈ Rm.

Note that F k
n (x) = fn(x) and F k(x) = f(x) for x ∈ Ek and

F k
n (x)− F k(x) = ρk(x)(fn(x)− f(x)) + (1− ρk(x))(F̄ k

n (x)− F̄ k(x)), x ∈ Rm.

Also
sup

x∈Rm
sup
k≥1

|F̄ k
n (x)− F̄ k(x)| ≤ sup

x∈Ḡ

|fn(x)− f(x)| → 0, asn →∞.

Combining the above two displays

sup
x∈Rm

sup
k≥1

|F k
n (x)− F k(x)| → 0, as n →∞.

Next note that supx∈Rm |F̄ k(x)− F (x)| → 0, as k →∞ and therefore

sup
x∈Rm

|F k(x)− F (x)| → 0, as k →∞.

Using the above two displays, we can find a sequence {kn} such that F kn
n → F uniformly on

Rm. By construction F k
n agrees with fn on Ek. The result follows.

Proof of Proposition 2.1. We begin by constructing functions aδ for which all conclusions
of the proposition hold, save the Lipschitz property. We will then argue that one can find a
Lipschitz regularization of each aδ, for which all conclusions are still valid.

With b = b(x) = −p̄(x), the second term of (2.1) takes the form (c+d)(1−a· p̄(x))|p(x)| ≥ 0,
and therefore the infimum of ψ(x, (a, c), (b(x), d)), over c, is attained at c = 0. The function
a 7→ ψ(x, (a, 0), (−p̄(x), d)) is continuous, and thus the minimum over Sm−1 is attained. For
an arbitrary choice of dδ, we have by (2.4),

γδ(x) := min
y∈Sm−1×{0}

ψ(x, y, zδ(x)) ≤ 0. (2.21)

Later in the proof it is shown that for a suitable choice of dδ, γδ(x) ≥ −δ for all x ∈ Ḡ.

For each δ and x let

aδ(x) be a minimizer of a 7→ ψ(x, (a, 0), (−p̄(x), dδ)) over Sm−1. (2.22)

Write yδ(x) = (aδ(x), 0). From (2.21) γδ(x) = ψ(x, yδ(x), zδ(x)) ≤ 0.

We show now that for any choice of dδ such that dδ →∞ as δ → 0,

aδ(x) → p̄(x) as δ → 0, uniformly in x. (2.23)
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Assuming the contrary, there exists ε > 0 and, for every δ > 0, xδ ∈ Ḡ, such that

|aδ(xδ)− p̄(xδ)| > ε. (2.24)

However, because of the upper bound on γδ, it follows that

dδ(1− aδ(x) · p̄(x))|p(x)| ≤ c1,

for some constant c1 not depending on x and δ. This contradicts (2.24) and thus (2.23) follows.
Henceforth we will assume that dδ →∞ as δ → 0.

Since yδ is a minimizer, we have that ψ(x, yδ(x), zδ(x)) ≤ ψ(x, (p̄(x), 0), zδ(x)). Along with
the uniform convergence in (2.23), this implies

lim sup
δ→0

sup
x

dδ(1− aδ(x) · p̄(x))|p(x)| ≤ 0.

Consequently,
dδ(1− aδ(x) · p̄(x)) → 0 as δ → 0, uniformly in x. (2.25)

We next show that

Qδ(x) := dδ(aδ(x)− p̄(x)) → 2q(x) as δ → 0, uniformly in x. (2.26)

Denote by φ̃ the map a 7→ φ(a, b(x), 0, dδ; p(x), S(x)). By the Lagrange multipliers theorem,
every a ∈ Sm−1, which minimizes φ̃(a) satisfies Dφ̃(a) + λa = 0 for some λ ∈ R. Thus by
definition of aδ(x), suppressing the dependence on δ and x,

λa = S(a + p̄) + dp, (2.27)

λ = a′S(a + p̄) + da · p. (2.28)

Hence

Q = d(a− p̄) = da− dp

|p|
= da− a

|p|λ +
S(a + p̄)
|p|

= d(1− a · p̄)a− a

|p|a
′S(a + p̄) +

S(a + p̄)
|p| → −2p̄

|p| p̄
′Sp̄ +

2
|p|Sp̄ = 2q,

where the convergence is uniform, and we have used (2.23) and (2.25) on the last line. This
shows (2.26).

We now estimate γδ. Suppressing x and δ,

γ = ψ(x, y, z) = −h− 1
2
(a + p̄)′S(a + p̄)− d(a− p̄) · p.
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The second term converges uniformly to −2p̄′Sp̄ which equals h by (1.1), while the last term
converges to zero by (2.25). Consequently we may, and will, choose dδ to grow sufficiently fast
so that, for every δ ∈ (0, δ0),

inf
x

γδ(x) ≥ −δ

2
. (2.29)

We now show that, for δ < δ0 sufficiently small, aδ is continuous. The proof is based on
(2.27) and (2.28). We will suppress δ from notation unless needed.

For i = 1, 2 let xi ∈ Ḡ. Let pi = p(xi), and similarly define the quantities p̄i, Si, ai and λi,
i = 1, 2. Let ∆p = p1 − p2, and similarly define ∆p̄, ∆S, ∆a and ∆λ. By (2.27) and (2.28),

∆λa1 + λ2∆a = ∆S(a1 + p̄1) + S2(∆a + ∆p̄) + d∆p,

∆λ = ∆a′S1(a1 + p̄1) + a′2∆S(a1 + p̄1) + a′2S2(∆a + ∆p̄) + d∆a · p1 + da2 ·∆p.

Thus, with |∆| = max{|∆p|, |∆p̄|, |∆S|}, and with c1, c2 independent of δ,

|λ2||∆a| ≤ |∆λ|+ c1|∆|+ c1|∆a|+ d|∆|
≤ c2|∆|+ c2|∆a|+ d|∆a · p̄1| |p1|+ 2d|∆|.

By (2.28) and uniform convergence of a to p̄, one can find a constant c3 > 0 and a constant
δ1 ∈ (0, δ0), such that for all δ < δ1, one has λδ

2 > c3d
δ, dδ ∈ (4c2

c3
,∞), and

sup
x
|aδ(x)− p̄(x)| |p1(x)| ≤ c3/4.

Note that

|∆a · p̄1| ≤ 1
2
|∆a||a1 + a2 − 2p̄1| ≤ 1

2
|∆a||a1 + a2 − p̄1 − p̄2|+ |∆|.

Thus for all δ < δ1,
c3|∆a| ≤ c2

d
(|∆|+ |∆a|) +

c3

4
|∆a|+ c4|∆|.

Consequently, for all δ ≤ δ1, |∆a| ≤ 2
c3

(c3 + c4)|∆|. The continuity of aδ follows.

Finally, the functions aδ need not be Lipschitz in x. However, using a straightforward mol-
lification argument, given ε > 0, one can find a Lipschitz function aδ,ε, with values in Sm−1,
that is ε-close to aδ in the uniform topology. It is possible to then let ε depend on δ in such a
way that âδ := aδ,ε(δ) satisfy results analogous to (2.23), (2.25) and (2.26). Furthermore, using
(2.21) and (2.29), one can ensure that âδ satisfies (2.6). This completes the proof.

Proof of Theorem 1.1. Let r ∈ R be as in the statement of the theorem. By definition of
q (1.3), we have q · p = 0, and since r ∈ R, r · p = 0. With aδ be as in Proposition 2.1, let āδ

denote the projection of aδ + 2
dδ (r − q) onto Sm−1. Using (2.8) it is easy to see that

āδ = p̄ +
2r

dδ
+ o(

1
dδ

), (2.30)
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where the ‘o’ notation corresponds to uniform convergence as δ → 0. Let us show that the
conclusions of Proposition 2.1, analogous to (2.6), (2.7) and (2.8), continue to hold with aδ

replaced by āδ and q by r. That is, keeping the notation of that proposition, writing ȳδ(x) =
(āδ(x), 0), we claim that

ψ(x, ȳδ(x), zδ(x)) ∈ [−δ, δ], x ∈ Ḡ. (2.31)

āδ → p̄, uniformly, as δ → 0, (2.32)

and
dδ(āδ − p̄) → 2r, uniformly, as δ → 0. (2.33)

Indeed, using (2.30) and the fact r · p = 0 in the definition of ψ, we have ψ(x, ȳδ(x), zδ(x))−
ψ(x, yδ(x), zδ(x)) → 0 uniformly. Thus by (2.6), ψ(x, ȳδ(x), zδ(x)) → 0 uniformly, and (2.31)
holds up to re-parameterization. Next, (2.32) and (2.33) are immediate from (2.30).

Modifying definition of Ȳ δ (given below (2.10)) by replacing aδ by āδ, it is easily checked
that Proposition 2.2 holds. Proposition 2.3 and Lemmas 2.2 and 2.3 continue to hold when
definitions of q∗, p̄n, q̄n, p∗n, q∗n are modified by replacing aδ with āδ and q by r. Also note that
since r · p = 0, Lemma 2.4 holds when X is given as a solution of (1.4) rather than (1.2). With
these observations, the proof of Theorem 1.1 is completed exactly as that of Theorem 2.1.

2.2. Saddle point under the feedback control formulation

In this subsection we prove Theorem 1.2. Fix δ > 0 and x ∈ Ḡ. Let zδ ∈ H be as in Proposition
2.1(i). Let y = (a, c) ∈ H and let X̄ be the unique solution of

dX̄ = P̄ (X̄)dW + Q̄(X̄)ds, X̄0 = x,

where P̄ = a − bδ = a + p̄ and Q̄ = (c + dδ)(a + bδ) = (c + dδ)(a − p̄). Let Ȳ = (a(X̄), c(X̄))
and S = supx∈Ḡ c(x). Then Y = (Ȳ , S) ∈ M and from (2.16)

J(x,y, zδ) ≤ V (x) + c1δ.

Thus
U fb(x) ≤ sup

y∈H
J(x,y, zδ) ≤ V (x) + c1δ (2.34)

and consequently U fb ≤ V .

In a manner analogous to the proof of Proposition 2.1, starting with ãδ = p̄, one can find
c̃δ ∈ (0,∞) such that for some c2 ∈ (0,∞) and all z = (b, d) ∈ H, J(x,yδ, z) ≥ U(x) − c2δ,
where yδ = (ãδ, c̃δ). Consequently

V fb(x) ≥ inf
z∈H

J(x,yδ, z) ≥ U(x)− c2δ. (2.35)

This shows V fb ≥ U . Since V fb ≤ U fb and U = V = u, we have the first assertion in the
Theorem. Finally combining (2.34) and (2.35), we have for all δ sufficiently small and all
(y, z) ∈ H2

J(x,y, zδ)− c1δ ≤ V (x) = U(x) ≤ J(x,yδ, z) + c2δ.
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The result follows.

Acknowlegement. We are grateful to Professor W. H. Fleming for suggesting Theorem 1.2,
and for other invaluable comments. We also thank an anonymous referee for a helpful remark,
that has lead to the current form of Problem 1.1.

References

[1] G. Aronsson. Extension of functions satisfying Lipschitz conditions. Ark. Mat. 6, 551–561
(1967)

[2] G. Aronsson. A mathematical model in sand mechanics: presentation and analysis. SIAM
J. Appl. Math., 22 (1972), 437-458

[3] R. Atar and A. Budhiraja. A stochastic differential game for the inhomogeneous ∞-
Laplace equation. Ann. Prob., to appear.

[4] E. N. Barron, L. C. Evans and R. Jensen. The infinity Laplacian, Aronsson’s equation
and their generalizations. Trans. of the AMS, 360(1):77–101, 2008.

[5] L. C. Evans and O. Savin. C1,α regularity for infinity harmonic functions in two dimen-
sions. Calc. Var., 32:325–347, 2008.

[6] R. Jensen. Uniqueness of Lipschitz extensions: Minimizing the sup norm of the gradient.
Arch. Rational Mech. Anal., 123(1):5174, 1993.

[7] R. V. Kohn and S. Serfaty. A deterministic-control-based approach to motion by curvature.
Comm. Pure Appl. Math., 59(3):344–407, 2006.

[8] Y. Peres, O. Schramm, S. Sheffield and D. B. Wilson. Tug-of-war and the infinity Lapla-
cian. Jour. AMS, 22(1):167–210, 2008.

[9] O.Savin. C1 regularity for infinity harmonic functions in two dimensions. Arch. Ratl. Mech.
Anal., 176:351–361, 2005.

[10] H. M. Soner and N. Touzi. A stochastic representation for mean curvature type geometric
flows. Ann. Probab. 31 (2003), no. 3, 1145–1165

[11] D. W. Stroock and S. R. S. Varadhan. Multidimensional Diffusion Processes. Springer-
Verlag, Berlin, 2006

[12] A. Swiech. Another approach to the existence of value functions of stochastic differential
games. J. Math. Anal. Appl. 204 (1996), no. 3, 884–897

[13] Y. Yu. Uniqueness of values of Aronsson operators and running costs in “tug-of-war”
games. Annales de l’Institut Henri Poincare, Non Linear Analysis Volume 26, Issue 4,
July-August 2009, Pages 1299–1308

Department of Electrical Engineering
Technion–Israel Institute of Technology
Haifa 32000, Israel

Department of Statistics and Operations Research
University of North Carolina
Chapel Hill, NC 27599, USA


