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Abstract

We study a single-server Markovian queueing model with N customer classes in which
priority is given to the shortest queue. Under a critical load condition, we establish the
diffusion limit of the nominal workload and queue length processes in the form of a Walsh
Brownian motion (WBM) living in the union of the N nonnegative coordinate axes in
RN and a linear transformation thereof. This reveals the following asymptotic behavior.
Each time that queues begin to build starting from an empty system, one of them becomes
dominant in the sense that it contains nearly all the workload in the system, and it remains
so until the system becomes (nearly) empty again. The radial part of the WBM, given as a
reflected Brownian motion (RBM) on the half-line, captures the total workload asymptotics,
whereas its angular distribution expresses how likely it is for each class to become dominant
on excursions.

As a heavy traffic result it is nonstandard in three ways: (i) In the terminology of
Harrison [12] it is unconventional, in that the limit is not an RBM. (ii) It does not constitute
an invariance principle, in that the limit law (specifically, the angular distribution) is not
determined solely by the first two moments of the data, and is sensitive even to tie breaking
rules. (iii) The proof method does not fully characterize the limit law (specifically, it gives
no information on the angular distribution).

AMS subject classification: 60F05, 93E03, 60K25, 60J65, 60J70

Keywords: Serve the shortest queue, heavy traffic, diffusion limits, Walsh Brownian
motion

1 Introduction

We consider a multiclass single-server queueing system operating under serve the shortest
queue (SSQ) (also referred to in the literature as shortest queue first) regime, where service is
offered to the customer class in which the queue is shortest. The practical significance of this
policy has been recognized [19, 20, 6, 5, 3, 8, 9, 10], and analytic results have been obtained
[8, 9, 10, 6]. Briefly, our probabilistic assumptions are that both arrival and potential service
processes are Poisson, which makes the model Markovian, and that arrival and service rates
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are class-dependent. The diffusion scale behavior of the model in heavy traffic has not been
studied before. The main result of this paper addresses the N -dimensional nominal workload
(a term adopted from [21], expressing conditional expectation of workload given the state) and
queue length processes, where N denotes the number of classes. It asserts that, under a critical
load condition, the diffusion scale versions of both these processes converge to processes living
in the set S0, which consists of the union of the N coordinate axes in RN+ . Specifically, the
rescaled nominal workload converges to a Walsh Brownian motion (WBM) on S0, and the
rescaled queue length converges to a certain diagonal transformation of the same process.

WBM was introduced by Walsh in [27] as a planar diffusion that has a singular behavior
at the origin. Away from the origin it evolves as a one-dimensional Brownian motion (BM)
along a ray connecting its position to the origin, and its excursions into rays emanating from
the origin follow a fixed angular distribution. Some early results on this process, including its
special case referred to as skew BM, where the state space consists of exactly two rays, are
[13, 23, 2, 26, 24, 1]. Intriguing aspects related to the natural filtration of this process were
addressed in [25]. Recently, vast extensions of this model have been proposed and thoroughly
studied. The reader is referred to [16] and the references therein for this development.

In the terminology of Harrison [12], an unconventional limit theorem for a queueing system
in heavy traffic is one for which the limit process is not given as a reflected Brownian motion
(RBM). Our result thus belongs to a family of unconventional heavy traffic limits, starting
from [14] and including the more recent [17] as well as several other results surveyed in [29]
and [17]. Moreover, our heavy traffic result is nonstandard in that it does not constitute an
invariance principle. That is, it is observed in simulations that the limit law (specifically, the
angular distribution of the limit WBM) is not determined solely by the first two moments
of the data. The simulations also indicate that it is sensitive even to tie breaking rules. A
third nonstandard aspect of the result is that the proof method does not provide an explicit
expression or a characterization of the limit law. Whereas the modulus is given as an RBM
with specified drift and diffusion coefficients, no information on the angular distribution is
available from the proof. In fact, it appears unlikely to the authors that an explicit expression
can be attained except under some special symmetry.

Some further details on the policy are as follows. In the literature, there are two variants,
distinguished by the interpretation given to the selection of jobs from the shortest queue: that
may refer to the one having least nominal workload or the one having least number of jobs.
We adopt here the convention of [8, 9, 10] and work with the former. However, for all other
purposes, the term queue length refers in this paper to job count. Next, the service rule is
assumed to follow a preemptive priority. Finally, the tie breaking rule is a part of the model
description. We allow for a rather general choice, by assuming that when the collection, K,
of classes having shortest queue consists of more than one class, the server’s effort is split
according to a specified probability measure pK supported on the set K.

Under static priority it is well known since Whitt’s result [28] that in heavy traffic, the
queue which has least priority is always dominant, where this term means that nearly all
the workload in the system is contained in this queue. Under SSQ, heuristically, one may
imagine that very soon after each time the system (nearly) empties, a competition takes place
among the queues, where the one that loses ends up with most workload and consequently
least priority. Thus it is reasonable, in view of the aforementioned result on static priority, to
expect that the losing class actually becomes dominant and remains so until again the system
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becomes empty (or nearly empty). This heuristic suggests, moreover, that the choice of the
class to become dominant during an excursion (the outcome of the competition, one may say)
is random, and is highly sensitive to the dynamics of the Markov process as the queues just
start to build. The result of this paper reveals an asymptotic behavior with exactly these
elements. One of the most significant and least obvious aspects of it is that the probabilities of
each class becoming dominant starting from an empty system do converge in the scaling limit.
Indeed, their limit is given by the WBM’s angular distribution.

An important feature of SSQ is that when two streams of arrivals have similar first order
characteristics but one is more variable than the other, or has greater tendency to exhibit
bursts, the policy tends to prioritize the former over the latter. This is due to the fact that
a burst of traffic is likely to cause a long queue, resulting in lower priority. For this reason,
SSQ has been referred to in the literature as ‘implicit service differentiation’ [20, 5, 6] and ‘self
prioritization’ [5]. Quoting from [9], “...priority is thus implicitly given to smooth flows over
data traffic... sending packets in bursts”. The policy has gained interest in technological uses,
specifically in the context of packet scheduling [20, 6, 5, 3, 8, 9, 10]. For example, in [20, 5, 3]
SSQ (referred to there as shortest queue first) is compared with first in first out and stochastic
fairness queueing, via experimental tests, and is argued to be the best candidate solution for
quality of service on ADSL internet access in various tests (web browsing, file download, peer-
to-peer file sharing, VoIP and video calls, audio streaming, and video streaming). It is also
found experimentally that the policy prioritizes TCP acknowledgment and delay- and loss-
sensitive applications (voice, audio and video streaming), which leads to lower loss counts and
delays. For further advantages and additional uses of this policy see [6] and the references
therein, as well as [19].

The policy has been theoretically analyzed in several papers. Guillemin and Simonian
[9] study the case of two buffers with Poisson arrivals and general service time distributions,
establishing functional equations for the Laplace transform of the workload processes at sta-
tionarity. They also specialize to the symmetric, exponential service time case, where they are
able to derive empty queue probabilities and tail behavior for the distribution of the workload.
In [10] the authors study the same features in the asymmetric case, again for N = 2 at station-
arity, where service times are exponentially distributed. The paper [6] studies instantaneous
throughput and buffer occupancy of N ≥ 2 long-lived TCP sources, using a deterministic fluid
model, under three per-flow scheduling disciplines: fair queuing, longest queue first, and short-
est queue first, assuming longest queue drop buffer management. They obtain closed form
expressions for the stationary throughput and the buffer occupancy.

We now make some comments about the proof. To this end we introduce X̂r(t), t ∈ [0,∞),
that are [0,∞)N -valued processes indexed by the scaling parameter r ∈ [1,∞). The component
X̂r
i (t) represents the nominal workload in buffer i at time t, rescaled diffusively; the precise

definition appears in §2. We start by treating the rescaled total nominal workload,
∑

i X̂
r
i (t),

and recall the well-known fact that it converges to an RBM under any work conserving policy,
to which SSQ is no exception. This result is required in a slightly extended form, stated in
Lemma 3.1, which asserts that convergence holds uniformly with respect to initial conditions.
The remainder of the proof has three main ingredients. The first is concerned with showing
that X̂r resides close to S0 as r gets large. The aforementioned term ‘dominant queue’ is
treated mathematically by considering tubes of width ε > 0 about each of the N positive
coordinate axes. In terms of these tubes, queue i is dominant at time t if X̂r

i (t) resides in
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an ε-tube about axis i, for arbitrarily small ε and large r. Thus the first main ingredient of
the proof is to show that the probability of exiting the collection of N tubes tends to zero as
r → ∞. This is the content of Lemma 3.2(i). Note that this element, along with the weak
convergence of the total nominal workload to an RBM, immediately provides the convergence
of the modulus process to the same RBM.

The second main ingredient is concerned with the angular behavior. It is to show that the
entrance law into tubes converges in the scaling limit. We consider first a special case of the
model, that we call the homogeneous case, in which the transition intensities of the underlying
Markov process corresponding to r > 1 are rescaled version of those for r = 1. This trick buys
us the ability to transform the double limit problem of entrance law into ε-tubes (involving
ε → 0 and r → ∞) to a single limit (involving r → ∞ only). The existence of a limit of
the entrance law is shown by arguing that, starting at the origin, the probabilities of entering
r−κ0-tubes form a Cauchy sequence, where κ0 > 0 is a suitable constant. The tools used
to establish this argument are the martingale property of the total nominal workload (that
also owes to homogeneity), and a strengthening of Lemma 3.2(i) which improves the o(1) exit
probability estimates to polynomial estimates. Relying on the homogeneous case, the general
case is then treated by means of a change of measure. The homogeneous case is stated in
Lemma 3.5. The double limit assertion is stated as Proposition 3.3, and the reduced version in
the form of a single limit is given in (3.43). The polynomial exit probability measure is proved
by means of construction of a Lyapunov function for the distance of the state from S0, that
may be interpreted as the nominal workload included in all but the dominant class. This tool
is stated in Lemma 3.4. Finally, the change of measure argument is provided within the proof
of Proposition 3.3 in §3.5.

The third main ingredient is the asymptotic independence of modulus and angle. This
relies, first and foremost, on the second ingredient alluded to above, as well as on strong
Markovity of the prelimit process and some estimates on the heat kernel associated with RBM
on the half-line. This asymptotic independence property is stated in (3.14). These ingredients
are finally combined in the proof of the main result, building on the characterization of WBM
via its semigroup [1], and using crucially strong Markovity of the prelimit.

Some earlier results on the convergence of discrete processes to WBM appear in [13] and
[11]. The paper [13] studies the case of a skew BM. The convergence result included within
this paper addresses a suitably defined random walk on the integers observed at the diffusion
scale, and establishes its weak convergence to a skew BM. The focus of [11] is the stochastic
flow associated to WBM, and for this model, discrete approximations to the flow are obtained.
In both these references, the pre-limit processes already live in a collection of N rays (N = 2
in the former, N ≥ 2, finite, in the latter), forming a symmetric random walk everywhere on
the state space except at the origin. Consequently, the three main issues alluded to above in
the description of our proof (estimates on exiting tubes, existence of a limit for the entrance
probability into tubes, asymptotic independence) are all trivial in the cases studied in [13] and
[11].

A general method was introduced in [18] for obtaining convergence of regenerative processes
from a certain notion of convergence of their excursions. The regenerative processes we treat do
fall into the category of those addressed in [18]. However, in the setting considered here, proving
the convergence of excursions amounts, roughly speaking, to establishing the three ingredients
alluded to above, and so it seems that as far as our result is concerned, this method does not
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provide a significant shortcut.
The paper is organized as follows. §2 presents the model and the main result. §3 is

devoted to the proof. First, in §3.1, the result is proved based on Lemma 3.1, Lemma 3.2 and
Proposition 3.3, stated in the beginning of the section. The convergence of the total nominal
workload to an RBM is proved in §3.2. §3.3 provides estimates on probabilities to exit the
tubes. §3.4 and §3.5 establish the limit result regarding the angular distribution, dealing with
the homogeneous case and the general case, respectively. Finally, some concluding remarks are
included in §4.

Notation

For x, y ∈ RN (N a positive integer), let x · y and ‖x‖ denote the usual scalar product and
`2 norm, respectively. Denote [N ] = {1, 2, . . . , N} and let {ei : i ∈ [N ]} denote the standard
basis in RN . Let 1 denote the N -dimensional vector whose all entries equal 1. For x ∈ RN and
A ⊂ RN , let dist(x,A) = inf{‖x−y‖ : y ∈ A}. Let B(x, r) = {y ∈ RN : ‖y−x‖ ≤ r} denote the
closed ball. Denote R+ = [0,∞). For f : R+ → RN and T ∈ R+, let ‖f‖T = supt∈[0,T ] ‖f(t)‖,
and, for θ > 0, wT (f, θ) = sup0≤s<u≤s+θ≤T ‖f(u) − f(s)‖. For a Polish space E, let CE [0, T ]
and DE [0, T ] denote the set of continuous and, respectively, càdlàg functions [0, T ] → E. Let
CE [0,∞) and DE [0,∞) denote the respective sets of functions [0,∞) → E. Endow DE [0,∞)
with the Skorohod J1 topology. A sequence of processes {Xn}n with sample paths in DE [0,∞)
is said to be C-tight if it is tight and every subsequential limit has, with probability 1, sample
paths in CE [0,∞). Write Xn ⇒ X for convergence in law. Let C0(E) denote the set of
continuous, compactly supported functions on E. For b ∈ R and σ ∈ (0,∞), a (b, σ)-BM
starting from x ∈ R is a 1-dimensional BM having drift b, infinitesimal covariance σ2 and
initial condition x. A (b, σ)-RBM starting from x ∈ R+ is an RBM in R+ with reflection at
zero, with the corresponding parameters and initial condition x. Denote byM1 the collection
of N -dimensional probability vectors, namely M1 = {x ∈ RN+ :

∑
i xi = 1}. Throughout, we

use the letter c to denote a positive deterministic constant whose value may change from one
appearance to another.

2 Setting and result

2.1 Serve-the-shortest-queue in heavy traffic

Consider a sequence of queueing models indexed by r ∈ [1,∞), defined on a probability space
(Ω,F ,P). A server operates to serve customers of N ≥ 2 classes. Each customer class has
a dedicated buffer with infinite room. Upon arrival, a class-i customer is queued in buffer
i ∈ [N ]. The process representing the number of customers in buffer i is called the ith queue
length and is denoted by Qr = (Qr1, . . . , Q

r
N ). The ZN+ -valued random variable (RV) Qr(0) =

(Qr1(0), . . . , QrN (0)) is referred to as the initial queue length. The arrivals are Poissonian and
the service times are exponential. To model these, let {Ari }i∈[N ], {Sri }i∈[N ] be a collection of
2N mutually independent Poisson processes, with right-continuous sample paths, independent
of the initial queue length, where Ari (resp., Sri ) has rate λri (resp., µri ). The processes Ari and
Sri represent the arrival and potential service processes for class i, respectively. More precisely,
Ari (t) is the number of class-i customers to arrive (to buffer i) until time t, and Sri (t) gives the
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number of class-i service completions by the time the server has dedicated t units of time to
class-i customers.

The process Xr = (Xr
1 , . . . , X

r
N ) defined by

Xr
i = (µri )

−1Qri (2.1)

is referred to as the nominal workload process. This term, borrowed from [21], expresses the
fact that Xr

i (t) represents the conditional expectation of the time it takes to serve the Qri (t)
customers present in buffer i at time t, conditioned on Qri (t) (assuming that the server works
exclusively on this class).

Within each class, only one customer may be served at a time (and for concreteness, we
may assume it is the oldest one present in the system), although service effort is sometimes split
among classes (see below). The priority rule among classes is to always serve the shortest queue
as measured in terms of nominal workload. To make this statement precise some additional
notation is required. We say that buffer i contains the shortest queue at time t, if

0 < Xr
i (t) = min{Xr

j (t) : Xr
j (t) > 0, j ∈ [N ]}.

When there is exactly one buffer containing the shortest queue, the server serves it at full
capacity (thus, service is preemptive). When there is more than one such buffer, the server’s
effort is split among the buffers containing the shortest queue according to predetermined
fractions in a head-of-the-line form. To model these fractions, it is assumed that for any
∅ 6= K ⊆ [N ] we are given a vector pK ∈ RK+, such that

∑
i∈K p

K
i = 1. When the collection of

shortest queues is K, the fraction of effort dedicated to class i is given by pKi . If we denote by
T ri (t) the total effort dedicated to class i by time t (measured in units of time), then it is given
by

T ri (t) =

∫ t

0
p
K(Xr(s))
i ds, (2.2)

where, for x ∈ RN+ , we denote

K(x) = {i ∈ [N ] : 0 < xi ≤ xj for all j ∈ [N ]}. (2.3)

The departure process Dr = (Dr
1, . . . , D

r
N ) consists of N counting processes, where for each i,

Dr
i gives the number of class-i job completions. It thus satisfies

Dr
i (t) = Sri (T ri (t)). (2.4)

Clearly, Qr satisfies the balance equation

Qri (t) = Qri (0) +Ari (t)−Dr
i (t). (2.5)

This completes the description of the model. Note that according to this description, the
queue length process Qr is a Markov process on ZN+ , whereas Xr is a Markov process on

Sru =
1

µr1
Z+ × · · · ×

1

µrN
Z+, (2.6)
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(where ‘u’ is mnemonic for unscaled). Thus an alternative, concise description of the model is
via the generator of the process Xr, denoted by Lru. It is given by

Lruf(x) =
∑
i∈[N ]

λri

(
f
(
x+

ei
µri

)
− f(x)

)
+
∑
i∈K(x)

p
K(x)
i µri

(
f
(
x− ei

µri

)
− f(x)

)
, (2.7)

for any bounded f : Sru → R. Note that K(0) = ∅ and that, by the assumptions on pK, pKi = 1
whenever K consists of the singleton {i}, i ∈ [N ].

The parameters λri and µri are assumed to scale like r2. The precise assumption is that
there exist constants λi, µi ∈ (0,∞) and λ̂i, µ̂i ∈ R, such that for i ∈ [N ], as r →∞,

r−1(λri − r2λi)→ λ̂i,

r−1(µri − r2µi)→ µ̂i.
(2.8)

The system is assumed to be critically loaded in the sense that the overall traffic intensity
equals 1. This is expressed as a condition on the first order parameters as follows,∑

i∈[N ]

λi
µi

= 1. (2.9)

Our main result regards rescaled versions of the nominal workload and queue length pro-
cesses, defined as

X̂r(t) = rXr(t), Q̂r(t) = r−1Qr(t), t ∈ R+. (2.10)

Both these processes are obtained from Qr via invertible transformations, and are therefore
Markov processes on discrete spaces. The one to which most of the analysis is devoted in this
paper is X̂r. Recalling (2.1), it follows that X̂r is a Markov process with state space

Sr =
r

µr1
Z+ × · · · ×

r

µrN
Z+. (2.11)

Specifically, the jump rates of both Xr and Q̂r are of order r2 and their jump sizes are of order
r−1, confirming that (2.10) gives the usual heavy traffic scaling.

2.2 Walsh Brownian motion

In [27], Walsh introduced a diffusion process in the plane that can informally be described
as follows. Let ξ(t) = (ρ(t), θ(t)), t ∈ R+, be the representation of the process in polar
coordinates. Then the radial part ρ(t) is an RBM, and on each excursion of ξ(t) away from
the origin, the angular part θ(t) remains fixed. Moreover, the constant value which θ(t) takes
on each such excursion has a fixed distribution, independent for the different excursions. The
precise definition that we shall work with is the one given by Barlow, Pitman and Yor [1], via
its semigroup. However, rather than working with a planar diffusion we work with what is
more natural for our purposes, namely a process in S := RN+ . Also, it is not necessary for our
purposes to consider general angular measures, and so the presentation below is restricted to
angular measures supported on the N vectors {ei : i ∈ [N ]}.
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Let b ∈ R, σ ∈ (0,∞), and q ∈ M1 be given. Let Π+
t , t ∈ R+ and Π0

t , t ∈ R+ denote the
semigroups of a (b, σ)-RBM and a (b, σ)-BM killed at 0, respectively. That is, for f ∈ C0(R+),

Π+
t f(x) = Ex[f(ρ(t))], Π0

t f(x) = Ex[f(ρ(t))1{t<ζ}], x ∈ R+,

where ρ(t) is a (b, σ)-RBM and ζ denotes its hitting time at zero, and, throughout the paper,
Px (resp., Ex) denotes the law of ρ with ρ(0) = x (resp., the corresponding expectation). Let
Sk denote the k-sphere. Use polar coordinates (ρ, θ) ∈ R+ × SN−1 to denote members x ∈ S
by setting ρ = ‖x‖ and θ = x/‖x‖ when x 6= 0, θ = e1 when x = 0. The semigroup Πt of a
(b, σ, q)-WBM is defined as follows. For f ∈ C0(S), Πt acts on f as

Πtf(0, θ) = Π+
t f̄(0),

Πtf(ρ, θ) = Π+
t f̄(ρ) +Π0

t (fθ − f̄)(ρ),
(2.12)

where we denote

f̄(ρ) =
∑
i∈[N ]

qif(ρ, ei), ρ ≥ 0,

fθ(ρ) = f(ρ, θ), ρ ≥ 0, θ ∈ SN−1.
(2.13)

It is shown in [1] that Πt is a Feller semigroup on C0(S) and that there exists a strong Markov
process {ξ(t)} with state space S and semigroup Πt, that has a.s.-continuous sample paths.
Moreover, this process has the properties alluded to above. More precisely, when written in
polar coordinates as ξ(t) = (ρ(t), θ(t)), the radial part ρ(t) is a (b, σ)-RBM and the values that
the angular part θ(t) takes are constant on the interval [0, ζ] (where the constant is determined
by the initial condition θ0) as well as on each excursion away from zero. These constant
values on the excursions away from zero are mutually independent with common distribution∑

i∈[N ] qiδei(dx), where δei is the Dirac measure at ei. In this paper we are interested in the
case where the initial condition is supported on S0 := ∪i∈[N ]{xei : x ∈ R+}. Note that in this
case, ξ(t) takes values in S0 for all t.

Throughout, let Pwbm
x and Ewbm

x denote the law of ξ for ξ(0) = x, and respective expecta-
tion. Then relations (2.12) can be expressed, for x = (ρ0, θ0), as

Ewbm
x [f(ξ(t))] = Eρ0 [f(ρ(t)θ0)1{t<ζ}] +

∑
i∈[N ]

qiE0[f(ρ(t)ei)1{t≥ζ}]. (2.14)

2.3 Main result

The linear relation between Xr and Qr, the convergence r−2µri → µi that follows from (2.8),
and the rescaling defined in (2.10) imply an asymptotic relation between X̂r and Q̂r which
one can express in terms of the N ×N matrix M̂ = diag(µi)i∈[N ]. For example, the statement

X̂r(0) ⇒ ξ(0) is equivalent to the statement Q̂r(0) ⇒ M̂ξ(0), as r → ∞, where, throughout,
the symbol ⇒ denotes convergence in law under P. Denote

b =
∑
i∈[N ]

1

µi

(
λ̂i −

λi
µi
µ̂i

)
, σ2 = 2

∑
i∈[N ]

λi
µ2i
.
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Theorem 2.1 There exists q ∈ M1 such that, if {ξ(t)} is a (b, σ, q)-WBM with initial distri-
bution supported on S0 and X̂r(0)⇒ ξ(0) then X̂r ⇒ ξ and Q̂r ⇒ M̂ξ, as r →∞.

Remark 2.2 (a) Whereas the coefficients b and σ of the process ξ are given explicitly, our
approach does not provide a construction or any explicit information of the angular distribution
q. However, this much can be said: q does not depend on the second order parameters (λ̂i, µ̂i)
(where we use standard terminology by which (λi, µi) and (λ̂i, µ̂i) are called first and second
order parameters, respectively, due to the fact that in most conventional queueing models, LLN
limits depend only on the former, whereas CLT limits are also affected by the latter). This
statement is a direct consequence of our results of §3.5.
(b) Initial conditions which are not asymptotically concentrated on S0 are excluded from our
treatment. For such initial conditions the asymptotic behavior is expected to follow a jump
to S0 at time zero, and then proceed as a WBM. However, the position to which the process
jumps is dictated by properties finer than the limiting initial distribution, to the extent that the
limit does not exist in general. For example, for N = 2, a sequence of initial conditions may
converge to a point on the diagonal in such a way that Q̂r1(0) > Q̂r2(0) + εr. It is not hard to
see that, due to even a small advantage εr > 0 to Q̂r2(0), the limiting process will initially jump
to a point on the e1 axis, provided that εr tends to zero sufficiently slowly. Interchanging the
roles of Q̂r1(0) and Q̂r2(0) will result in a jump to the e2 axis.

3 Proof of the main result

Below we present two central lemmas and one central proposition required to prove our main
result. The proof of the main result is presented next, in §3.1. The proofs of the lemmas and
the proposition are then provided in §3.2–3.5.

Some notation used throughout this section is as follows. We use
∑

i as shorthand notation
for
∑

i∈[N ]. For ϕ ∈ DR[0,∞), let Γ [ϕ] = (Γ1[ϕ], Γ2[ϕ]) be defined by

(Γ1[ϕ](t), Γ2[ϕ](t)) =
(
ϕ(t)− inf

s≤t
(ϕ(s) ∧ 0), − inf

s≤t
(ϕ(s) ∧ 0)

)
, t ∈ [0,∞). (3.1)

The Skorohod map Γ just introduced transforms a (b, σ)-BM starting from x ≥ 0, say, W , into
a (b, σ)-RBM starting from the same point, via R = Γ1[W ]. The process given by Γ2[W ] gives
the corresponding boundary term.

Let R̂r(t) = 1 · X̂r(t), t ∈ R+, and let ρ be a (b, σ)-RBM. In addition to the notation Pwbm
x

and Px introduced above, for each r and x ∈ Sr, we use Prx and Erx for the law of the Markov
process X̂r with X̂r(0) = x, and the respective expectation. Moreover, for each r and x ∈ Sr,
we use Pr

x and Er
x for the law of the tuple (Ar, Sr, Xr) with X̂r(0) = x, and the respective

expectation.
Let Sε = {x ∈ S : dist(x,S0) < ε}. Finally, denote ζr = inf{t ≥ 0 : R̂r(t) = 0}, and for

ε > 0,
τ r(ε) = inf{t ≥ 0 : R̂r(t) ≥ ε}. (3.2)

Both ζr and τ r(ε) are easily seen to be a.s. finite.

Lemma 3.1 i. The process R̂r is given as R̂r = Γ1[R̂
r(0) + Br], where Br decomposes as

Br = B̃r +Er. For each r, B̃r (resp., Er) is measurable w.r.t. σ{Ar(t), Sr(t), t ∈ R+} (resp.,
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σ{Ar(t), Sr(t), Xr(t), t ∈ R+}) and B̃r ⇒ B, where B is a (b, σ)-BM starting from zero,
whereas

lim
v↓0

lim sup
r→∞

sup
x∈Sr

Pr
x(‖Er‖T > v) = 0. (3.3)

As a consequence, if R̂r(0)⇒ ρ(0), then R̂r ⇒ ρ.
ii. For any t0 > 0,

lim
v↓0

lim inf
r→∞

inf
x∈Sr:1·x<v

Prx(ζr ≤ t0) = 1.

Throughout, let U0 denote the class of functions u : [1,∞)→ (0,∞) for which u(r)→ 0 as
r →∞.

Lemma 3.2 The processes X̂r are C-tight under P. Moreover, let νr denote the distribution
of X̂r(0). Then there exists u ∈ U0 such that for every T > 0 one has the following.
i. Prνr(X̂r(t) ∈ Su(r) for all t ∈ [0, T ])→ 1 as r →∞.

ii. inf Prx(X̂r(t) ∈ Su(r) for all t ∈ [ζr ∧ T, T ))→ 1 as r →∞, where the infimum extends over
x ∈ Sr ∩K, and K ⊂ S is a given compact set.
iii. For f ∈ C0(S), t ∈ R+, i ∈ [N ], and k ∈ (0,∞),

lim
δ↓0

lim sup
r→∞

sup
y∈Sr,x∈[0,k]:‖y−xei‖<δ

∣∣∣Ery[f(X̂r(t))1{t<ζr}]− Ex[f(ρ(t)ei)1{t<ζ}]
∣∣∣ = 0,

where we recall that ζ = inf{t ≥ 0 : ρ(t) = 0}.

Proposition 3.3 There exist q ∈M1 and u ∈ U0 such that

lim
ε↓0

lim sup
r→∞

|Pr0(X̂r(τ r(ε)) ∈ B(εei, u(r))− qi| = 0, i ∈ [N ]. (3.4)

3.1 Proof of Theorem 2.1

Given ε > 0, define a sequence of hitting times as

ζr0 = inf{t ≥ 0 : R̂r(t) = 0},
τ rm = inf{t ≥ ζrm : R̂r(t) ≥ ε}, m = 0, 1, . . . (3.5)

ζrm+1 = inf{t ≥ τ rm : R̂r(t) = 0}, m = 0, 1, . . .

Let N r
t = sup{m : τ rm ≤ t}. When we need to emphasize the dependence on ε we write these

RVs as ζrm(ε) and τ rm(ε).
Let (ξ(t))t∈R+ be a (b, σ, q)-WBM and assume, without loss of generality, that ρ = 1 · ξ.

For this process we define an analogous sequence of hitting times by

ζ0 = inf{t ≥ 0 : ρ(t) = 0},
τm = inf{t ≥ ζm : ρ(t) ≥ ε}, m = 0, 1, . . .

ζm+1 = inf{t ≥ τm : ρ(t) = 0}, m = 0, 1, . . . ,

and set Nt = sup{m : τm ≤ t}.
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The weak convergence stated in Lemma 3.1(i) does not directly imply that of the hitting
times τ r(ε) of (3.2) to τ(ε) := inf{t ≥ 0 : ρ(t) ≥ ε} when both R̂r and ρ start at zero. However,
this convergence is clearly valid, as can be seen by using in addition the property of RBM that
τ(ε + δ) → τ(ε) in probability as δ ↓ 0. Moreover, under P, it is assumed in Theorem 2.1
that X̂r(0) converges to ξ(0) in distribution. An inductive use of this fact yields a similar
statement for the stopping times {τ rm}m. More precisely, for any fixed m, as r →∞, we have,
the following uniform convergence: for any compact set K ⊂ S and a function h ∈ C0(R+),

lim sup
δ↓0

lim sup
r→∞

sup
x∈K∩S0

sup
y∈Sr
‖x−y‖<δ

∣∣Ery[h(τ rm)]− E‖x‖[h(τm)]
∣∣ = 0. (3.6)

The proof of the main result is based on finite-dimensional convergence and C-tightness.
The key ingredient is showing that for any compact set K ⊂ S, t ∈ R+, and a function
f ∈ C0(S),

lim sup
δ↓0

lim sup
r→∞

sup
x∈K∩S0

sup
y∈Sr
‖x−y‖<δ

∣∣∣Ery[f(X̂r(t))]− Ewbm
x [f(ξ(t))]

∣∣∣ = 0. (3.7)

Before proving this statement we show, adapting the proof of Theorem 4.2.5 of [7], that it
implies the convergence of X̂r to ξ for finite-dimensional marginals. That is, for every x ∈ S0,
{xr}r, xr ∈ Sr that converges to x, m ≥ 1, 0 ≤ t1 < · · · < tm, and functions h1, . . . , hm ∈ C0(S),
one has

lim
r→∞

Erxr [h1(X̂r(t1)) · · ·hm(X̂r(tm))] = Ewbm
x [h1(ξ(t1)) · · ·hm(ξ(tm))]. (3.8)

We argue by induction over m. The base case follows from (3.7). Next, assume that (3.8)
holds for m. Denote by Πr

t the semigroup corresponding to {X̂r(t)}. Then by Lemma 3.2(i),
there exists u ∈ U0, such that

Erxr [h1(X̂r(t1)) · · ·hm(X̂r(tm)) · hm+1(X̂
r(tm+1))]

= Erxr [h1(X̂r(t1)) · · ·hm(X̂r(tm)) ·Πr
tm+1−tmhm+1(X̂

r(tm))]

= Erxr [h1(X̂r(t1)) · · ·hm(X̂r(tm)) ·Πr
tm+1−tmhm+1(X̂

r(tm))1{X̂r(tm)∈Su(r)}
] + or(1),

where here or(1) denotes a generic function of r that vanishes as r → ∞. From (3.7) and
the Feller property of Πt proved in [1], it follows that for h ∈ C0(S), supx∈Sr∩Su(r) |Π

r
t h(x) −

Πth(x)| → 0 as r →∞. It follows that the expression in the above display equals

Erxr [h1(X̂r(t1)) · · ·hm(X̂r(tm)) ·Πtm+1−tmhm+1(X̂
r(tm))1{X̂r(tm)∈Su(r)}

] + or(1)

= Erxr [h1(X̂r(t1)) · · ·hm(X̂r(tm)) ·Πtm+1−tmhm+1(X̂
r(tm))] + or(1). (3.9)

By the induction hypothesis, the above expression converges to

Ewbm
x [h1(ξ(t1)) · · ·hm(ξ(tm))Πtm+1−tmhm+1(ξ(tm))]

= Ewbm
x [h1(ξ(t1)) · · ·hm+1(ξ(tm+1))].
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This establishes (3.8). In view of the C-tightness of X̂r stated in Lemma 3.2, this gives the
main result X̂r ⇒ ξ.

The rest of the proof is devoted to showing that (3.7) holds. Fix f ∈ C0(S). It suffices to
prove the result for f(0) = 0. Moreover, arguing by approximation, we may, and will assume
that f is constant on a ball about the origin. Thus, there exists ε > 0 for which f(x) vanishes
for all x with 1 · x ≤ ε. We fix such ε, and let τ rm = τ rm(ε), and similarly let ζrm, τm and ζm be
defined in terms of the same value of ε.

Fix t > 0 and a compact set K ⊂ S0. For u ∈ U0, we will be concerned with x ∈ K and
yr ∈ Sr ∩ Su(r) such that ‖x − yr‖ < u(r). We call such a pair (x, (yr)r) a u-admissible pair.
In what follows we denote y = (yr). Since t and K are arbitrary, to prove (3.7), it suffices
to show that Eryr [f(X̂r(t))] → Ewbm

x [f(ξ(t))] uniformly over u-admissible pairs (x, y), for an
arbitrary u ∈ U0. Fix such a function u. Notice that the assertions in Lemma 3.2(i), (ii),
and Proposition 3.3 are all monotone in u in the sense that if they hold for some u ∈ U0 then
they also hold for a function that dominates u and vanishes at infinity. Hence, without loss of
generality, we may and will assume that Lemma 3.2(i), (ii), and Proposition 3.3 hold for the
function u that we have fixed.

On the intervals [ζrm, τ
r
m) one has R̂r(t) ≤ ε. As a consequence,

Eryr [f(X̂r(t))] = F 0,r
y + F ry ,

where

F 0,r
y := Eryr [f(X̂r(t))1{0≤t<ζr0}], F ry :=

∞∑
m=0

Eryr [f(X̂r(t))1{τrm≤t<ζrm+1}].

The above goal will be achieved once we show that, uniformly over u-admissible pairs,

F 0,r
y → Ex[f(ρ(t)θ)1{t<ζ0}] and F ry → Ex[f̄(ρ(t))1{t≥ζ0}], (3.10)

where we recall the definition of f̄ from (2.13), that θ = x/‖x‖ for x 6= 0 and θ = e1 for x = 0.
Note that the first convergence is stated in Lemma 3.2(iii). Thus in what follows we focus on
the term F ry . Denote

χrm = X̂r(τ rm).

Recall that the jumps of the (unscaled) queue length process Qr are of size 1. By the way the
scaled nominal workload process X̂r is defined, it follows that all the jumps of this process are
bounded by cr−1, for some positive constant c. As a consequence, one always has ε ≤ ‖χrm‖ ≤
ε+ cr−1. Denote Br

i = B(εei, u(r)). It follows from Lemma 3.2(ii) that

Pryr(for all m ≤ N r
t , χ

r
m ∈ ∪iBr

i )→ 1,

uniformly over u-admissible pairs. As a result,

F ry =
∑
i

∞∑
m=0

Eryr [f(X̂r(t))1{τrm≤t<ζrm+1}1{χrm∈Bri }] + or(1),

where here and in what follows, or(1) is a generic function of r, x and y, that converges to zero
as r →∞, uniformly over u-admissible pairs (x, y).
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Next we truncate the sum over m. The tail
∑

m>M can be estimated by ‖f‖∞Pryr(N r
t > M).

For a fixed initial condition x, the C-tightness of R̂r gives the tightness of the RVs N r
t . For

arbitrary initial conditions yr, the strong Markovity reduces the same question to that of
tightness of N r

t when starting at 0. Thus

F ry =
∑
i

M∑
m=0

Eryr [f(X̂r(t))1{τrm≤t<ζrm+1}1{χrm∈Bri }] + oM,r(1), (3.11)

where here and in what follows, oM,r(1) refers to any function g of (x, y, r,M) satisfying
limM→∞ lim supr→∞ sup(x,y) u-admissible |g(x, y, r,M)| = 0.

Our next step is to use the condition χrm ∈ Br
i included in the (i,m)-th term in (3.11), to

approximate the expression f(X̂r(t)) therein by f(R̂r(t)ei). Note carefully that it is possible
for the process to move from Br

i to Br
j , j 6= i, without exiting Su(r) or hitting the origin. Thus

we must argue that, given any distinct i, j ∈ [N ] and t > 0,

Pryr(there exists m ∈ {0, . . . ,M} such that

τ rm ≤ t < ζrm+1, χ
r
m ∈ Br

i , R̂
r(t) > ε, ‖X̂r(t)− R̂r(t)ej‖ ≤ u(r)) = or(1). (3.12)

The proof of this statement, which we now give, is based on the fact that in order for the
process to behave as indicated in (3.12) while remaining within Su(r), it must reach close to
the origin. Since we consider only finitely many m’s, it is sufficient to show that for every fixed
t,m, and j 6= i,

Pryr(τ rm ≤ t < ζrm+1, χ
r
m ∈ Br

i , R̂
r(t) > ε, ‖X̂r(t)− R̂r(t)ej‖ ≤ u(r)) = or(1). (3.13)

For every r ∈ [1,∞), m ∈ N, and j ∈ [N ] define

πrm = πrm[j] = inf{s ≥ τ rm : R̂r(s) > ε, ‖X̂r(s)− R̂r(s)ej‖ ≤ u(r)}.

The probability from (3.13) is bounded above by Pryr(τ rm ≤ t ≤ πrm < ζrm+1, χ
r
m ∈ Br

i ). Under
this event, if the process does not leave Su(r) between times τ rm and ζrm, then after time τ rm, it
must reach close to the origin and not hit the origin prior to reaching a small neighborhood of
εej . Therefore, the LHS of (3.13) is bounded by

Pryr(∃s ∈ [0, t], X̂r(s) /∈ Su(r)) + Pryr(φrm < πrm < ζrm+1),

where φrm = inf{s ≥ τ rm : R̂r(s) ≤ u(r)
√
N}. From Lemma 3.2(ii), the first term is or(1). For

every r, let {Frs } denote the filtration induced by {X̂r(t)}. Then for the second term, using
the strong Markov property,

Pryr(φrm < πrm < ζrm+1) = Eryr [Eryr [1{φrm<πrm<ζrm+1} | F
r
φrm

]]

= Eryr [ψrj (X̂r(φrm))],

where ψrj (z) = Erz[1{π̂r<ζr0}] and π̂r = inf{s ≥ 0 : R̂r(s) > ε, ‖X̂r(s) − R̂r(s)ej‖ ≤ u(r)}. It
remains to show that limr→∞ sup‖z‖≤cu(r) ψ

r
j (z) = 0, for c > 0 a constant. Now, ψrj (z) ≤

Erz[1{τ̂r<ζr0}], where τ̂ r = inf{s ≥ 0 : R̂r(s) ≥ ε}. The last term goes to zero, uniformly in
‖z‖ ≤ cu(r). This shows (3.12).
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Equipped with (3.12), we have from (3.11)

F ry =
∑
i

M∑
m=0

Eryr [f(X̂r(t))1{τrm≤t<ζrm+1}1{χrm∈Bri }1{‖X̂r(t)−R̂r(t)ei‖≤u(r)}] + oM,r(1).

Thus, using the uniform continuity of f and denoting fi(z) = f(zei), z ∈ R+,

F ry =
∑
i

M∑
m=0

Eryr [fi(R̂r(t))1{τrm≤t<ζrm+1}1{χrm∈Bri }1{‖X̂r(t)−R̂r(t)ei‖≤u(r)}] + oM,r(1)

=
∑
i

M∑
m=0

Eryr [fi(R̂r(t))1{τrm≤t<ζrm+1}1{χrm∈Bri }] + oM,r(1),

again using Lemma 3.2. The (i,m)-th term can be written as

Eryr [Eryr [fi(R̂r(t))1{τrm≤t<ζrm+1}|F
r
τrm

]1{χrm∈Bri }].

By strong Markovity, the conditional expectation above can be written as ϕri (τ
r
m, χ

r
m), where

ϕri (s, z) = Erz[fi(R̂r(t− s)1{ζr0>t−s}]1{s≤t}.

This gives

F ry =
∑
i

M∑
m=0

Eryr [ϕri (τ rm, χrm)1{χrm∈Bri }] + oM,r(1).

Define ϕi(s) = Eε[fi(ρt−s)1{ζ0>t−s}]1{s≤t}. Then by Lemma 3.2(iii) one has ϕri (s, z) = ϕi(s) +
or(1) for z ∈ Br

i . Hence

F ry =
∑
i

M∑
m=0

Eryr [ϕi(τ rm)1{χrm∈Bri }] + oM,r(1).

It will be shown below that, for fixed (i,m), τ rm and χrm are asymptotically independent, in
the sense that

Eryr [ϕi(τ rm)1{χrm∈Bri }] = Eryr [ϕi(τ rm)]qi + or(1). (3.14)

Hence

F ry =
∑
i

qi

M∑
m=0

Eryr [ϕi(τ rm)] + oM,r(1).

Using (3.6), and a similar argument based on strong Markovity,

F ry =
∑
i

qi

M∑
m=0

E‖x‖[ϕi(τm)] + oM,r(1)

=
∑
i

qi

M∑
m=0

E‖x‖[fi(ρ(t))1{τm≤t<ζm+1}] + oM,r(1)

=
∑
i

qiE‖x‖[fi(ρ(t))1{t≥ζ0}] + oM,r(1)

= E‖x‖[f̄(ρ(t))1{t≥ζ0}] + oM,r(1).
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Thus sending r →∞, then M →∞ gives the second statement in (3.10).
It remains to prove (3.14). Since ϕi is continuous on [0, t] and the law of τm has no atoms,

it suffices to prove that for every s ∈ [0, t] and (i,m),

Pryr(τ rm ≤ s, χrm ∈ Br
i )→ P‖x‖(τm ≤ s)qi, (3.15)

uniformly over u-admissible pairs (x, y). Toward showing (3.15), we argue that it suffices to
establish this assertion for y ≡ 0 and m = 0. Indeed,

Prz(τ rm ≤ s, χrm ∈ Br
i ) = Erz[Erz[τ rm ≤ s, χrm ∈ Br

i |Frζrm ]]

= Erz[ϕ̃r(ζrm)],

where we used the fact that ζrm < τ rm, and X̂r(ζrm) = 0, and denoted

ϕ̃r(s) = Pr0(τ r0 < t− s, X̂r(τ r0 ) ∈ Br
i ).

Similarly, Prz(τ rm ≤ s) = Erz[ϕ∗,r(ζrm)], ϕ∗,r(s) = Pr0(τ r0 < t − s) → P0(τ0 < t − s). Thus if
Pr0(τ r0 < t− s, X̂r(τ r0 ) ∈ Br

i )→ qiP0(τ0 < t− s) then we obtain

Pryr(τ rm ≤ s, χrm ∈ Br
i )− qiPryr(τ rm ≤ s)→ 0,

and since Pryr(τ rm ≤ s)→ P‖x‖(τm ≤ s) uniformly over u-admissible pairs (x, y), (3.15) follows.
To prove (3.15) for y ≡ 0 and m = 0, note that under Pr0, ζr0 = 0 and so τ r0 is a.s. equal to

τ r = τ r(ε) = inf{s ≥ 0 : R̂r(s) ≥ ε} (see (3.2)). Moreover, χr0 that has been defined as X̂r(τ r0 )
is a.s. equal to χr := X̂r(τ r). Hence we aim now at showing

Pr0(τ r ≤ s, χr ∈ Br
i )→ P0(τ ≤ s)qi. (3.16)

Without loss of generality, we take i = 1. In addition to the parameter ε, that has been
fixed, we introduce a new parameter, a ∈ (0, ε), that will play the role of the parameter ε in
Proposition 3.3. We introduce several pieces of notation associated with a in a way analogous
to those defined in terms of ε. Namely, Br,a

i = B(aei, u(r)), τ r,a = inf{s ≥ 0 : R̂r(s) ≥ a} and

χr,a = X̂r(τ r,a). In addition, we let νr,ai denote the probability measures supported on Br,a
i ,

given by Pr0(χr,a ∈ ·|χr,a ∈ B
r,a
i ).

Let
gr(z) = Prz(τ r < t, χr ∈ Br

1).

We analyze gr(0) by studying its relation to gr,ai :=
∫
gr(z)νr,ai (dz). First,

gr(0) = Er0[Er0[1{τr<t,χr∈Br1}|F
r
τr,a ]] = Er0[ψr(τ r,a, χr,a)], (3.17)

where
ψr(s, z) = Prz(τ r < t− s, χr ∈ Br

1).

Hence

gr(0) = Er0[ψr(0, χr,a)] + δra, (3.18)

where
|δra| ≤ Er0[|ψr(τ r,a, χr,a)− ψr(0, χr,a)|].

15



We denote by Ora(h(a)) (resp., ora(h(a))) any function g of the tuple (x, y, r, a) satisfying
lim supa↓0 lim supr→∞ sup(x,y) u-admissible h(a)−1|g(x, y, r, a)| < ∞ (resp., = 0). We argue that

δra = Ora(a
2). To this end, note that

0 ≤ ψr(0, z)− ψr(s, z) = Prz(τ r < t, χr ∈ Br
1)− Prz(τ r < t− s, χr ∈ Br

1)

≤ Prz(t− s < τ r < t).

Now, τ r ⇒ τ as t→∞, uniformly for z in B(0, ε/2). Moreover, for RBM, denoting the density
d
dθPη(τ ≤ θ) by l(η, θ) (where, as before, τ = τ(ε)), a uniform bound holds in the form

sup
η∈[0,ε/2],θ∈[t/2,∞)

l(η, θ) <∞. (3.19)

Indeed, an explicit eigenfunction expansion of the density l is given in [15]. Using equations
(3.15)–(3.19) of [15] one can directly obtain the bound supx∈[0,ε],t≥t0 l(x, t) < ∞ for any con-
stant t0 > 0. This gives (3.19). Using (3.19) for s ∈ [0, t/2] and the trivial bound 1 for
s ∈ [t/2, t] gives

sup
η∈[0,ε/2]

Pη(t− s < τ < t) ≤ cs,

for some constant c (which may depend on t), for all s ∈ [0, t]. In view of this, lim supr |δra| ≤
c lim supr Er0[τ r,a] ≤ ca2, where the last inequality is standard, and follows by Brownian scaling.

Going back to (3.18) and noting that ψr(0, z) = gr(z), we have gr(0) = Er0[gr(χr,a)]+Ora(a2).
Therefore, it follows from Lemma 3.2(ii) that the probability of having χr,a /∈ ∪iBr,a

i is or(1),
hence

gr(0) =
∑
i

Pr0(χr,a ∈ B
r,a
i )gr,ai +Ora(a

2)

=
∑
i

qr,ai gr,ai +Ora(a
2), (3.20)

where by Proposition 3.3, qr,ai := Pr0(χr,a ∈ B
r,a
i ) = qi + ora(1) (note that Br,a

i agrees with the
ball from Proposition 3.3).

Next consider initial condition νr,ai , for which we can write

gr,ai = Erνr,ai [gr(X̂r(0))] = Erνr,ai [ψ̂r(τ̃ r, X̂r(τ̃ r))],

where τ̃ r = inf{s ≥ 0 : R̂r(s) /∈ (0, ε)} and ψ̂r(s, z) = Prz(τ r < t− s, χr ∈ Br
1). Now,

ψ̂r(s, 0) = Pr0(τ r < t− s, χr ∈ Br
1),

and for every s that satisfies ρ(s) ≥ ε,

ψ̂r(s, z) = 1{s≤t}, for z ∈ Br
1 and ψ̂r(s, z) = 0, for z ∈ Br

i , i 6= 1.

Hence

gr,ai = Erνr,ai [1{R̂r(τ̃r)=0}ψ̂
r(τ̃ r, 0)] + Erνr,ai [1{R̂r(τ̃r)≥ε}ψ̂

r(τ̃ r, X̂r(τ̃ r))]

= Prνr,ai (R̂r(τ̃ r) = 0)ψ̂r(0, 0) + 1{i=1}Prνr,ai (R̂r(τ̃ r) ≥ ε, τ̃ r < t) + δ̂ra + or(1), (3.21)
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where
|δ̂ra| ≤ Erνr,ai [1{R̂r(τ̃r)=0}|ψ̂

r(τ̃ r, 0)− ψ̂r(0, 0)|],

and we used again the bound (3.12). To further bound δ̂ra, note that the argument provided
earlier for ψr can be used also for ψ̂r, and gives |δ̂ra| ≤ cErνr,ai [1{R̂r(τ̃r)=0}τ̃

r]. On the indicated

event, τ̃ r is bounded by the exit time of R̂r from the interval (0, 2a), the expectation of which
is Ora(a

2). Hence δ̂ra = Ora(a
2).

Next, for the RBM ρ denote analogously τ̃ = inf{s ≥ 0 : ρ(s) /∈ (0, ε)}. Denote

β1(a) = 1− Pa(ρ(τ̃) = 0) = Pa(ρ(τ̃) = ε), β2(a) = Pa(ρ(τ̃) = ε, τ̃ ≤ t).

Then Pr
νr,ai

(R̂r(τ̃ r) = 0) = 1 − β1(a) + or(1) for all i. Moreover, Pr
νr,ai

(R̂r(τ̃ r) ≥ ε, τ̃ r < t) =

β2(a) + or(1). Hence from (3.20) and (3.21) we obtain
gr(0) =

∑
i

(qi + ora(1))gr,ai +Ora(a
2),

gr,a1 = (1− β1(a) + or(1))gr(0) + β2(a) +Ora(a
2) + or(1),

gr,ai = (1− β1(a) + or(1))gr(0) +Ora(a
2) + or(1), i 6= 1.

Solving this system of equations gives

gr(0) =
(q1 + ora(1))β2(a) +Ora(a

2)

β1(a) + or(1)
.

Denote

Ga =
(q1 + oa(1))β2(a) +Oa(a

2)

β1(a)
.

In order to show that limr g
r(0) = q1P0(τ < t) it suffices to show that lima↓0Ga = q1P0(τ < t).

Since it is known for RBM (equivalently, for a 1-dimensional BM) that β1(a) > ca for some
constant c > 0 and all small a, it suffices to show that β2(a)/β1(a) → P0(τ < t) as a ↓ 0. To
this end, use strong Markovity to write

Pa(ρ(τ̃) = 0, τ ≤ t) = Ea[1{ρ(τ̃)=0}ϕ
#(τ̃ , ρ(τ̃))],

ϕ#(s, x) = Px(τ ≤ t− s) for x ∈ R+. Now, 0 ≤ ϕ#(0, 0)− ϕ#(s, 0) ≤ cs, and therefore

|Pa(τ ≤ t, ρ(τ̃) = 0)− P0(τ ≤ t)Pa(ρ(τ̃) = 0)| ≤ cEa[1{ρ(τ̃)=0}τ̃ ] ≤ ca2.

Hence

β2(a) = Pa(τ ≤ t)− Pa(τ ≤ t, ρ(τ̃) = 0)

= Pa(τ ≤ t)− P0(τ ≤ t)Pa(ρ(τ̃) = 0) +O(a2)

= P0(τ ≤ t)β1(a) + δ#(a) +O(a2),

where δ#(a) = Pa(τ ≤ t) − P0(τ ≤ t). If we show that δ#(a) = O(a2) then β2(a)/β1(a) →
P0(τ ≤ t) as a ↓ 0, and the proof is established.
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To show that δ#(a) = O(a2), let L denote the generator of the process ρ, and v(x, s) =

Px(τ > s) for x ∈ R+. Then L is given by σ2

2
d2

dx2
+ b ddx , with the Neumann boundary condition

at 0 and the Dirichlet boundary condition at ε, and v is a smooth function satisfying

∂sv = Lv, x ∈ (0, ε), s > 0,

∂xv(0, s) = v(ε, s) = 0, s > 0,

v(x, 0) = 1, x ∈ (0, ε).

In particular, it is a smooth function satisfying ∂xv(0, s) = 0, and therefore v(x, t) = v(0, t) +
O(x2), for t fixed and x ↓ 0. This shows that δ#(a) = O(a2). 2

3.2 The total nominal workload process

In this section we prove Lemma 3.1. Roughly stated, this lemma asserts that the total nominal
workload process converges at diffusion scale to an RBM. This is a well-understood fact for an
arbitrary non-idling policy. However, for completeness and since the statement of the lemma
involves uniform convergence, which is perhaps less standard, we provide a proof.

Proof of Lemma 3.1. i. We start the proof with some notation aimed at describing the scaled
nominal workload process in terms of scaled arrival and service processes. Let T̄i(t) = λi

µi
t, and

Âri (t) = r−1(Ari (t)− λri t), Ŝri (t) = r−1(Sri (t)− µri t),

Ŷ r
i (t) = µri r

−1
(
T̄i(t)− T ri (t)

)
, bri = r−1

(
λri −

λi
µi
µri

)
,

for t ∈ R+. Then by (2.5),

Q̂ri (t) = Q̂ri (0) + Âri (t)− Ŝri (T ri (t)) + bri t+ Ŷ r
i (t), t ∈ R+. (3.22)

Note by (2.1) and (2.10) that R̂r = 1 · X̂r =
∑

i
r2

µri
Q̂ri . If we denote

Br(t) =
∑
i

r2

µri
[Âri (t)− Ŝri (T ri (t)) + bri t],

U r(t) =
∑
i

r2

µri
Ŷ r
i (t) = r[t− 1 · T r(t)],

then we have the identity R̂r = Br + U r. Moreover, by its definition, R̂r takes values in R+.
Furthermore, by the non-idling property, the right derivative of 1 · T r at t assumes the value
1 if and only if the system is non-empty at this time, that is, R̂r(t) > 0 (it otherwise assumes
the value 0). Consequently,

∫∞
0 R̂r(t)dU r(t) = 0. These three properties imply

(R̂r, U r) = Γ [R̂r(0) +Br]. (3.23)

It follows from the expression (3.1) for Γ that for t > 0

|R̂r(t)− R̂r(0)| ≤ 2‖Br‖t. (3.24)
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Now, the bound T ri (t) ≤ t for all t gives ‖Ŝri ◦ T ri ‖T ≤ ‖Ŝri ‖T . The quantities r2/µri as well as
bri converge in view of (2.8). Hence ‖Br‖T ≤ c(‖Âr‖T + ‖Ŝr‖T + 1). Therefore,

‖R̂r − R̂r(0)‖T ≤ c(‖Âr‖T + ‖Ŝr‖T + 1).

By the functional central limit theorem for renewal processes (see Theorem 14.6 of [4]), (Âr, Ŝr)
converge to a BM with drift zero and diffusion matrix Ξ, where

Âr = (Âri )
N
i=1, Ŝr = (Ŝri )Ni=1, Ξ = diag(λ

1/2
1 , . . . , λ

1/2
N , µ

1/2
1 , . . . , µ

1/2
N ).

This implies that ‖Âr‖T + ‖Ŝr‖T is a tight sequence of RVs (for each fixed T ), and in view of
the above bound, so is ‖R̂r‖T .

By the discussion preceding Theorem 2.1, X̂r and Q̂r are asymptotically related via the
matrix M̂ . Appealing to (3.22) again and recalling that 1 · X̂r = R̂r, we have ‖Ŷ r‖T ≤
c(‖Âr‖T + ‖Ŝr‖T + 1), and we get the tightness of ‖Ŷ r‖T (uniformly in the initial state). In
view of the definition of Ŷ r, we obtain that for every T, v > 0,

lim sup
r→∞

sup
x∈Sr

Pr
x(‖T r − T̄‖T > v) = 0. (3.25)

Set

B̃r(t) =
∑
i

r2

µri
[Âri (t)− Ŝri (T̄i(t)) + bit], Er = Br − B̃r.

Notice that B̃r is measurable w.r.t. σ{Ar(t), Sr(t), t ∈ R+}. Now,

‖Er‖T ≤
∑
i

r2

µri
‖Ŝri ◦ T ri − Ŝri ◦ T̄i‖T ≤ c

∑
i

wT (Ŝri , θ
r),

where θt = ‖T r − T̄‖T . The C-tightness of Ŝr along with (3.25) give (3.3). Finally, the
convergence in law of (Âr, Ŝr) gives B̃r ⇒ B, where B is a (b, σ)-BM.

ii. Fix v, t0 > 0. For every x ∈ Sr with 1 · x < v, one has by the representation R̂r =
Γ1[R̂

r(0) +Br], noting that Br is measurable w.r.t. σ{Ar, Sr, Xr},

Prx(ζr ≤ t0) = Prx
(

inf
t∈[0,t0]

R̂r(t) = 0
)

= Pr
x

(
R̂r(0) + inf

t∈[0,t0]
Br(t) ≤ 0

)
≥ Pr

x

(
inf

t∈[0,t0]
Br(t) < −v

)
.

By part (i) of the lemma, specifically, the convergence of B̃r to B (indep of x) and the uniform
estimate (3.3) on Er, it follows that for every δ > 0 and all sufficiently large r and x ∈ Sr with
1 ·x ≤ v, the RHS of the above display is bounded below by P(inft∈[0,t0]B(t) < −2v)− δ. The
last expression does not depend on x and, as B is a BM starting at the origin, converges to
1− δ as v ↓ 0. Therefore

lim inf
δ↓0

lim inf
r→∞

inf
x∈Sr:1·x<v

Prx(ζr ≤ t0) ≥ 1− δ.

Taking δ ↓ 0 gives the result. 2
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3.3 Estimates on exiting the tubes

In this section we develop an estimate on the displacement of the prelimit process X̂r away
from S0. The main use of this estimate is in the argument provided in §3.4. In addition, the
statement constitutes a strong form of that of Lemma 3.2(i). Thus at the end of the section
we provide a proof of Lemma 3.2 based on this estimate.

The proof is based on a Lyapunov function technique. This function is constructed so
that it expresses the total nominal workload in all buffers save the one where queue length is
greatest. For a precise definition we need some notation. Recall from (2.3) the sets K(x), and
note that K(X̂r(t)) gives the set of shortest nonempty queues at time t. For x ∈ RN+ , let

M(x) = {i ∈ [N ] : xi ≥ xj for all j ∈ [N ]}.

Then M(X̂r) gives the set of longest queues. Let F : RN+ → R be given by

F (x) =
∑
i

xi −max
i
xi. (3.26)

Note that F is nonnegative and vanishes on the set S0 and only there.

Lemma 3.4 Given c0 > 0, κ0 ∈ (0, 1/2) and 0 < γ1 < γ2 <∞, there exist constants r0, c1 > 0
such that for every r > r0 and every initial state x ∈ Sr that satisfies F (x) ≤ γ1r−κ0,

Prx
(
‖F (X̂r(·))‖c0 log r > γ2r

−κ0
)
≤ r−c1 . (3.27)

Lemma 3.4 and the first item of Lemma 3.2 are similar, where the former is concerned with
long time intervals as well as rates of convergence. However, the latter is not an immediate
consequence of the former. We present their proofs together.

Proof of Lemma 3.4 and Lemma 3.2(i). For the proof of Lemma 3.4, fix c0, κ0, γ1 and
γ2 as in the statement of the lemma. Using the expression (2.7) for the generator of Xr write
the one for X̂r = rXr (see (2.10)), as

Lrf(x) =
∑
i

λri

(
f
(
x+

r

µri
ei

)
− f(x)

)
+
∑
i∈K(x)

p
K(x)
i µri

(
f
(
x− r

µri
ei

)
− f(x)

)
, (3.28)

for bounded f : Sr → R.
Recall that c denotes a generic positive constant that does not depend on r. We begin by

showing that there exists a constant c such that for all r sufficiently large,

LrF (x) < −cr for all x such that F (x) > 0. (3.29)

To this end, note that the first term on the RHS of (3.28), upon substituting F for f , equals∑
i

λri

( r
µri

+ max{x1, . . . , xN} −max{x1, . . . , xi−1, xi + r/µri , xi+1, . . . , xN}
)

≤ r
∑

i∈[N ]\M(x)

λri
µri
.

20



The inequality above is valid since for i ∈ M(x) the i-th term in the sum is zero, and for
i /∈M(x),

max{x1, . . . , xN} ≤ max{x1, . . . , xi−1, xi + r/µri , xi+1 . . . , xN}.

The second term on the RHS of (3.28) (with f = F ) can be expressed as∑
i∈K(x)

p
K(x)
i µri

(
− r

µri
+ max{x1, . . . , xN}−max{x1, . . . , xi−1, xi− r/µri , xi+1, . . . , xN}

)
. (3.30)

We argue that for i ∈ K(x),

max{x1, . . . , xN} = max{x1, . . . , xi−1, xi − r/µri , xi+1 . . . , xN}.

If K(x) = M(x) = {xj} for some j ∈ [N ] then F (x) = 0. Therefore, if F (x) > 0 then either
K(x) 6=M(x) or K(x) =M(x) and K(x) contains more than one element. In both cases, for
every i ∈ K(x) there is j ∈ M(x), different from i, such that both maxima above equal xj .
This shows that the expression in (3.30) equals −r. Combining this with the bound on the
first term, and recalling that λri /µ

r
i is asymptotic to λi/µi, and that the latter fractions sum

to 1, shows (3.29).
We analyze the event Ωr := {‖F (X̂r(·))‖c0 log r > γ2r

−κ0} under Prx for x such that F (x) ≤
γ1r
−κ0 . Recall that the jump sizes of X̂r are at the scale of r−1; as a result, the same is true

for the process F (X̂r(·)). Since κ0 < 1/2, r−κ0 is at a larger scale than these jumps. Hence
there exist random times 0 ≤ θr1 < θr2 ≤ c0 log r such that Prx-a.s. on Ωr,

F (X̂r(θr1)) ≤ γ1r−κ0 , F (X̂r(θr2)) ≥ γ2r−κ0 , and 0 < F (X̂r(t)) ≤ γ2r−κ0 , t ∈ [θr1, θ
r
2).

(3.31)

The process

M r(t) = F (X̂r(t))− F (x)−
∫ t

0
LrF (X̂r(s))ds, t ∈ R+, (3.32)

is a local martingale. From (3.29) and (3.31), denoting δ = γ2 − γ1 > 0, one has

M r(θr2)−M r(θr1) ≥ cr(θr2 − θr1) + δr−κ0 . (3.33)

Fix a constant d ∈ (2κ0, 1) and consider the events

Ωr
1 = {θr2 − θr1 ≤ r−d and (3.33) holds}, Ωr

2 = {θr2 − θr1 > r−d and (3.33) holds}.

Then Prx(Ωr) ≤ Prx(Ωr
1) + Prx(Ωr

2). We argue separately for the two events.

The event Ωr
1. Let intervals Irj be defined by Irj = [jr−d/2, (j+1)r−d/2] for j ∈ {0, 1, . . . , j1(r)},

where j1(r) = b2c0rd log rc. On Ωr
1 there must exist j and an interval J ⊂ Irj ∩ (θr1, θ

r
2) such

that
oscJM

r ≥ δr−κ0/3,
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where here and throughout, oscAf = supA f − infA f . As a result, oscIrjM
r ≥ δr−κ0/3.

Therefore, using the Burkholder-Davis-Gundy (BDG) inequality [22, Theorem 48] and denoting
by [M r]I the quadratic variation of M r over an interval I,

Prx(Ωr
1) ≤

j1(r)∑
j=0

Prx
(

oscIrjM
r ≥ δr−κ0

3

)
≤ Ck

j1(r)∑
j=0

(6rκ0

δ

)2k
Erx{[M r]kIrj }, (3.34)

where k is any number in [1/2,∞). The quadratic variation process [M r] has piecewise-constant
samples paths with jumps taking values in the set {(r/µr1)2, . . . , (r/µrN )2}. The number of
its jumps in an interval [s, t] is stochastically dominated by a Poisson RV with parameter
(t − s)

∑
i(µ

r
i + λri ). Since µri and λri scale like r2, [M r]Irj is stochastically dominated by

Kr = cr−2πr, where πr is a Poisson RV with parameter cr2−d. Consequently,

Erx{[M ir]kIrj } ≤ cr
−dk.

Therefore the r.h.s. of (3.34) is bounded above by crd−k(d−2κ0) log r (where c may depend on
k). Taking k > max{1/2, d/(d − 2κ0)} gives the bound Prx(Ωr

1) ≤ r−c, provided that r is
sufficiently large.

The event Ωr
2. Clearly,

Prx(Ωr
2) ≤ Prx(osc[0,c0 log r]M

r ≥ cr1−d).

Using again the BDG inequality (with k = 1/2) followed by a domination of the number of
jumps in terms of a Poisson RV with parameter c0r

2 log r, and the sizes of the jumps by r−2,
gives

Prx(Ωr
2) ≤ Prx(2‖M r‖c0 log r ≥ cr1−d) ≤ c

Erx {[M r]c0 log r}
r2(1−d)

≤ c log r

r2(1−d)
< r−c.

This completes the proof of Lemma 3.4.

In order to establish the proof of Lemma 3.2(i) we prove below the following stronger result
that also serves us in the proof of Lemma 3.2(iii): for every u ∈ U0 satisfying limr→∞ r(u(r))3 =
∞, one has

lim inf
r→∞

inf
x∈Sr∩Su(r)/2

Prx(X̂r(t) ∈ Su(r) for all t ∈ [0, T ]) = 1. (3.35)

This statement implies Lemma 3.2(i), since by the assumption on νr, there exists u ∈ U0, such
that νr(X̂r(0) ∈ Su(r)/2)→ 1; without loss of generality we may assume that limr→∞ r(u(r))3 =
∞.

We next show how the details of the above proof are modified in order to prove (3.35). Fix
an arbitrary u ∈ U0 that satisfies limr→∞ r(u(r))3 =∞. We claim that

lim sup
r→∞

sup
x∈Sr∩Su(r)/2

Prx
(
‖F (X̂r(·))‖T > u(r)

)
= 0.

Unlike in (3.27), we consider here a fixed horizon T , we do not provide a convergence rate, and
the polynomial tube widths are replaced by u(r).
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Recall (3.28), (3.29), and (3.32). We analyze the event Ω̄r := {‖F (X̂r(·))‖T > u(r)} under
Prx. Since ru(r)→∞ and the jump sizes of the process F (X̂r(·)) are at the scale of r−1, there
must exist random times 0 ≤ θ̄r1 < θ̄r2 ≤ T such that Prx-a.s. on Ω̄r,

F (X̂r(θ̄r1)) ≤ 1

2
u(r), F (X̂r(θ̄r2)) ≥ u(r), and 0 < F (X̂r(t)) ≤ u(r), t ∈ [θ̄r1, θ̄

r
2). (3.36)

From (3.29) and (3.36), one has

M r(θ̄r2)−M r(θ̄r1) ≥ cr(θ̄r2 − θ̄r1) +
1

2
u(r). (3.37)

Set u0(r) = (u(r))3 and consider the events

Ω̄r
1 = {θ̄r2 − θ̄r1 ≤ u0(r) and (3.37) holds}, Ω̄r

2 = {θ̄r2 − θ̄r1 > u0(r) and (3.37) holds}.

Then Prx(Ω̄r) ≤ Prx(Ω̄r
1) + Prx(Ω̄r

2). We argue separately for the two events.

The event Ω̄r
1. Let intervals Īrj be defined by

Īrj = [ju0(r)/2, (j + 1)u0(r)/2]

for j ∈ {0, 1, . . . , b2T/u0(r)c}. The same arguments given before with the choice of k = 2
in BDG inequality lead to the following sequence of inequalities and the uniform limit over
Sr ∩ Su(r)/2

Prx(Ωr
1) ≤

j1(r)∑
j=0

Prx
(

oscIrjM
r ≥ u(r)

6

)
≤ Ck

j1(r)∑
j=0

( 12

u(r)

)4
Erx{[M r]2Irj }

≤
j1(r)∑
j=0

( 12

u(r)

)4
(u0(r))

2 ≤ cu2(r)→ 0.

(3.38)

The event Ω̄r
2. Arguing as before, we obtain,

Prx(Ωr
2) ≤ Prx(2‖M r‖T ≥ cru0(r)) ≤ c

Erx {[M r]T }
(ru0(r))2

≤ c

(ru0(r))2
.

By our choice of the function u, the last expression converges to 0 as r → ∞, uniformly for
x ∈ Sr ∩ Su(r)/2. 2

Proof of Lemma 3.2 (continued). First, the assertion regarding C-tightness follows directly
from Lemma 3.1(i) and Lemma 3.2(i).

ii. The statement of this part follows from part (i) with initial condition 0 and strong Markovity.

iii. It is sufficient to show that for every u ∈ U0 satisfying limr→∞ r(u(r))3 =∞, one has

lim sup
r→∞

sup
y∈Sr,x∈[0,k]:‖y−xei‖<u(r)/2

∣∣∣Ery[f(X̂r(t))1{t<ζr}]− Ex[f(ρ(t)ei)1{t<ζ}]
∣∣∣ = 0, (3.39)
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We first show that for every such u and every ε > 0,

lim sup
r→∞

sup
y∈Sr,x∈[0,k]:‖y−xei‖<u(r)/2

Pry
(
ζr > t, R̂r(t) > ε, ‖X̂r(t)− X̂r

i (t)ei‖ > u(r)
)

= 0.

Indeed, in order for the process X̂r, starting inside the u(r)/2-tube around axis i, to exit the
u(r)-tube around the same axis by time t and reach cε away from the origin, it must either
escape Su(r) before t or pass through a cu(r)-neighborhood of the origin without hitting the
origin and then move through a different tube and cε away from the origin. The probabilities
of these two events converge to zero uniformly in the initial conditions; the first convergence
follows by (3.35). The second event can be expressed in terms of an atypical behavior of R̂r,
as a sequence of processes converging in law to an RBM.

The assertion above along with the uniform continuity of f and a further application of
(3.35), imply

lim sup
r→∞

sup
y∈Sr,x∈[0,k]:‖y−xei‖<u(r)/2

∣∣∣Ery[f(X̂r(t))1{t<ζr}]− Ery[f(R̂r(t)ei)1{t<ζr}]
∣∣∣ = 0.

Finally, the statement in Lemma 3.1(i), according to which R̂r ⇒ ρ holds with an error term
that converges to zero uniformly in the initial conditions, (3.39) follows, hence the result. 2

3.4 The small ball exit measure

This section and the next are devoted to the proof of Proposition 3.3. By assumption, the
parameters λri and µri scale like r2, as expressed in equation (2.8). The special case where, for
all r, λri = λir

2 and µri = µir
2 is referred to as the homogeneous case. Our strategy is to first

prove the lemma in the homogeneous case, where the processes X̂r can all be expressed as
scaled versions of a single process. This is the content of this section. In §3.5, the general case
is considered, and by appealing to a change of measure argument, Proposition 3.3 is proved.

Lemma 3.5 The statement of Proposition 3.3 holds in the homogeneous case, with u(r) =
r−κ0, for any κ0 ∈ (0, 1/2).

Proof. Let 2N mutually independent Poisson processes Ai, Si, be given, with intensities λi
and µi, respectively. Since by assumption µri = µir

2 and λri = λir
2, the tuple (Ari , S

r
i ) is equal

in law, for each r, to (Ai(r
2·), Si(r2·)), and without loss of generality we may, and will, assume

that Ari (t) = Ai(r
2t) and Sri (t) = Si(r

2t) for all r, i and t. Let now Q, X, T and D be defined
as the processes Q1, X1, T 1 and respectively X1 (that is, Q = Qr where one sets r = 1).
Then in particular, equations (2.1), (2.2) and (2.5) are satisfied by Q, X, T and D, and X is
a Markov process on S1u (see (2.6)).

Since for each r we have the aforementioned relation between (Ari , S
r
i ) and (Ai, Si), one

can also express (Qr, Xr, T r, Dr) as certain path transformations of (Q,X, T,D), for each r.
The most significant aspect of this in the proof is that the rescaled processes X̂r and R̂r

can be written as rescaled versions of a single process. Denote R = 1 · X. Then by (2.1),
Xi = (µi)

−1Qi, whereas Xr
i = (r2µi)

−1Qri . Hence Xr = r−2X(r2·), and thus by (2.10),

X̂r(t) = r−1X(r2t), R̂r(t) = r−1R(r2t). (3.40)
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The state space Sr for the Markov process X̂r is given in the case under consideration as
Sr = r−1S1u = (rµ1)

−1Z+ × · · · × (rµN )−1Z+.
For ε > 0, set

τ(ε) = inf{t ≥ 0 : R(t) ≥ ε}. (3.41)

Clearly we have the identity τ r(ε) = r−2τ(εr) (see (3.2)). Let κ0 be as in the statement of the
lemma, that is, κ0 ∈ (0, 12), and set κ = 1− κ0 ∈ (12 , 1). Denote

Br
i = B(rei, r

κ)

and qr = (qri )i, where
qri = P1

0(X(τ(r)) ∈ Br
i ),

where P1
x (with the corresponding expectation E1

x) stands for the law of X = X1 with X(0) = x.
Then

Pr0(X̂r(τ r(ε)) ∈ B(εei, r
−κ0)) = P1

0(X(τ(εr)) ∈ B(εrei, r
1−κ0)) (3.42)

≥ P1
0(X(τ(εr)) ∈ B(εrei, (εr)

1−κ0))

≥ P1
0(X(τ(εr)) ∈ Bεr

i )

= qεri .

Using the fact that the balls B(εei, r
−κ0) are disjoint for each ε and sufficiently large r, (3.4)

will follow once we show that

there exists q ∈M1 such that lim
r→∞

qr = q. (3.43)

Note that Proposition 3.3 asserts, moreover, that q does not depend on the choice of κ0. To
address this point, consider 0 < κ0 < κ′0 <

1
2 for which q and, respectively q′, satisfy (3.43).

Then the fact that the LHS of (3.42) is monotone decreasing in κ0 gives qi ≥ q′i for all i, and
since q and q′ are members of M1, this shows that q = q′. Hence the proof will be complete
once we show (3.43) for fixed κ0.

To this end, note that it suffices to show that there exist δ ∈ (0, 1) and K > 0 such that
for every k ∈ N, k ≥ K, one has

|qri − qmi | ≤ δk, for all i ∈ [N ] and r ∈ [2k, 2k+1], where m = 2k+2 (3.44)

and

lim
r→∞

∑
i

qri = 1. (3.45)

Indeed, if r and m are both within [2k, 2k+1] then (3.44) gives |qri − qmi | ≤ 2δk. As a result, for
arbitrary r < m, denoting a(`) = blog2(`)c,

|qri − qmi | ≤
a(m)∑
j=a(r)

2δj ≤ 2(1− δ)−1δa(r).
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F1 G1

G2

F2

G3

F3

0

1Figure 1: In this toy model, denoting transition probabilities by p(·, ·), the quantity maxi,j |p(Fi, 0)− p(Fj , 0)|
controls maxi |p(0, Fi)− P0(the process is absorbed at Gi)|.

This shows that, for fixed i, any sequence {qri }r is a Cauchy sequence as r → ∞. Along with
(3.45), we obtain that (3.43) holds.

In what follows, we prove (3.44) and (3.45). We let r ∈ [2k, 2k+1] and m = 2k+2, where k
is arbitrary, but fixed. Without loss of generality, the proof of (3.44) considers only i = 1.

To help explain the main idea and motivate a couple of technical tools, we first consider a
highly simplified model, illustrated in Figure 1. Consider a discrete time Markov process on
a finite set S that is star shaped. That is, S consists of 2N + 1 states, denoted by 0, Fi, Gi,
i ∈ [N ]. For each i, Fi communicates only with 0 and Gi. The state 0 communicates only
with the states Fi, while Gi are absorbing. Denoting transition probabilities by p(s, s′), we
have p(0, Fi) > 0, p(Fi, 0) > 0, p(Fi, Gi) > 0, and p(Gi, Gi) = 1, while all other transition
probabilities are zero. For s ∈ S, let p̄(s,Gi) denote the probability to get absorbed at Gi
starting from s. Then

p̄(0, G1) =
∑
i≥1

p(0, Fi)p̄(Fi, G1)

= p(0, F1)p(F1, G1) +
∑
i≥1

p(0, Fi)p(Fi, 0)p̄(0, G1).

From this one obtains
p̄(0, G1)

p(0, F1)
=

1− p(F1, 0)

1−
∑

i≥1 p(0, Fi)p(Fi, 0)
.

If the transition probabilities starting at Fi depend weakly on i, in the sense that for some
δ > 0 one has |p(Fi, 0)− p(F1, 0)| < δ for all i, and if in addition 1− p(F1, 0) > c > 0 for some
constant c, it follows that

|p̄(0, G1)− p(0, F1)| ≤ c′δ,

where c′ depends on c but not on δ. The relevance to our problem is as follows. Roughly speak-
ing, the states Fi and Gi represent the collections of states within Br

i and Bm
i , respectively,

and 0 represents the origin. The calculation above suggests that if the probability of reaching
0 before reaching Bm

i starting anywhere in Br
i depends weakly on i then the difference pri −pmi

is small.
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We now consider the process X and the stopping times τ(ε), and in addition let

ζ = inf{t ≥ 0 : X(t) = 0}.

We aim at showing there exist r0, c > 0 such that for every r > r0, one has

for every i ∈ [N ] and x ∈ Br
i ,
∣∣∣P1
x(ζ < τ(m))− m− r

m

∣∣∣ ≤ r−c, (3.46)

P1
0(r
−2τ(r) > t) ≤ e−ct, (3.47)

P1
0(X(τ(r)) /∈ ∪iBr

i ) ≤ r−c, (3.48)

for every i ∈ [N ] and x ∈ Br
i , P1

x(τ(m) < ζ, X(τ(m)) /∈ Bm
i ) ≤ r−c. (3.49)

For estimate (3.46), note that it follows from the identity R = 1 ·X, the expression (2.7) for
the generator of X (with λi and µi substituted for λri and µri ), and condition (2.9), that the
stopped process R(· ∧ ζ ∧ τ(m)) is a martingale. By this martingale property and the fact that
X lives on the grid S1u, there is a constant c such that

m− r − rκ − c
m+ c

≤ P1
x(ζ < τ(m)) ≤ m− r + rκ + c

m
.

Estimate (3.46) follows, using the fact that m ≥ 2r.
For inequality (3.47), the relation r−2τ(r) = τ r(1) gives P1

0(r
−2τ(r) > 1) = Pr0(‖R̂r‖1 < 1).

By Lemma 3.1, R̂r converges in law to an RBM ρ, and so Pr0(‖R̂r‖1 < 1)→ P0(‖ρ‖1 < 1) < 1.
Thus there exists γ ∈ (0, 1) such that for all r sufficiently large, P1

0(r
−2τ(r) > 1) ≤ γ. For

other initial conditions x the probability of this event under P1
x is even smaller, and therefore

is still bounded by γ. Markovity thus gives (3.47).
For estimate (3.48), fix c0 > 0 to be a constant c that satisfies (3.47). Recall the definition

of F from (3.26). Since X takes values in S1u, 1 ·X(τ(r)) must take a value within [r, r + c1],
for some constant c1 > 0. We claim that if x ∈ RN+ , 1 · x ∈ [r, r + c1] and x /∈ ∪iBr

i then
F (x) ≥ rκ/

√
2. To this end, assume, without loss of generality, that x1 = maxi xi. Since

x /∈ Br
1, we have (x1−r)2 +

∑N
i=2 x

2
i ≥ r2κ. Therefore, if r−rκ/

√
2 ≤ x1 ≤ r+c1, we have that

F (x)2 = (
∑N

i=2 xi)
2 ≥ r2κ/2 and hence F (x) ≥ rκ/

√
2. If on the other hand x1 < r − rκ/

√
2,

then using 1 · x ≥ r, we obtain again F (x) =
∑N

i=2 xi > rκ/
√

2.
As a result of the above claim, for all large r,

P1
0(X(τ(r)) /∈ ∪iBr

i ) ≤ P1
0(τ(r) > c0r

2 log r) + P1
0(‖F (X(·))‖c0r2 log r ≥ r

κ/
√

2). (3.50)

By (3.47), the first term above is bounded by r−c0 . Since F (X(0)) = 0, we have by Lemma
3.4, relation (3.40), and the relation κ = 1− κ0, that the second term is bounded by r−c.

For estimate (3.49), define

ν(m) = inf{t ≥ 0 : R(t) ≤ mκ}.

Fix i and consider x ∈ Br
i . Denote B0,m = B(0,mκ) ∩ S1u. Then a use of Strong Markovity

gives

P1
x(τ(m) < ζ,X(τ(m)) /∈ Bm

i ) ≤ P1
x(τ(m) < ν(m), X(τ(m)) /∈ Bm

i ) + max
z∈B0,m

P1
z(τ(m) < ζ).

(3.51)
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To bound the first term consider the event τ(m) < ν(m). If X(τ(m)) ∈ ∪j 6=iBm
j then

‖F (X(·))‖τ(m) > mκ holds, whereas if X(τ(m)) /∈ ∪jBm
j , then by the argument provided

in the previous paragraph we have ‖F (X(·))‖τ(m) ≥ mκ/
√

2. This implies that the first term
in (3.51) is bounded by

P1
x(τ(m) ∧ ν(m) > c0m

2 logm) + P1
x(‖F (X(·))‖c0m2 logm > mκ/

√
2).

This expression can be handled as the RHS of (3.50). Since x ∈ Br
i , ‖F (X(0))‖ ≤ rκ ≤ 1

2κm
κ.

Thus Lemma 3.4 is applicable with γ1 = 2−κ < γ2 = 1/
√

2. This gives the bound r−c on the
first term on the RHS of (3.51).

To bound the second term in (3.51) we again use the martingale property of R(·∧ζ∧τ(m)).
It gives

P1
z(τ(m) < ζ) ≤ mκ

m− 2mκ
.

Since 2r ≤ m ≤ 4r, we obtain that for sufficiently large r, the last term in (3.51) is bounded
above by r−c. This completes the proof of (3.46)–(3.49).

We now deduce (3.44) and (3.45) from (3.46)–(3.49). Identity (3.45) follows immediately
from (3.48). For x ∈ Sru (see (2.6)) denote

q(x, r,m) = P1
0(X(τ(r)) = x)P1

x(X(τ(m)) ∈ Bm
1 )

and Br,i = Br
i ∩ Sru. Then

qm1 =
∑

x∈Sru:x/∈∪i≥1B
r
i

q(x, r,m) +
∑
i>1

∑
x∈Br,i

q(x, r,m) +
∑
x∈Br,1

q(x, r,m) (3.52)

=: βr,m,1 + βr,m,2 + βr,m,3.

It follows from (3.48) that βr,m,1 ≤ r−c. Next, consider the term βr,m,2. Let i > 1 and x ∈ Br,i.
Then

P1
x(X(τ(m)) ∈ Bm

1 ) = P1
x(ζ < τ(m), X(ζ(m)) ∈ Bm

1 ) + P1
x(ζ(m) < ζ,X(τ(m)) ∈ Bm

1 ).

The first term above is equal to P1
x(ζ < τ(m))qm1 . By (3.49), the second term bounded by r−c.

Combining this with (3.46),

βr,m,2 =
∑
i>1

qri
m− r
m

qm1 + ε(r,m),

where here and in the remainder of this proof, ε(r,m) denotes a generic function of (r,m)
which staisfies |ε(r,m)| ≤ r−c for all large r.

As for βr,m,3, consider x ∈ Br
1. We have

P1
x(X(τ(m)) ∈ Bm

1 )

= P1
x(ζ < τ(m), X(τ(m)) ∈ Bm

1 ) + P1
x(τ(m) < ζ,X(τ(m)) ∈ Bm

1 )

= P1
x(ζ < τ(m))qm1 + P1

x(τ(m) < ζ)− P1
x(τ(m) < ζ,X(τ(m)) /∈ Bm

1 ).
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Using (3.49), the last term above is bounded, in absolute value, by r−c. Combined with (3.46),
this gives

βr,m,3 = qr1

(m− r
m

qm1 +
r

m

)
+ ε(r,m).

Combining the three estimates,

qm1 =

r∑
i=1

qri
m− r
m

qm1 + qr1
r

m
+ ε(r,m)

= (1− ε(r,m))
m− r
m

qm1 + qr1
r

m
+ ε(r,m),

where (3.48) is used. Hence, using m/r ≤ 4,

|qm1 − qr1| ≤
m

r
|ε(r,m)| ≤ cr−c.

This gives (3.44) and completes the proof of the lemma. 2

3.5 Relaxation of the homogeneity assumption

In this section we prove Proposition 3.3 based on Lemma 3.5, by means of a change of measure.
Thus the general setting, where λri and µri satisfy the hypotheses of Theorem 2.1, is in force.
Since the statement of Proposition 3.3 refers to Pr0, we may and will assume in this section
that the initial condition is Qr(0) = Xr(0) = 0 identically. Thus the only stochastic primitives
in the model are the processes (Ar, Sr). In particular, as follows from equations (2.1), (2.2),
(2.4), (2.5) and (2.10), the processes Xr(t), t ∈ [0, T ] and X̂r(t), t ∈ [0, T ] are determined by
(Ar(t), Sr(t)), for t ∈ [0, T ]. In addition to the measure P, we introduce below a reference
probability measure Q on (Ω,F) under which, for all r, the Poisson processes Ari and Sri have
intensities λ0,ri and µ0,ri , respectively, where we denote λ0,ri = λir

2 and µ0,ri = µir
2. Denote by

EQ the corresponding expectation. The laws of the driving Poisson processes as well as that
of the queue length process Qr under P can then be obtained from those under Q by a change
of measure (as shown below). However, this does not apply to the nominal workload process
Xr, for which the parameters λri and µri determine not only the jump intensities but also the
scaling factors in the definition (2.1) of Xr in terms of Qr. This is reflected also in the formula
for the generator Lru (see (2.7)) where these parameters enter in both the jump rates and the
jump sizes. An intermediate transformation is required.

To this end we define analogously to (2.1) and (2.10), a process X0,r
i and its scaled version

by

X0,r
i = (µ0,ri )−1Qri , X̂0,r

i = rX0,r
i .

Similarly, we let R̂0,r = 1 · X̂0,r and τ0,r(ε) = inf{t ≥ 0 : R̂0,r(t) ≥ ε}.
The starting point of this section is to notice that Lemma 3.5, proved in the previous

section, implies that there exists q ∈M1 such that for κ0 ∈ (0, 1/2),

lim
ε↓0

lim sup
r→∞

|Q(X̂0,r(τ0,r(ε)) ∈ B(εei, r
−κ0))− qi| = 0, i ∈ [N ]. (3.53)
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The proof proceeds in two steps. First, it is shown that a version of (3.53), that refers to
X̂r(τ r(ε)) in place of X̂0,r(τ0,r(ε)), is valid, and then that the same statement remains true
under P (equivalently, under Pr0).

Proof of Proposition 3.3. We first prove that, for q as in (3.53), there exists u ∈ U0 such
that

lim
ε↓0

lim sup
r→∞

|Q(X̂r(τ r(ε)) ∈ B(εei, u(r)))− qi| = 0, i ∈ [N ]. (3.54)

Based on (3.53), the statement (3.54) is almost an immediate consequence of convergence of
R̂0,r to an RBM under Q and the closeness of X̂0,r and X̂r. Indeed, the relation between X̂0,r

and X̂r is X̂0,r
i = βri X̂

r
i where βri = µri /µ

0,r
i . We have maxi |βri − 1| < cr−1 by (2.8). Thus

for ε < 1, ‖X̂0,r(t) − X̂r(t)‖ < cr−1 for all t ≤ τ r(ε) ∧ τ0,r(ε). Hence (3.54) will follow from
(3.53) if we show that, as r → ∞, supε∈(0,1) ‖X̂0,r(τ r(ε)) − X̂0,r(τ0,r(ε))‖ → 0 in probability.

Since X̂0,r are C-tight by Lemma 3.2 and τ0,r(ε) are dominated by τ0,r(1), that form a tight
sequence of RVs, it suffices to prove that

sup
ε∈(0,1)

|τ r(ε)− τ0,r(ε)| → 0 in probability. (3.55)

The convergence of R̂0,r to RBM implies that for any M > 0 and δ > 0,

lim
κ↓0

lim sup
r→∞

Q
(

inf
t∈[0,M ]

sup
u∈(0,δ)

|R̂0,r(t+ u)− R̂0,r(t)| < κ
)

= 0.

It follows that for any M > 0 and δ > 0,

lim sup
r→∞

Q
(

sup
ε∈(0,1)

|τ r(ε) ∧M − τ0,r(ε) ∧M | > δ
)

= 0.

Using again the tightness of the RVs τ0,r(1), (3.55) follows, hence also (3.54).
The second and final step is to prove that in (3.54), Q may be replaced by P. Denote the

events of interest by Kr
ε,i = {X̂r(τ r(ε)) ∈ B(εei, u(r))}. Since

∑
i qi = 1, using the fact that

for any ε and all sufficiently large r, {Kr
ε,i}i are disjoint, it suffices to prove for each i the lower

bound
lim inf
ε↓0

lim inf
r→∞

P(Kr
ε,i) ≥ qi. (3.56)

Given any δ > 0, we clearly have limε↓0 lim supr→∞Q(τ r(ε) > δ) = 0. Hence by (3.54),
denoting Kr

ε,δ,i = Kr
ε,i ∩ {τ r(ε) ≤ δ}, we have

lim
ε↓0

lim sup
r→∞

|Q(Kr
ε,δ,i)− qi| = 0, i ∈ [N ]. (3.57)

A change of measure is formulated in terms of the exponential martingale

ψrt = exp
∑
i

[
Ari (t) log

( λri
λ0,ri

)
− (λri − λ

0,r
i )t+ Sri (t) log

( µri
µ0,ri

)
− (µri − µ

0,r
i )t

]
.

Let Art = (Ari (u), Sri (u))i∈[N ],u∈[0,t]. Let also Grt = σ{Art}. For each r and t, let a probability
measure Pr,t on (Ω,Grt ) be defined by Pr,t(G) = EQ[ψrt1G] for G ∈ Grt . Then, for each r and
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t, the law of Art under Pr,t is the same as that under P. Moreover, note that for each i, the
event Kr

ε,δ,i is measurable on Grδ . Hence to establish (3.56), it suffices to prove that for each i,

q̃i := lim inf
δ↓0

lim inf
ε↓0

lim inf
r→∞

EQ[ψrδ1Kr
δ,ε,i

] ≥ qi. (3.58)

For η > 0, denote Grδ,η = {ψrδ > 1− η}. Suppose we show that for any η > 0,

lim inf
δ↓0

lim inf
r→∞

Q(Grδ,η) = 1. (3.59)

Then we may argue as follows,

EQ[ψrδ1Kr
ε,δ,i

] ≥ EQ[ψrδ1Kr
ε,δ,i∩G

r
δ,η

] ≥ (1− η)Q(Kr
ε,δ,i)−Q((Grδ,η)

c).

Taking r →∞ then ε ↓ 0, then using (3.57), and finally taking δ ↓ 0, gives

q̃i ≥ (1− η)qi − lim sup
δ↓0

lim sup
r→∞

Q((Grδ,η)
c) = (1− η)qi.

Since η > 0 is arbitrary, this gives (3.58) and consequently (3.56).
Thus the proof will be complete once (3.59) is shown. To this end, let

Ãri (t) = r−1(Ari (t)− λ
0,r
i t), S̃ri (t) = r−1(Sri (t)− µ0,ri t).

These processes, defined analogously to Âr and Ŝr, converge under Q to BMs. Denote λ̂ri =
r−1(λri −λ

0,r
i ) and µ̂ri = r−1(µri −µ

0,r
i ) and recall by (2.8) that these sequences converge. Write

ψrt in terms of Ãr and S̃r as

ψrt = exp
∑
i

[
Ãri (t)rU

r
i + (λ0,ri U ri − rλ̂ri )t+ S̃ri (t)rV r

i + (µ0,ri V r
i − rµ̂ri )t

]
,

where U ri = log(1 +
λ̂ri
rλi

), V r
i = log(1 +

µ̂ri
rµi

). Denoting Lrt = maxi |Ãri (t)| ∨ |S̃ri (t)| and using

| log(1 + x)− x| ≤ cx2 for all |x| < 1/2, we have for all large r,

logψrt ≥ −cLrt − ct.

The aforementioned convergence to BM clearly implies that, for any η > 0,

lim inf
δ↓0

lim inf
r→∞

Q(Lrδ < η) = 1.

We thus obtain (3.59) and complete the proof. 2

4 Concluding remarks

1. It is desirable to extend the main result of this paper beyond the Markovian setting, to
general service time distributions and renewal arrival distributions, under second moment
conditions. Whereas the behavior of the modulus according to an RBM certainly holds in
vast generality, and the attraction to the collection of axes S0 can likely be extended, the
existence of limiting entrance laws appears to require different machinery. Indeed, the
proof presented here makes crucial use of the strong Markovity of the prelimit processes.
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λ1 µ1

(a) (b)

λ1 p1
(c) (d)

Figure 2: Simulation of q1 as a function of various parameters, for N = 2.
(a) q1 as a function of λ1, fixed µ’s: µ1 = µ2 = 20, λ2 = µ2 − λ1.
(b) q1 as a function of µ1, fixed λ’s: λ1 = λ2 = 10, µ2 = 1/(1/λ1 − 1/µ1).
(c) q1 as a function of λ1, fixed ratio λ1/µ1, λ2 and µ2: λ2 = 10, µ2 = 20, µ1 = 2λ1.
(d) q1 as a function of p1, fixed λ’s and µ’s: λ1 = λ2 = 10, µ1 = µ2 = 20, p2 = 1− p1.

2. The proof presented in this paper sheds no light on the angular distribution q (except
that it does not depend on the second order parameters λ̂i, µ̂i). A characterization of q
that would be useful and lead to further information about it is desirable.

3. Figure 2 depicts results of Monte Carlo simulations for an SSQ model with N = 2 at
criticality, aimed at estimating q. It shows the behavior of q1 as several parameters vary.
They all suggest monotone dependence, that one would wish to substantiate mathemat-
ically.

(a) The graph shown at Figure 2(c) is, in particular, relevant to the heuristic mentioned
in the introduction, according to which more variable traffic attains lower priority. In
this example, the traffic intensities λi/µi are kept fixed. As λ1 increases, the inter-
arrival variance increases, which, according to the graph, increases q1, indicating
lower priority for this class.

(b) Figure 2(d) shows the dependence on the tie breaking parameter, p1. It exhibits
that tie the breaking rule affects the limiting angular distribution. However, we
have not aimed at providing a proof of this claim.
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