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Abstract
We study a single server queueing model with admission control and retrials. In the
heavy traffic limit, the main queue and retrial queue lengths jointly converge to a
degenerate two-dimensional diffusion process. When this model is considered with
holding and rejection costs, formal limits lead to a free boundary curve that determines
a threshold on the main queue length as a function of the retrial queue length, above
which arrivals must be rejected. However, it is known to be a notoriously difficult
problem to characterize this curve. We aim instead at optimizing the threshold on the
main queue length independently of the retrial queue length. Our main result shows
that in the small and large retrial rate limits, this problem is governed by the Harrison–
Taksar free boundary problem, which is a Bellman equation inwhich the free boundary
consists of a single point. We derive the asymptotically optimal buffer size in these
two extreme cases, as the scaling parameter and the retrial rate approach their limits.

Keywords Retrial queue · Diffusion approximation · Heavy traffic · The
Harrison–Taksar free boundary problem · State space collapse

Mathematics Subject Classification 60F17 · 60J60 · 60K25 · 93E20

1 Introduction

The consideration of the single server queue with admission control gives rise to a
tradeoff between holding costs and rejection costs. The goal of this paper is to study
this tradeoff in the presence of retrials, in the heavy traffic limit. As far as the single
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server queue with no retrials is concerned, the optimal tradeoff at the heavy traffic
limit is characterized by the Harrison–Taksar free boundary problem [16]. This is
a Hamilton–Jacobi–Bellman (HJB) equation in one variable (thus a nonlinear ODE)
with a free boundary point. This point represents a threshold that one puts on the queue
length, which governs the asymptotically optimal (AO) behavior. Namely, it is AO to
admit arrivals if andonly if the queue length at the timeof arrival is below this threshold.
One may refer to this threshold as the optimal buffer size. In a model with retrials,
rejected arrivalsmay choose to retry entry at a later time.When considered in the heavy
traffic limit, this model gives rise, as we show, to a two-dimensional diffusion process
driven by a one-dimensional Brownian motion (BM). The two variables correspond
to the main queue length and retrial queue length. In this setting, the HJB equation
that governs the behavior of an AO admission policy is a fully nonlinear, degenerate
elliptic partial differential equation in two variables. The best one may then hope for
in such a setting is that there exists a free boundary curve in the two-dimensional
space, which serves as a threshold that one puts on the main queue length, whose
value may depend on the retrial queue length. It is known to be a notoriously difficult
problem to characterize this curve. Moreover, to implement this approach one must
use information on the retrial length, which in applications is not observable.

The approach that we take here is to optimize over a single parameter, namely a
threshold (or buffer size), which is independent of the system’s state. Our main result
concerns limits of the retrial rate. It shows that when this rate goes to infinity or to zero,
the optimization problem, set in a two-dimensional state space, reduces to the one-
dimensional Harrison–Taksar free boundary problem alluded to above (with distinct
parameters in the two cases). The assertion of the main result involves asymptotic
optimality in a double limit, as the heavy traffic parameter and the retrial rate approach
their limits.

To describe the model and results in more detail, consider a G/G/1 queue with a
finite buffer of size b. When the number of customers in the buffer exceeds the value
b, arriving customers are rejected, and with a fixed probability p leave the system.
Otherwise, they decide to retry at a later, exponentially distributed, time. We refer to
the G/G/1 queue as the main queue, and call the infinite server station that models
retrials the retrial queue. The retrial queue has an infinite collection of exponential
servers with service rate that we denote by μ; this parameter is the retrial rate. A
retrying customer is treated at the main queue as a new arrival.

We look at this model at diffusion scale under a heavy traffic condition and a
rescaling of the buffer size. First, we establish joint convergence of the pair of queue
lengths to an obliquely reflected, degenerate diffusion process. Then we formulate the
optimization problem alluded to above, where the buffer size b is selected so as to
minimize a linear combination of holding costs at the main station and rejection count.
The diffusion model obtained from the aforementioned weak convergence result is
considered with a cost that describes the limit of the cost above. As alreadymentioned,
attempting to fully treat the dynamic control problem leads to the difficult problem
of identifying a free boundary curve. We observe that in both the limits μ → 0 and
μ → ∞, this diffusion optimization problem is considerably simpler, and in particular
is governed by the Harrison–Taksar free boundary problem [16]. This is an equation in
one variable in which the free boundary consists of a single point, for which effective
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numerical procedures exist. The term state space collapse (SSC) usually refers to
a dimension reduction that occurs when the scaling parameter approaches its limit.
However, the dimension reduction identified in this paper is different. It is the diffusion
model that undergoes a dimension reduction, and this reduction occurs when the retrial
rate parameter tends to a limit. The main result of this paper uses this SSC result for
the diffusion model to establish AO buffer size for the queuing model in these two
regimes. We also provide simulation results aimed at computing the optimal buffer
sizes for general values of μ.

Queuing systems with retrials have long been of interest due to their important
role in applications, such as computer networks and call centers. They have been
extensively studied since they were first analyzed in [10]. We refer the reader to the
survey papers [5–7,12,23,24]. As far as heavy traffic limits are concerned, results on
retrial queues were obtained for several models. The paper [22] characterizes diffusion
limits for various queuing models, including ones with retrials. The scaling regime
differs from ours in terms of the retrial rate parameter as well as scaling the number of
servers, and as a result, does not lead to a degenerate diffusion limit as in this paper.
The same is true for the papers [2,3]. Other diffusion limit results for retrial queues
include [13,14], which studied the M/M/c queue with exponential retrial times. The
scaling regime is different than ours, and corresponds to light traffic. The models in
these two papers differ in the assumption on the waiting space: in [13] the main station
is modeled as a server with no waiting space; customers who find all the servers busy
join the retrial queue. In [14], customers who find all the servers busy may join a
waiting queue or retry (with probabilities that depend on the state of the queue). In
both papers, the diffusion limit is given in terms of an Ornstein–Uhlenbeck process.

Several papers have considered a related model under the limiting cases μ → 0
and μ → ∞ of the retrial rate (not in the heavy traffic asymptotics). These include
[1,10,11]. In [10], the limit μ → 0 was studied for an M/M/c loss system; that is,
customers that find all the servers occupied are rejected, andwith fixed probability retry
after an exponential time. It was shown that the limit system is the classical Erlang
loss system. In the papers [1,11], the M/M/c loss system with exponential retrial
rate was considered in the case μ → ∞, showing that the queue length distributions
convergence to those of the associated multiserver queue without retrials (further
background on the relationship between systems with and without retrials can be
found in [4]). The phenomenon revealed in these three papers, namely that the limiting
cases correspond to systems that do not exhibits retrials, is similar to the one obtained
in the present paper. However, there are significant differences: The model under
consideration in this paper is different; in particular it has waiting space at the main
queue. Moreover, the system is considered under a scaling limit (and thus general
service time distributions can be addressed), and furthermore, the main goal of our
study is the aspect of optimizing the buffer size. Finally, the paper [21] considers a
scaling limit result that combines diffusion scale and the regime μ → 0. The model is
the M/M/1 queue with no waiting room and exponential retrials, and, under a light
traffic assumption, the diffusion limit is again an Ornstein–Uhlenbeck process.
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1.1 Organization of the paper

In Sect. 2 we describe the model and the processes under the diffusion scale. In Sect. 3
we introduce the limit model and prove the first main result—the weak convergence of
the prelimit diffusion processes. Section 4 is devoted to study the optimization problem
and analyze it with respect to different values of μ. The second main result—the AO
in the dual limits is presented and proven. Section 5 presents the simulation to study
the behavior of the value function and optimal buffer size for general values of μ.

1.2 Notation

For x, y ∈ R
k (k a positive integer), x · y and ‖x‖ denote the usual scalar product

and �2 norm, respectively. With R+ = [0,∞), for f : R+ → R
k , we let ‖ f ‖T =

supt∈[0,T ] ‖ f (t)‖. For a Polish space S, we letCS [0,∞) andDS [0,∞) denote the set
of continuous and, respectively, RCLL functions [0,∞) → S. We endow DS [0,∞)

with the Skorohod J1 topology.We say that a sequence of stochastic processes Xn with
sample paths in DS [0,∞) is C-tight if it is tight and each subsequential limit of it is
a process that has sample paths in CS [0,∞), a.s. We write Xn ⇒ X for convergence
in distribution. We use notation such as X(t) and Xt interchangeably for stochastic
processes X and t ∈ R+.

2 Themodel and its diffusion scaling

In this section, we introduce the elements of the model and the stochastic processes
involved, and then introduce the diffusion scaling under the heavy traffic condition.

2.1 Themodel

Our goal is to study a finite buffer G/G/1 queue with retrials (Fig. 1). We model it
by considering two stations: one, which is referred to as the main station, has a single
server with general service time distribution and a finite buffer. The other, referred to as
the retrial station, has an infinite number of exponential servers with identical service
rate parameter. Each customer arriving to find the main station’s buffer full leaves the
system with probability 0 < p < 1. If it does not leave the system (which happens
with probability q = 1 − p) it is routed to the retrial station. Every departure from
the retrial station is routed back to the main station and is treated as a new incoming
customer. This is equivalent to stating that every rejected customer that decides to
retry (with probability q) does so according to an exponential clock (with a fixed
parameter).

The stochastic processes which we now introduce are all defined on a probability
space (�,F , P). We denote by E the expectation w.r.t. P . The parameters and pro-
cesses are indexed by n ∈ N. An important aspect of the scaling that we consider is
that, while the arrival and service rate at the main station are accelerated in the usual
fashion which leads to heavy traffic approximations, we do not accelerate the retrial
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Fig. 1 The finite buffer G/G/1 queue with retrials

clock. Thus the infinite collection of servers at the retrial station have a fixed service
rate.

We start with the external arrivals, and model them in terms of a renewal processes.
Let {IA(l), l ∈ N} be an independent and identically distributed (IID) sequence of
positive random variables (RVs) with E[IA(1)] = 1 and σ 2

IA = var(IA(1)) < ∞. Let
λn > 0 be the reciprocal of the mean inter-arrival time for the n-th system. Then the
number of external arrivals up to time t is given by

An(t) = A(λnt), where A(t) = sup

{
l ≥ 0 :

l∑
k=1

IA(k) ≤ t

}
, t ≥ 0.

The main station also admits internal arrivals, namely the customers that depart
from the retrial station. We denote the counting process of departures from the retrial
station by Dn

2 (t). Hence the counting process for the total number of arrivals to the
main station (including external and internal arrivals) is given by

An
1(t) = An(t) + Dn

2 (t).

For the service process of the main station, consider an IID sequence of positive
RVs {ST(l), l ∈ N}, with E[ST(1)] = 1 and σ 2

ST = var(ST(1)) < ∞. Let μn
1 > 0 be

the reciprocal of the mean service time at the n-th system. Then the number of service
completions at the main station by the time the server has devoted t units of time is
given by

Sn(t) = S(μn
1 t), where S(t) = sup

{
l ≥ 0 :

l∑
k=1

ST(k) ≤ t

}
, t ≥ 0.

Note that the above is different from the actual number of customers to complete
service by time t . To introduce the latter, let T n(t) denote the cumulative time the
server works during [0, t]. Then the number of customer completions (or departures)
up to time t is given by

Dn
1 (t) = Sn(T n(t)). (1)
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The buffer size depends on n, and we denote it by bn . Each time the number of
customers reaches the size bn , the systemmanger rejects arrivals. Denote by Cn(t) the
counting process for customer rejections. Consider an IID sequence of {0, 1}-valued
RVs {ξi }, with P(ξ1 = 1) = q. These are used to model retrials: The i-th rejected
customer is rerouted to the retrial station if and only if ξi = 1. Thus, the counting
process for arrivals into the retrial station (which is the number of rejected customers
that reroute) is given by

An
2(t) = G(Cn(t)) = (G ◦ Cn)(t), (2)

where we define

G(u) =

u�∑
i=1

ξi , u ∈ R+. (3)

As for the queue length processes, denote by Xn(t) the number of customers in the
main station (including the customer in service) and by Rn(t) the number of customers
in the retrial station. These processes satisfy the balance equations

Xn(t) = Xn(0) + An
1(t) − Cn(t) − Dn

1 (t), (4)

and
Rn(t) = Rn(0) + An

2(t) − Dn
2 (t). (5)

Also, T n and Xn satisfy the relation T n(t) = ∫ t
0 1{Xn(s)>0}ds. Moreover, the retrial

clocks are assumed to be exponential with mean 1/μ, hence Dn
2 and Rn satisfy the

relation

Dn
2 (t) = N

(∫ t

0
μRn(s)ds

)
, (6)

where N is a standard Poisson process.
The primitive data A, S, G, and N are assumed to be mutually independent. Also,

the initial condition (Xn(0), Rn(0)) is independent of the primitive data.

2.2 The heavy traffic condition and diffusion scaling

The parameters satisfy the following assumptions: There exist λ,μ1 ∈ (0,∞) and
λ̂, μ̂1 ∈ R such that, as n → ∞,

λn

n
→ λ,

μn
1

n
→ μ1,

λ̂n = λn − nλ√
n

→ λ̂, μ̂n
1 = μn

1 − nμ1√
n

→ μ̂1.

We assume that the system is in heavy traffic, in the sense that λ = μ1. Also, the
buffer size is assumed to scale like

√
n. More precisely, bn = b

√
n� for some b > 0.
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The diffusion-scaled queue length processes are defined as

X̂n(t) = n−1/2Xn(t), R̂n(t) = n−1/2Rn(t). (7)

The scaled initial condition (X̂n(0), R̂n(0)) is assumed to converge in distribution to
some deterministic (x, r) ∈ R

2+.

2.3 Model equations via the Skorohodmap on [0, b]

It is instrumental to formulate the model equations on the basis of the Skorohod map
on an interval. The Skorokhod problem on [0, b] is the problem of finding, for any
ψ ∈ D[0,∞), a triplet (φ, ηl , ηu) ∈ (D[0,∞))3 such that

1. φ(t) = ψ(t) + ηl(t) − ηu(t), φ(t) ∈ [0, b] for all t .
2. ηl , ηu are nonnegative and non-decreasing and one has

∫
[0,∞)

I{φ(t)>0}dηl(t) = 0,
∫

[0,∞)

I{φ(t)<b}dηu(t) = 0.

It is well-known that the Skorohod problem on [0, b] has a unique solution. The solu-
tion map, called the Skorohod map, is denoted by 
0,b. Thus (φ, ηl , ηu) = 
0,b(ψ).
Existence, uniqueness and several properties of this map can be found in [19]. A spe-
cific important property is the Lipschitz continuity with respect to the sup norm; that
is, there exists a constant c
 such that, for any T > 0 and any ψ, ψ̃ ∈ D[0,∞),
writing (φ, ηl , ηu) = 
0,b(ψ) and (φ̃, η̃l , η̃u) = 
0,b(ψ̃),

‖φ − φ̃‖T + ‖ηl − η̃l‖T + ‖ηu − η̃u‖T ≤ c
‖ψ − ψ̃‖T . (8)

Moreover, it follows from the explicit representation of the map in [19] that there is
one Lipschitz constant c
 that is valid for all b ∈ (0,∞).

Tomake the connection to ourmodel we introduce some additional diffusion-scaled
processes, namely

Ân(t) = An(t) − λnt√
n

, Ŝn(t) = Sn(t) − μn
1 t√

n
, D̂n

1 (t) = Ŝn(T n(t)), (9)

L̂n(t) = μn
1√
n

(
t − T n(t)

)
, Ân

2(t) = An
2(t)√

n
, Ĉn(t) = Cn(t)√

n
, (10)

as well as the process

en(t) =
N

(∫ t
0 μRn(s)ds

)
− ∫ t

0 μRn(s)ds
√

n
(11)
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that will serve as an error term, and finally, the constants ŷn = λ̂n − μ̂n
1. Using these

definitions in (4) and (5), the diffusion-scaled processes are seen to satisfy

{
X̂n(t) = X̂n(0) + ŷnt + Ân(t) − D̂n

1 (t) + en(t) + ∫ t
0 μR̂n(s)ds − Ĉn(t) + L̂n(t),

R̂n(t) = R̂n(0) − en(t) + Ân
2(t) − ∫ t

0 μR̂n(s)ds.
(12)

The constraint 0 ≤ Xn(t) ≤ bn that is satisfied by Xn can be written as 0 ≤ X̂n(t) ≤
b̂n , where we define b̂n = n−1/2bn . Note that b̂n = b + en

b , where en
b = (b

√
n� −

b
√

n)/
√

n → 0 as n → ∞. The processes Ĉn, L̂n have nonnegative, non-decreasing
sample paths, and they satisfy

∫
[0,∞)

I{X̂n
t >0}dL̂n

t = 0,
∫

[0,∞)

I{X̂n
t <b̂n}dĈn

t = 0. (13)

As a result, we have the relations

⎧⎪⎨
⎪⎩

(X̂n, L̂n, Ĉn) = 
0,b̂n (Ẑ n),

Ẑ n(t) = X̂n(0) + ŷnt + Ân(t) − D̂n
1 (t) + en(t) + ∫ t

0 μR̂n(s)ds,

R̂n(t) = R̂n(0) − en(t) + Ân
2(t) − ∫ t

0 μR̂n(s)ds.

(14)

3 The diffusion limit

Let ŷ = limn→∞ ŷn = λ̂ − μ̂1, σ 2 = λ(σ 2
IA + σ 2

ST) and let W be a (ŷ, σ 2)-BM. In
this section we prove that the diffusion-scaled processes converge to the solution of
the following set of equations:

⎧⎪⎨
⎪⎩

(X , L, C) = 
0,b(Z),

Z(t) = x + W (t) + ∫ t
0 μR(s)ds,

R(t) = r + qC(t) − ∫ t
0 μR(s)ds.

(15)

In particular, by the definition of 
0,b, one has X = Z + L − C . This system of
equations can be seen as an SDE with reflection in [0, b] × R+ (note that R(t) ≥ 0
since the equation eμt R(t) = eμt r + q

∫ t
0 eμsdC(s) holds and C is non-decreasing).

To write this equation for the processes Yt = (Xt , Rt )
T , Mt = (Lt , Ct )

T , set the
directions of reflection to be d1 on the part {0} × R+ of the boundary, and d2 on the
part {b} × R+ of the boundary, where

d1 =
(
1
0

)
, d2 =

(−1
q

)

(see Fig. 2).
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Fig. 2 Reflection directions

Let the drift coefficient, diffusion coefficient and reflection matrix be given by

B(y) =
(

ŷ + μy2
−μy2

)
, � =

(
σ

0

)
, D = (d1, d2) =

(
1 −1
0 q

)
,

for any y = (y1, y2), and let W̃ be a 1-dimensional standard BM. Then the SDE is
given by

dYt = B(Yt )dt + �dW̃t + DdMt , (16)

with the initial condition Y0 = (x, r)T . Note that there is no need to specify refec-
tion directions on [0, b] × {0} due to the fact that the second component of the drift
coefficient B(y), namely−μy2, vanishes on this part of the boundary. Thus Y is a two-
dimensional diffusion process which is degenerate in the second diffusion coefficient.
By [20, Th. 4.3], there exists a unique solution to (16), or equivalently (15) (the result
in [20] is stated for a bounded domain, but it is standard, by a localization argument, to
argue that existence and uniqueness hold for the unbounded domain considered here).

We now introduce our first main result.

Theorem 3.1 As n → ∞,

(X̂n, R̂n, L̂n, Ĉn) ⇒ (X , R, L, C).

Proof We divide the proof into four main steps. Step 1 develops a variation of (14)
where the sequence of Skorohod maps 
0,b̂n is replaced by 
0,b. The second and
third steps are concerned with tightness of the underlying processes, and the last step
combines these results to obtain convergence.

Step 1 
0,b instead of 
0,b̂n
.

We first show that in the set of equations (14) for the prelimit processes, the maps

0,b̂n

can be changed into the single map 
0,b at the cost of adding some error terms

in this set of equations. More precisely, let X∗,n(t) = X̂n(t) ∧ b. If we let en
1(t) =

X̂n(t) − X∗,n(t) then 0 ≤ en
1(t) ≤ en

b , where we used the fact that X̂n(t) ∈ [0, b̂n]
for all t . In particular, the process en

1 ⇒ 0 as n → ∞. Next, we can add to the first
equation in (12) the term en

1 to both sides, and obtain an equation for X∗,n . It would
correspond to the second equation in (14), with Ẑ n replaced by Z∗,n = Ẑ n + en

1 . We
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have achieved the following: The process X∗,n satisfies X∗,n(t) ∈ [0, b], for all t , as
well as X∗,n = Z∗,n − Ĉn − L̂n , while, analogously to (13),

∫
[0,∞)

I{X∗,n
t >0}dL̂n

t = 0,
∫

[0,∞)

I{X∗,n
t <b}dĈn

t = 0.

While the first identity above is immediate from (13), the second one follows from
the fact that X∗,n

t < b implies X̂n
t < b, which in turn implies X̂n

t < b̂n . We can thus
write the following set in place of (14):

⎧⎪⎨
⎪⎩

(X∗,n, L̂n, Ĉn) = 
0,b(Z∗,n),

Z∗,n(t) = X̂n(0) + ŷnt + Ân(t) − D̂n
1 (t) + en(t) + en

1(t) + ∫ t
0 μR̂n(s)ds,

R̂n(t) = R̂n(0) − en(t) + Ân
2(t) − ∫ t

0 μR̂n(s)ds.
(17)

Step 2 The sequence of RVs {R̂n(T )}n∈N is tight for every T .
Toward proving this statement, fix T . Denote

ξn(t) = X̂n(0) + ŷnt + Ân(t) − D̂n
1 (t) + en

1(t), Z̃ n(t) = ξn(t) +
∫ t

0
μR̂n(s)ds,

(18)
and note that Z∗,n(t) = Z̃ n(t)+en(t). First, we show that ‖ξn‖T is a tight sequence of
RVs. By the FCLT for renewal processes, ( Ân, Ŝn) ⇒ (A, S), where A is a (0, λσ 2

IA)-
BM, S is a (0, μ1σ

2
ST)-BM, and A and S are independent (see §17 of [9]). As a result,

‖ Ân‖T is a tight sequence of RVs, and so is ‖Ŝn‖T . By the definition of D̂n
1 [see (9)]

and the fact that T n(t) ≤ t for all t , ‖D̂n
1‖T ≤ ‖Ŝn‖T . Since, by our assumptions, we

also have X̂n(0) ⇒ x and ŷn → ŷ, and as we have shown en
1 ⇒ 0, it follows that

‖ξn‖T forms a tight sequence of RVs.
We use the set of equations (17) to develop a bound on R̂n(T ). It follows from the

Lipschitz property (8) of the Skorohod map 
 = 
0,b that there exists a constant c


that does not depend on ε, t or n such that

‖Ĉn‖t + ‖L̂n‖t + ‖X∗,n‖t ≤ c
‖Z∗,n‖t ≤ c


(
‖Z̃ n‖t + ‖en‖t

)
, t ∈ [0, T ].

(19)
In addition, it follows from (2) and (3) that An

2(t) ≤ Cn(t), and from (5) that Rn(t) ≤
Rn(0) + An

2(t). Thus, by the rescaling in (14), we have

0 ≤ R̂n(t) ≤ R̂n(0) + Ân
2(t) ≤ R̂n(0) + Ĉn(t), t ∈ [0, T ]. (20)

As a result, R̂n(t) ≤ R̂n(0) + c
(‖Z̃ n‖t + ‖en‖t ). Using this in the definition of Z̃ n ,

R̂n(t) ≤ R̂n(0) + c
(‖Z̃ n‖t + ‖en‖t )

≤ R̂n(0) + c


(
‖ξn‖T + ‖en‖t +

∫ t

0
μR̂n(s)ds

)
, t ∈ [0, T ], (21)
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where we have used the fact that R̂n ≥ 0. We can now use Gronwall’s lemma, by
which

R̂n(t) ≤ [R̂n(0) + c
(‖ξn‖T + ‖en‖t )]ec
μT , t ∈ [0, T ]. (22)

We have shown that ‖ξn‖T are tight RVs. The RVs R̂n(0) are also tight by the
convergence assumption. Let ε > 0 be given. Then there exists d such that P(�n,1) >

1 − ε, where

�n,1 = {‖ξn‖T ∨ |R̂n(0)| < d}.

Fix such d. Let k = [d + c
(d + 1)]ec
μT + 1 and let

τ n = inf{t : R̂n(t) ≥ k}

be the first time the process R̂n exceeds k. Also, fix ε0 ∈ (0, 1) and let

�n,2 =
{

sup
u∈[0,μT (k+1)]

∥∥∥∥∥ N
(√

nu
)

√
n

− u

∥∥∥∥∥ < ε0

}
.

By the FLLN, P(�n,2) > 1− ε for all sufficiently large n. By the definition of τ n and
the fact that the sample paths of R̂n are non-decreasing, it follows that R̂n(s) ≤ k for
all s < T ∧ τ n . Since the jumps of the process Rn are of size 1, those of R̂n are of
size n−1/2, and so we also have R̂n(T ∧ τ n) ≤ k + n−1/2. Hence, by the expression
(11) for en , we see that

the bound ‖en‖T ∧τ n ≤ ε0 holds on the event�
n,2. (23)

We now use this in (22). On the event �n = �n,1 ∩ �n,2, one has

R̂n(T ∧ τ n) ≤ [d + c
(d + 1)]ec
μT = k − 1.

Again, by the definition of τ n , on the event {τ n ≤ T } one has R̂n(τ n) ≥ k. Combining
this with the above display shows that on the event �n one has τ n > T . As a result,
the estimate for R̂n(T ∧ τ n) is valid for R̂n(T ), that is, R̂n(T ) ≤ k − 1 on �n . Since
we have lim infn P(�n) ≥ 1−2ε, we have thus shown that given ε there exists k such
that lim supn P(R̂n(T ) > k) ≤ 2ε. Hence R̂n(T ) is a tight sequence of RVs.

Step 3 The sequence of processes ( Ân, Ŝn, D̂n
1 , Ân

2, X̂n, R̂n,
∫ ·
0 R̂n(s)ds, L̂n, Ĉn)

is C-tight, and en ⇒ 0.
By (23) and the above argument, we can now state that ‖en‖T ≤ ε0 holds on the

event �n . Since ε and ε0 are arbitrary, it follows that ‖en‖T ⇒ 0 as n → ∞.
Next, from Step 2, C-tightness of the sequence of processes

∫ t
0 μR̂n(s)ds follows

immediately.
Also, as already mentioned, Ân converges to a BM, thus in particular is C-tight.

Similarly, Ŝn is C-tight, hence so is D̂n
1 , as follows from its definition as a pathwise

time change of Ŝn via the uniformly Lipschitz paths of T n . This shows that ξn , and
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in turn Z̃ n , are C-tight. Since we have shown that en converge to zero, it follows that
Z∗,n are also C-tight. In view of the first equation in (17), the Lipschitz property of

0,b implies the C-tightness of X∗,n , L̂n and Ĉn . The C-tightness of X̂n follows from
the fact that en

1 ⇒ 0.
Regarding the process R̂n , note that, by (2) and (3), we can write Ân

2(t) =
G̃n(Ĉn(t)), where G̃n(u) = n−1/2G(n1/2u). By the FLLN, for any v, supu∈[0,v]
|G̃n(u) − qu| ⇒ 0 as n → ∞. Thus, by the C-tightness of Ĉn it follows that Ân

2
are also C-tight. Using this in the last equation of (17) gives the C-tightness of the
processes R̂n .

Step 4 Convergence.
By the definition (10) of L̂n , the tightness of these processes and the fact that

μn
1/

√
n → ∞ imply that supt∈[0,T ] |T n(t) − t | ⇒ 0 as n → ∞. Recalling the

definition (9) of D̂n
1 and the convergence of ( Ân, Ŝn) to (A, S) gives that ( Ân, D̂n

1 ) ⇒
(A, S), where A and S are independent. As a result, Ân − D̂n

1 ⇒ A − S. It follows
that ξn ⇒ x + W .

We next use the C-tightness obtained in the previous step. We fix a conver-
gent subsequence of (ξn, Z∗,n, Ân

2, X̂n, R̂n, L̂n, Ĉn) and denote its limit by (x +
W , Z , A2, X , R, L, C). In what follows we will argue that this limit satisfies (15). By
uniqueness of solutions to this set of equations, the convergence of the whole sequence
will follow.

Toward arguing that the subsequential limit satisfies (15), note first that since the
error terms en and en

1 converge to zero, we have the same limit, Z , for Z̃ n , Z∗,n and
Zn . Moreover, by (18), the relation Z = x + W + ∫ ·

0 μR(s)ds must hold. Taking
limits in the first equation of (17) and using the continuity of the map 
0,b gives

(X , L, C) = 
0,b(Z).

Recall fromStep 3 the description of Ân
2(t) as G̃n(Ĉn(t)) and the uniform convergence

of G̃n(u) to qu. Along with the convergence Ĉn ⇒ C , this gives Ân
2 ⇒ qC . Hence

A2 = qC . Using this now in the last equation of (17) gives

R(t) = r + qC(t) −
∫ t

0
μR(s)ds.

Hence the subsequential limit processes satisfy (15). As a result, convergence to the
unique solution of (15) follows. ��

Remark 3.1 Note that the precise size of the term en
b , which serves as an upper bound

on the error term en
1 in Step 1 of the proof, does not matter as long as it converges to

zero. Consequently, the sequence of rescaled buffer sizes b̂n could be replaced by any
sequence b̃n → b.
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4 Optimizing the buffer size

In this section, we consider the constrained diffusion model (15) along with a cost of
the form

E
∫ ∞

0
e−αt (c1X(t) + c2C(t))dt,

which penalizes both queue length at the main station and rejections. One might
consider a dynamic control problemwhere the cost isminimized over control processes
C that are adapted to the filtration of the state process Y = (X , R). This is a standard
formulation in stochastic control, where the value function can be characterized in
terms of a Hamilton–Jacobi–Bellman (HJB) equation [15]. However, this direction
has two major drawbacks in the current setting. First, for the queuing model under
consideration it is natural to assume that the decisionmaker cannot observe the number
of customers at the retrial queue. Hence a setting where the state process Y is fully
observable is not suitable. Second, the HJB equation is in two dimensions, and it is
expected (as is almost always the case) that it is not solvable in an explicit form. Our
study focuses on a different question, namely the problem of finding the buffer size b
that minimizes the above cost. Our results address this problem under the two limits
μ → ∞ and μ → 0, and in both cases we connect the optimization problem to the
Harrison–Taksar free boundary problem [16], which can be seen as a HJB equation in
one dimension.

4.1 The optimization problem setting and results

4.1.1 The diffusion optimization problem

Throughout this section, the initial retrial queue is set to zero, that is, r = 0. Thus the
processes X , R, C and L of (15) satisfy

⎧⎪⎨
⎪⎩

(X , L, C) = 
0,b(Z),

Z(t) = x + W (t) + ∫ t
0 μR(s)ds,

R(t) = qC(t) − ∫ t
0 μR(s)ds,

(24)

wherewe recall thatW is a (ŷ, σ 2)-BM.The dependence of these processes on both the
parameters b and μ is important, and so when we wish to emphasize this dependence
we denote these processes as Xμ,b, etc.

The cost function associated with the problem is

Jμ,b
DOP = E

∫ ∞

0
e−αt

(
c1Xμ,b(t) + c2Cμ,b(t)

)
dt (25)

= E
∫ ∞

0
e−αt

(
c1Xμ,b(t)dt + c2

α
dCμ,b(t)

)
, (26)
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where the identity follows by integration by parts (it is not hard to see that
limt→∞ e−αt Ct = 0, a.s.).

The diffusion optimization problem (DOP) is to minimize the cost:

V μ
DOP = inf

b∈(0,∞)
Jμ,b
DOP. (27)

The dependence of these quantities on x , c1 and c2 is denoted by writing them as
Jμ,b[x; c1, c2] and V μ

DOP[x; c1, c2].

4.1.2 The Harrison–Taksar free boundary problem

A related, simpler problem is that of minimizing the cost of (25) when (X , L, C) =

0,b(x + W ). More precisely, let

J b
HT[x; c1, c2] = E

∫ ∞

0
e−αt [c1 X̃t + c2C̃t ]dt, where (X̃ , L̃, C̃) = 
0,b(x + W ),

(28)
(thus, in particular, X̃ = x + W + L̃ − C̃) and

VHT[x; c1, c2] = inf
b∈(0,∞)

J b
HT[x; c1, c2]. (29)

This is a closely related problem to the one treated by Harrison and Taksar [16] via
the Bellman equation:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
1

2
σ 2 f ′′ + ŷ f ′ − α f + c1

]
∧ f ′ ∧

[c2
α

− f ′] = 0, in (0, b0),

f ′(0) = 0, f ′(b0) = c2
α

.

(30)

This is an equation for the unknown pair ( f , b0), where f is a C2 function defined
on R+, and b0 is in (0,∞). It is a free boundary problem in the sense that one of the
boundary conditions is given at the point b0 that is unknown. Following the results of
[16], we can state the following: There exists a unique (classical) solution ( f , b0) to
Eq. (30).Moreover, f is equal to the function x �→ VHT[x; c1, c2] defined by (28), and
b0 is a value of b for which the infimum on the RHS of (29) is attained as a minimum.
In particular, Eq. (30) characterizes the optimal buffer size, b0.

Inwhat followswe denote the value of b0 that is characterized by the above equation
by bHT[c1, c2].
Remark 4.2 To be precise, there are several differences between the above statements
and the results obtained in [16]. First, the results of [16] did not include uniqueness of
classical solutions to theBellman equation (30); this pointwas settled in [8, Proposition
2.2]. Second, the formulation in [16] did not assume that the processes L̃ and C̃
were boundary terms for the Skorohod map the way they are represented in (28), but
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considered a broader class of non-decreasing processes. However, the result of [16]
states that the optimum is achieved by the tuple (X̃ , L̃, C̃) = 
0,b0(x + W ), which is
precisely of the form given in (28) (with b = b0). Clearly, this implies that the optimum
within this smaller class of processes is also given by (X̃ , L̃, C̃) = 
0,b0(x + W ), and
so the quantity b0 characterized by (30) indeed provides the solution to the problem
(28). Finally, [16] considers a cost that has an additional term associated with L̃ , and
consequently obtains an equation that involves two free boundary points rather than
one. The fact that in the present setting (with no cost for L̃) the free boundary condition
can be replaced by the boundary condition at 0, as we have written it in (30), is proved
in [8, Proposition 2.2].

4.1.3 Results

The following result relates the μ → ∞ asymptotics of V μ
DOP to the much simpler

object VHT.

Proposition 4.1 Recall that p = 1 − q. One has

lim
μ→∞ V μ

DOP[x; c1, c2] = VHT

[
x; c1,

c2
p

]
.

Based on the above result and the convergence result from Sect. 3, we can show an
asymptotic optimality result for the queuing model at the diffusion-scaled limit. To
this end consider a cost defined analogously to (25), namely

J n,μ,b = E
∫ ∞

0
e−αt

(
c1 X̂n(t) + c2Ĉn(t)

)
dt, (31)

where (X̂n, Ĉn) is the diffusion-scaled processes defined in Sect. 2. Throughout this
section we assume that the retrial queue starts empty, that is, R̂n(0) = 0. In addition,
for Theorem 4.2, we also assume that the initial renewal processes A(t) and S(t)
have 6 + ε moment, for some small ε > 0. In other words, we assume the RVs
IA(1) and ST(1) have a finite 6 + ε moment. Let the corresponding value be defined
by

V n,μ = inf
b

J n,μ,b. (32)

Theorem 4.2 Assume the RVs IA(1) and ST(1) have a finite 6 + ε moment, for some
ε > 0. One has

lim inf
μ→∞ lim inf

n→∞ V n,μ = lim sup
μ→∞

lim sup
n→∞

V n,μ = VHT

[
x; c1,

c2
p

]
.

Moreover, bHT[c1, c2
p ] is an AO scaled buffer size, in the sense that, with b =

bHT[c1, c2
p ],

lim inf
μ→∞ lim inf

n→∞ J n,μ,b = lim sup
μ→∞

lim sup
n→∞

J n,μ,b = VHT

[
x; c1,

c2
p

]
.
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Next we state a result on the DOP at the μ → 0 limit and its queuing model
counterpart.

Proposition 4.2 One has

lim
μ→0

V μ
DOP[x; c1, c2] = VHT[x; c1, c2].

Theorem 4.3 One has

lim inf
μ→0

lim inf
n→∞ V n,μ = lim sup

μ→0
lim sup

n→∞
V n,μ = VHT[x; c1, c2],

and bHT[c1, c2] is an AO scaled buffer size, namely, with b = bHT[c1, c2],

lim inf
μ→0

lim inf
n→∞ J n,μ,b = lim sup

μ→0
lim sup

n→∞
J n,μ,b = VHT[x; c1, c2].

Proposition 4.1 and Theorem 4.2 are proved in Sect. 4.2, and Proposition 4.2 and
Theorem 4.3 are proved in Sect. 4.3.

Remark 4.3 Both Theorems 4.2 and 4.3 relate the model to the Harrison–Taksar prob-
lem. An intuitive explanation is as follows: For smallμ, rejected customers take a long
time to return to the main station. The limiting case corresponds to a model where
rejected customers leave and do not come back. Thus Theorem 4.3 merely expresses
continuity at μ = 0.

As for the case where μ is large, a rejected customer returns very quickly. If the
return time is so short that the system’s state does not vary much, it will again be
rejected, and thus enter the retrial queue with probability q. Iterating this argument
shows that, for large μ, each initial rejection of a customer leads, on average, to
1 + q + q2 + · · · = p−1 rejections. Heuristically, this situation is similar to that of a
model without retrials, where the cost associated with rejection is multiplied by p−1.
This explains the version with c2/p in place of c2 in Theorem 4.2.

4.2 Proofs: the limit as� → ∞

First we write some useful relations that follow from the DOP setting. By the first and
second equations in (24),

X(t) = x + W (t) +
∫ t

0
μR(s)ds + L(t) − C(t), (33)

where W is a (ŷ, σ 2)-BM. A simple manipulation gives X(t) = x + W (t) − R(t) −
pC(t)+ L(t). Moreover, the solution of the integral equation for R in (24), in terms of
C , is given by R(t) = qC(t)−μ

∫ t
0 qC(s)e−μ(t−s)ds. Thus (24) implies the following
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relations used in the sequel:{
X(t) = x + W (t) − R(t) − pC(t) + L(t),

R(t) = qC(t) − μ
∫ t
0 qC(s)e−μ(t−s)ds.

(34)

In the sequel, we use the notation �ξ[σ,τ ] for ξ(τ ) − ξ(σ ) to denote the increment
of any process ξ over the time interval [σ, τ ].

To prove the theorem we use the following lemma.

Lemma 4.1 For fixed 0 < b1 < b2 < ∞,

lim
μ→∞ sup

b∈[b1,b2]
E

∫ ∞

0
e−αt‖Rμ,b‖tdt = 0. (35)

Proof Fix b1 and b2 and consider b ∈ [b1, b2]. For any f : R+ → R and 0 < δ ≤ t ,
write

θt ( f , δ) = inf{u : | f (s1) − f (s2)| ≥ δ, 0 ≤ s1 ≤ s2 ≤ t, s2 − s1 = u}.

Step 1 A uniform bound on Cμ,b(t).
We provide a bound on Cμ,b by a certain process that does not depend on μ and

b. The dependence of X , C, L on μ and b is suppressed in what follows. By (34) and
the positivity of X and R,

pCt ≤ x + Wt + Lt . (36)

Below we provide a bound on L and then use (36) to translate it into a bound on C .
The analysisweprovide is pathwise.Wefixω and consider the path (X , L, C, W ) =

(X , L, C, W )(ω). An interval [σ, τ ] is said to be admissible if 0 ≤ σ ≤ τ < ∞,
X(σ ) = X(τ ) = 0 and C(σ ) = C(τ ). An admissible interval is said to be maximal if
there exists no admissible interval such that [σ, τ ] is a proper subset of it. Our argument
relies on bounding the number of maximal admissible intervals within [0, t].

Let [σ, τ ] be a maximal admissible interval. Using (33) and the monotonicity of
the integral term, the increment of L over that interval satisfies

�L [σ,τ ] ≤ −�W[σ,τ ]. (37)

For t > 0, denote by Nt the number of maximal admissible intervals [σ, τ ] ⊂ [0, t].
On each of them the increment of L is bounded by 2‖W‖t . Hence Lt ≤ 2Nt‖W‖t .
Next, recalling that C increases only when X = b, it follows that between any two
consecutive maximal admissible intervals [σ, τ ] and [σ̃ , τ̃ ], X must reach the value
b, for otherwise [σ, τ̃ ] would be an admissible interval, which stands in contradiction
to the maximality of [σ, τ ] and [σ̃ , τ̃ ]. Thus one has X(τ ) = 0, X(η) = b for some
η ∈ [τ, σ̃ ], and again X(σ̃ ) = 0. Let η̃ denote the last time when X = b during the
interval [τ, σ̃ ]. Then on the interval [η̃, σ̃ ], both L and C are flat, and so by (33),

−b = �X[η̃,σ̃ ] = �W[η̃,σ̃ ] +
∫ σ̃

η̃

μR(s)ds ≥ �W[η̃,σ̃ ].

123

Author's personal copy



Queueing Systems

Hence |�W[η̃,σ̃ ]| ≥ b ≥ b1. As a result, themaximal admissible intervals are separated
by at least θt (W , b1). This shows θt (W , b1)(Nt − 1) ≤ t . Thus, by (36),

pC(t) ≤ x + W (t) + L(t)

≤ x + W (t) + 2Nt‖W‖t

≤ x + W (t) + 2

(
1 + t

θt (W , b1)

)
‖W‖t .

Thus

C(t) = Cμ,b(t) ≤ ζ(t) := x

p
+ 3

p

(
1 + t

θt (W , b1)

)
‖W‖t . (38)

This gives a bound on C(t) by the process ζ defined above, which does not depend
on μ and b ∈ [b1,∞) (but depends on b1).

Step 2 Show that there exists a constant c0 > 0 such that, for all sufficiently small
ε0 > 0,

E‖R‖t ≤ ε0 +
∫ ∞

ε0

P(ζ̃ (t) ≥ εμ)dε, where ζ̃ (t) = 2ζ(t)

θt (W , c0ε0)
. (39)

Fix t . Consider the event {‖R‖t ≥ ε}. On this event, consider the random times
τ = inf{s : Rs ≥ ε} and σ = sup{s < τ : Rs ≤ ε/2} (recall R(0) = 0). It follows
from the expression (34) for R that it is impossible for C to be flat in a neighborhood
(τ − δ, τ + δ) of τ , because R is strictly decreasing on any interval on which C is
flat and nonzero. A similar statement is valid for σ . Hence these two times are points
of increase in C and thus one must have Xσ = Xτ = b on this event. We have
�R[σ,τ ] = ε/2, �X[σ,τ ] = 0 and, by (34),

0 = �W[σ,τ ] − �R[σ,τ ] − p�C[σ,τ ] + �L [σ,τ ].

Also,

�R[σ,τ ] ≤ q�C[σ,τ ].

Hence �W[σ,τ ] + �L [σ,τ ] ≥ 2c0�R[σ,τ ] = c0ε, where c0 = (1 + pq−1)/2.
In the case�L [σ,τ ] = 0, the above argument shows that θt (W , c0ε) ≤ τ −σ . In the

case �L [σ,τ ] > 0, it follows that X hits zero some time in the interval [σ, τ ], hence,
arguing as in the previous step, W makes a displacement of b ≥ b1 in this interval.
Hence θt (W , b1) ≤ τ −σ . Combining the two cases, we have θt (W , c0ε∧b1) ≤ τ −σ .

Moreover, on the interval [σ, τ ], R ≥ ε/2. Hence
∫ t
0 Rsds ≥ (ε/2)θt (W , c0ε∧b1).

Using the last part of (24) and then the first step,

∫ t

0
Rsds ≤ μ−1Ct ≤ μ−1ζ(t).
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These two inequalities imply ζ(t) ≥ με
2 θt (W , c0ε ∧ b1). Hence

E‖R‖t =
∫ ∞

0
P (‖R‖t ≥ ε) dε

≤
∫ ∞

0
P

(
ζ(t) ≥ με

2
θt (W , c0ε ∧ b1)

)
dε

≤ ε0 +
∫ ∞

ε0

P
(
ζ(t) ≥ με

2
θt (W , c0ε ∧ b1)

)
dε.

The above is true for any choice of ε0 > 0. Consider ε0 for which c0ε0 < b1. Then
for any ε ∈ [ε0,∞) one has c0ε0 ∧ b1 ≥ c0ε0, hence the integral in the above display
is bounded from above by the integral

∫ ∞
ε0

P(ζ(t) ≥ με
2 θt (W , c0ε))dε. This equals∫ ∞

ε0
P(ζ̃ (t) ≥ εμ)dε. This shows (39).

Step 3 An estimate of ζ̃ .
We show that, given ε0, there exists a function u(t), for t ≥ 0, such that

cu :=
∫ ∞

0
u(t)e−αtdt < ∞ and E[ζ̃ (t)] ≤ u(t). (40)

The function u may depend on ε0 but not on μ or b. This suffices in order to deduce
the result by the following calculation. By (39) we have

E‖R‖t ≤ ε0 + E[ζ̃ (t)]
μ

≤ ε0
u(t)

μ
,

hence

E
∫ ∞

0
e−αt‖R‖tdt ≤

∫ ∞

0
e−αt [ε0 + μ−1u(t)]dt = α−1ε0 + μ−1cu .

Moreover, since u does not depend on μ or b (as long as it lies in [b1,∞)), we have

sup
b∈[b1,∞)

E
∫ ∞

0
e−αt‖Rμ,b‖tdt ≤ α−1ε0 + μ−1cu .

Taking now μ → ∞ then ε0 → 0 proves the result.
To prove (40), we note that

E ζ̃ (t) ≤ C

(
E

1

θt (W , c0ε0)
+ E

‖W‖t

θt (W , c0ε0)
+ E

‖W‖t

θt (W , c0ε0)θt (W , b1)

)
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for some constant C . Using the Cauchy–Schwartz and Hölder inequalities, the second
and third terms above are bounded by

{E[‖W‖2t ]}1/2{E[θt (W , c0ε0)
−2]}1/2,

{E[‖W‖3t ]}1/3{E[θt (W , c0ε0)
−3]}1/3{E[θt (W , b1)

−3]}1/3,

respectively. Now, W is a (ŷ, σ 2)-BM. In the special case where ŷ = 0, it is a martin-
gale, and thus Burkholder’s inequality applies, giving, for a ≥ 2, E[‖W‖a

t ] ≤ cata/2.
From this it follows for general ŷ that E[‖W‖a

t ] ≤ c̃a[ta/2+ ta]. As a result, it suffices
to show that, given δ > 0 and β ≥ 1,

E[θt (W , δ)−β ] ≤ C1t + C2, (41)

where C1 and C2 do not depend on t (but may depend on δ and β).
In what follows we prove (41). First, for any r0 > 0 we have

E[θt (W , δ)−β ] ≤ r0 +
∫ ∞

r0
P

(
θt (W , δ)−β > r

)
dr

= r0 +
∫ ∞

r0
P

(
θt (W , δ) < r−1/β

)
dr . (42)

Given t and s, we provide an estimate for P(θt (W , δ) < s). Consider the n0 subin-
tervals [ti , ti+1] of [0, t], where ti = i t/n0, i = 0, 1, . . . , n0 − 1. Denote by �i the
oscillation of W within the i th interval, namely �i = supu,v∈[ti ,ti+1] |Wu − Wv|.
Assume t

n0
≥ s

2 . Then it follows from the definition of θ that on the event

{θt (W , δ) < s} there exists i ≤ n0 − 1 such that �i ≥ δ
3 . Setting n0 = [ 2t

s ] and
using this argument along with the union bound shows

P(θt (W , δ) < s) ≤ n0P

(
�0 ≥ δ

3

)
≤

n0P

(
max

v≤t/n0
Wv ≥ δ

6

)
+ n0P

(
max

v≤t/n0
(−Wv) ≥ δ

6

)
. (43)

Denote the centered version of the BM W by W̃t := Wt − ŷt . It is known [17] that
�u := maxv∈[0,u] W̃v − W̃u is equal in distribution to |W̃u |. Now,

�u = max
v∈[0,u](Wv − ŷv) − W̃u ≥ max

v∈[0,u] Wv − W̃u − |ŷ|u.

Hence

P

(
max

v≤t/n0
Wv ≥ δ

6

)
≤ P

(
�t/n0 ≥ δ

18

)
+ P

(
W̃t/n0 ≥ δ

18

)
+ 1{|ŷ| t

n0
≥ δ

18 }.
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Using this in (43) along with the same estimate for maxv≤t/n0(−Wv), we obtain

P(θt (W , δ) < s) ≤ 4n0P

(
|W̃t/n0 | ≥ δ

18

)
,

provided that

|ŷ| t

n0
<

δ

18
. (44)

Now, W̃t/n0 is a normal RV with mean zero and variance tσ 2/n0. If N is a (0, σ̄ 2)-

normal RV then P(N > A) ≤ σ̄√
2π A

e−A2/2σ̄ 2 ≤ e−A2/2σ̄ 2
, provided A > σ̄ . Hence

P

(
|W̃t/n0 | ≥ δ

18

)
≤ 2e

− δ2n0
648tσ2 , (45)

provided

324σ
t

n0
< δ2. (46)

Using 2t
s ≤ n0 ≤ 2t

s + 1 we obtain

P(θt (W , δ) < s) ≤ 8

(
2t

s
+ 1

)
e
− δ2

324σ2s . (47)

Moreover, both (44) and (46) hold when s < s0, where s0 is a constant that depends
only on δ and the parameters ŷ and σ (not on t). Thus, if we consider the integrand of
(42) then we can use the above estimate with r−1/β = s, and the condition s < s0 is
assured to hold if one lets r0 = s−β

0 . Again, r0 thus selected depends on δ, ŷ, σ and β

but not on t . The estimate then gives

E[θt (W , δ)−β ] ≤ r0 +
∫ ∞

r0
8(2tr1/β + 1)e− δ2

324σ2
r1/βdr ≤ C1t + C2.

This shows (41). The result follows. ��
Lemma 4.2 One has infμ∈(0,∞) Cμ,b(1) → ∞ a.s., as b → 0. Consequently,

lim
b→0

inf
μ∈(0,∞)

J b,μ
DOP[x; c1, c2] = ∞.

Proof Letμ and b be given, and let ε > b. It follows directly from (24) that if, for some
0 ≤ s < t, one has W (t)−W (s) > ε−b, thenCμ,b(t)−Cμ,b(s) > ε−b. Let ti = ε2i
for i = 0, 1, . . . , nε, where nε = [1/ε2]. Let N (ε) = #{i : δi > ε, i = 1, . . . , nε},
where δi = Wti −Wti−1 . It follows thatC

μ,b(1) ≥ (ε−b)N (ε). Now, δi ∼ N (ε2 ŷ, ε2),
and so by the LLN and Brownian scaling, N (ε)/nε → p0 a.s. as ε → 0, where
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p0 = P(N (0, 1) > 1) > 0. Selecting ε = ε(b) = b1/2, we obtain

inf
μ∈(0,∞)

Cμ,b(1) ≥ (ε(b) − b)nε(b)

N (ε(b))

nε(b)

≥ 1

2

b1/2

b

N (ε(b))

nε(b)

,

and the RHS above converges to ∞ a.s. ��

Lemma 4.3 Assume the RVs IA(1) and ST(1) have a finite 6 + ε moment, for some
small ε > 0. For every k > 0 there exists b1 > 0 and n1 such that, if b ∈ (0, b1) and
n > n1, then, for all μ,

J n,μ,b ≥ k.

Moreover, fix μ ∈ (0,∞). Then given ε > 0 there exist b2 ∈ (0,∞) and n0 such that,
if b > b2 and n > n0, one has

J n,μ,b ≥ J n,μ,b2 − ε.

Proof For the first assertion, recall Eq. (14), by which (X̂n, L̂n, Ĉn) = 
0,b̂n (Ẑ n).

Also, recall from (18) that Z̃ n(t) = ξn(t) + ∫ t
0 μR̂n(s)ds, where Z̃ n and Ẑ n have the

same weak limit. Given ε > 0 and b < ε/2, we have b̂n < ε/2 for all large n. Write
osc+( f ; s, t) = sups≤v<u≤t ( f (u) − f (v)) and ti = iε2 for i = 0, 1, 2, . . . , [ε−2] =:
Nε. Recalling that ξn converges weakly to a (nondegenerate) BM, and using Brownian
scaling, it follows that for all sufficiently large n one has

E
Nε∑

i=1

1{osc+(ξn;ti−1,ti )>ε} > cε−2,

where c > 0 does not depend on ε. Now, it is a property of the Skorohod map that
on the event osc+(ξn; ti−1, ti ) > ε, one has Ĉn(ti ) − Ĉn(ti−1) > ε − b̂n > ε/2,
regardless of the value of μ. This shows that EĈn(1) > cε−1/2 (for all sufficiently
large n, all b < ε/2 and all μ). Since ε is arbitrary, we can achieve J n,μ,b ≥ k for any
given k, by selecting sufficiently small ε.

For the second assertion, it suffices to prove that, for fixed μ,

lim
b2→∞ lim sup

n→∞
sup

(b,b′)∈(b2,∞)2
|J n,μ,b − J n,μ,b′ | = 0. (48)

It is argued below that, for small enough (fixed) ε > 0, for some pn(t) that satisfies,
for n > n0 and all t , pn(t) ≤ p(t), where p is a polynomial in t , one has

sup
b>1

E[Ĉn,μ,b(t)1+ε] ∨ E[X̂n,μ,b(t)1+ε] ≤ pn(t). (49)
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Let τ n(b) = inf{t : Ĉn,μ,b > 0}. Then for every b ≥ b2 one has (X̂n,μ,b, Ĉn,μ,b)(t) =
(X̂n,μ,b2 , Ĉn,μ,b2)(t) for all t ∈ [0, τ n(b2)). Hence we can write, for any T and any
(b, b′) ∈ (b2,∞)2,

E
∫ ∞

0
e−αt |Ĉn,μ,b − Ĉn,μ,b′ |dt

≤ E

[
1{τ n(b2)<T }

∫ T

0
e−αt |Ĉn,μ,b − Ĉn,μ,b′ |dt

]
+ 2

∫ ∞

T
e−αt pn(t)dt

≤ P(τ n(b2) < T )(1+ε)/ε sup
b>b2

∫ T

0
e−αt [E(Ĉn,μ,b)1+ε]1/(1+ε)dt + 2

∫ ∞

T
e−αt pn(t)dt

≤ P(τ n(b2) < T )(1+ε)/ε

∫ T

0
e−αt pn(t)1/(1+ε)dt + 2

∫ ∞

T
e−αt pn(t)dt

≤ cP(τ n(b2) < T )(1+ε)/ε + c
∫ ∞

T
e−αt p(t)dt,

where c is a finite constant. By similar considerations, the expression on the last line
is an upper bound on E

∫ ∞
0 e−αt |X̂n,μ,b − X̂n,μ,b′ |dt . Thus

sup
(b,b′)∈(b2,∞)

|J n,μ,b − J n,μ,b′ | ≤ cP(τ n(b2) < T )(1+ε)/ε + c
∫ ∞

T
e−αt p(t)dt .

(50)

Now, for t < τ n(b2) and all b > b2, equations (12) are valid with R̂n(t) = 0. It is rou-
tine to obtain from these equations that, given any T , limb2→∞ lim supn→∞ P(τ n(b2)
< T ) = 0. Thus, if we take n → ∞ in (50) first, then b2 → ∞ and finally T → ∞,

we obtain (48).
It remains to show (49). The argument uses some of the ideas from the proof of

Lemma 4.1.
We use a general upper bound on moments of a centered renewal process from [18,

Th. 4]. This result states that if H is a renewal process with inter-arrival distribution
that has reciprocal mean λ and possesses a finite m-th moment, for some m ≥ 2, and
one defines the centered diffusion-scaled process Ĥn(t) = n−1/2(H(nt) − λnt), then

E[‖Ĥn‖m
t ] ≤ c(1 + tm/2), (51)

where c does not depend on n or t . We can rescale time according to t = nas, set
N = n1+a , and then send a → ∞ to obtain from (51) the bound

E[‖Ĥ N ‖m
s ] ≤ c(N−m/2 + sm/2), (52)

where, again, c does not depend on N or s. To apply this bound to Ân (equivalently, to
Ŝn), note that Ân(t) = n−1/2(A(λnt) − λnt) can be written as cnλ

−1/2
n A(λnt) − λnt ,

where cn = (λn/n)1/2. Since cn converges to a positive constant, it follows that the
moments of Ân(t) admit a similar bound. That is,
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E[‖ Ân‖m
t ] ≤ c(n−m/2 + tm/2). (53)

First, it follows from the definition of Ân
2, (2), (3) and (10) that Ĉn(t) − Ân

2(t) =
pĈn(t) + en

2(t), where en
2(t) = n−1/2 ∑Ct

i=1 ξ̃i , ξ̃i = −ξi + q. We have E ξ̃i = 0.
The process en

2 is a martingale and from Burkholder’s inequality we have E[‖en
2‖2t ] ≤

cE[en
2 , en

2 ]t . The jumps of the process en
2 are of size n−1/2 and their number is bounded

by Cn
t , hence the quadratic variation process [en

2 , en
2 ]t is bounded by n−1C(t). Thus

E[‖en
2‖2t ] ≤ cn−1ECn(t) = cn−1/2EĈn(t).

Let ξ̃n(t) = X̂n(0) + ŷnt + Ân(t) − D̂n
1 (t) and recall the notation ξn from (18),

by which we have ξn = ξ̃n + en
1 . By summing both parts of (12), using R̂n(0) = 0 ≤

R̂n(t),
X̂n(t) + pĈn(t) ≤ ξ̃n(t) + L̂n(t) + en

2(t). (54)

This bound may be viewed as an analogue of (36) in the proof of Lemma 4.1. We
provide a bound on L̂n by the ideas from that proof. The argument that leads to
(37) over a maximal admissible interval [σ, τ ] (defined similarly) gives �L̂n[σ,τ ] ≤
−�ξ̃n|[σ,τ ] + �en|[σ,τ ]. Along the lines leading to the bound (38) we then obtain

X̂n(t) + Ĉn(t) ≤ c + c‖ξ̃n‖t + c
t‖ξn‖t

θt (ξn, b)
. (55)

Now, given ε > 0,

E

[
‖ξn‖1+ε

t

θt (ξn, b)1+ε

]
≤ E[‖ξn‖2+2ε

t ]1/2E[θt (ξ
n, b)−2−2ε]1/2. (56)

To bound the second factor above, use a variation of (42):

E[θt (ξ
n, b)−β ] ≤ 1 +

∫ ∞

1
P(θt (ξ

n, b) < r−1/β)dr . (57)

The bound (43) can be adapted. We choose n0 the same way as in the proof of
Lemma 4.1. Clearly (45) is not valid, as the tails do not behave as a Gaussian RV.
We replace this estimate by the following bound: In view of (53) and the same bound
for the process Ŝn , we have

E[‖ξ̃n(·) − X̂n(0)‖m
t ] ≤ c(n−m/2 + t−m/2).

Hence,

P(|ξ̃n(t/n0) − X̂n(0)| > b) ≤ P(|ξ̃n(t/n0) − X̂n(0)| > b) ≤ b−m(n−m/2 + tm/2n−m/2
0 ).
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Again, using 2t
s ≤ n0 ≤ 2t

s + 1 gives

P(θt (ξ
n, b) < s) ≤ 8

(
2t

s
+ 1

)
b−mtm/2n−m/2

0 ≤ cb−m t

s
sm/2 = cts

m
2 −1.

As before, choosing s = r−1/β and m/2 − 1 = m′ gives

1 + ct
∫ ∞

1
r−m′/βdr

as an upper bound on (57). The exponent −m′/β is required to be less than −1 so that
r−m′/β is integrable, where β = 2+2ε. This can be achieved by taking m = 6+ δ for
some δ > 0, and the assumption on the finite 6+ ε moments of the renewal processes.
Combining this bound with (55) and (56) gives that E[X̂n(t) + Ĉn(t)] is bounded by
a polynomial independent of n. This completes the proof. ��
Proof of Proposition 4.1 Clearly, the diffusion model (24) implies that

X(t) ∈ [0, b], t ≥ 0,
∫

[0,∞)

I{Xt >0}dLt = 0,
∫

[0,∞)

I{Xt <b}dCt = 0.

Identities (34) are also valid for the same model. If we consider the first equation in
(34) with the above display, we see that the following holds:

(X , L, pC) = 
0,b[x + W − R]. (58)

Let b = bHT[c1, c2
p ]. Then VHT[x; c1,

c2
p ] = J b

HT[x; c1,
c2
p ]. Let (X , L, C, R)

denote the processes from the DOP model (24) and (X̃ , L̃, C̃) those from the HT
model (28), where, in both cases, a buffer of size b is used. Then the former tuple
satisfies (58), and the latter satisfies

(X̃ , L̃, C̃) = 
0,b[x + W ]. (59)

The Lipschitz property (8) implies that for any μ

‖Xμ,b − X̃b‖t + ‖pCμ,b − C̃b‖t ≤ c
‖Rμ,b‖t , t ≥ 0. (60)

Hence, by Lemma 4.1,

lim
μ→∞ E

∫ ∞

0
e−αt

(
|Xμ,b

t − X̃b
t | + |pCμ,b

t − C̃b
t |

)
dt = 0. (61)

By the definition of JDOP and JHT and the above convergence, it follows that

lim
μ→∞ Jμ,b

DOP[x; c1, c2] = J b
HT

[
x; c1,

c2
p

]
. (62)
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Hence

lim sup
μ→∞

V μ
DOP[x; c1, c2] ≤ J b

HT

[
x; c1,

c2
p

]
= VHT

[
x; c1,

c2
p

]
. (63)

For the reverse inequality, note first that asμ → ∞, the optimal b does not converge
to 0. Indeed, by Lemma 4.2 and the bound (63) above, there exists 0 < b1 < ∞ such
that, for all large μ, V μ

DOP[x; c1, c2] = infb∈[b1,∞) J b,μ
DOP[x; c1, c2].

Given ε > 0, let μ̄ be so large that (i) V μ̄
DOP < lim infμ→∞ V μ

DOP + ε, (ii) V μ̄
DOP >

J b̄,μ̄
DOP − ε for suitable b̄ ∈ [b1,∞), and (iii) supb∈[b1,∞) E

∫ ∞
0 e−αt‖Rb,μ̄‖tdt < ε,

where the last item is possible thanks to Lemma 4.1.
As before, let (X , L, C, R) denote the processes from theDOPmodel and (X̃ , L̃, C̃)

those from the HT model, where b is set to b̄ specified above. Then (58) and (59) are
valid with b = b̄ and hence so is (60). In particular,

E
∫ ∞

0
e−αt

(
|X μ̄,b̄

t − X̃ b̄
t | + |pC μ̄,b̄

t − C̃ b̄
t |

)
dt ≤ c
ε.

As a result, ∣∣∣∣J μ̄,b̄
DOP[x; c1, c2] − J b̄

HT

[
x; c1,

c2
p

]∣∣∣∣ ≤ c3ε,

where c3 is a constant that depends only on c1, c2 and c
 . Thus

lim inf
μ→∞ V μ

DOP[x; c1, c2] ≥ V μ̄
DOP[x; c1, c2] − ε ≥ J b̄

HT

[
x; c1,

c2
p

]
− (1 + c3)ε

≥ VHT

[
x; c1,

c2
p

]
− (1 + c3)ε.

The result follows on taking ε → 0. ��
Proof of Theorem 4.2 Let ε > 0 be given. As in the proof of Proposition 4.1, let
b = bHT[c1, c2

p ]. It follows from (62) that, for all μ0 sufficiently large,

Jμ0,b
DOP [x; c1, c2] ≤ VHT

[
x; c1,

c2
p

]
+ ε.

Fix μ1 so large that the above inequality holds for all μ0 > μ1, and

lim sup
μ→∞

lim sup
n→∞

nV n,μ < lim sup
n→∞

V n→∞,μ0 + ε

for all μ0 > μ1.
For any n, J n,μ0,b is given by (31) as E

∫ ∞
0 e−αt (c1 X̂n(t) + c2Ĉn(t))dt and, by

Theorem 3.1, (X̂n, Ĉn) ⇒ (X , C), where the latter processes correspond to the DOP
model (24). By an estimate similar to the one from Step 4 in the proof of Theorem
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4.1 of [8], the rescaled costs
∫ ∞
0 e−αt (c1 X̂n(t)+c2Ĉn(t))dt are uniformly integrable.

Therefore wemay deduce from the weak convergence that J n,μ0,b → Jμ0,b
DOP [x; c1, c2]

as n → ∞. Thus

lim sup
μ→∞

lim sup
n→∞

V n,μ ≤ lim sup
n→∞

V n,μ0 + ε

≤ lim sup
n→∞

J n,μ0,b + ε = Jμ0,b
DOP [x; c1, c2] + ε

≤ VHT

[
x; c1,

c2
p

]
+ 2ε.

Since ε > 0 is arbitrary, we obtain

lim sup
μ→∞

lim sup
n→∞

V n,μ ≤ lim sup
μ→∞

lim sup
n→∞

J n,μ,b ≤ VHT

[
x; c1,

c2
p

]
. (64)

Next, given ε > 0, let μ0 be so large that (i) V μ0
DOP[x; c1, c2] is ε-close to

VHT[x; c1,
c2
p ], and (ii) lim infμ→∞ lim infn→∞ V n,μ is ε-close to lim infn→∞ V n,μ0 .

Recall the relation (32) and let b̃n be a sequence for which

lim inf
n→∞ J n,μ0,b̃n < lim inf

n→∞ V n,μ0 + ε.

It follows from (64) and Lemma 4.2 that, for some b1 > 0, one has b̃n ≥ b1 > 0
for all n large. Moreover, by Lemma 4.3, we may assume without loss of general-
ity that there exists b2 ∈ (b1,∞) such that b̃n ≤ b2 for all n large. Hence b̃n are
bounded away from zero and infinity. Consider a subsequence along which b̃n con-
verges, and denote its limit by b ∈ (0,∞). Then along this subsequence we have the
convergence (X̂n, Ĉn) ⇒ (X , C), where the latter is the DOP with buffer size b. In
view of Remark 3.1, this is a consequence of Theorem 3.1. Hence, by Fatou’s lemma,
lim infn→∞ J n,μ0,b̃n ≥ Jμ0,b

DOP . Therefore

lim inf
μ→∞ lim inf

n→∞ V n,μ ≥ lim inf
n→∞ V n→∞,μ0 − ε

= lim inf
n→∞ J n,μ0,b̃n − ε

≥ Jμ0,b
DOP [x; c1, c2] − ε

≥ V μ0
DOP[x; c1, c2] − ε

≥ VHT

[
x; c1,

c2
p

]
− 2ε.

Sending ε → 0 and combining this bound with (64) gives the result. ��
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4.3 Proofs: the limit as� → 0

Here we prove Proposition 4.2 and Theorem 4.3.
If we set μ = 0 in the DOP then the DOP and the HT problem become equivalent.

We show that theμ → 0 limit is identical to settingμ = 0. Proposition 4.2 is therefore
a continuity result for V μ

DOP.
Since x , c1 and c2 are fixed, we omit these from the notation.

Lemma 4.4

lim
μ→0

sup
b∈(0,∞)

|Jμ,b
DOP − J b

HT| = 0.

Proof Given b and μ, let (X , L, C, R) and (X̃ , L̃, C̃) denote the processes from the
DOP model (24) and the HT model (28), respectively. It follows from (8) that

‖X − X̃‖t + ‖L − L̃‖t + ‖C − C̃‖t ≤ c
μ

∫ t

0
Rsds, t ≥ 0, (65)

where we recall that c
 does not depend on b. To obtain a bound on the RHS of the
above display we again use the Lipschitz property of the Skorokhod map and (24), by
which

Ct ≤ c


(
x + ‖W‖t + μ

∫ t

0
Rsds

)
.

Also, by (24), Rt ≤ Ct for all t ≥ 0. Hence Ct ≤ c
(x + ‖W‖t + μ
∫ t
0 Csds), and

so, by Gronwall’s lemma,

Rt ≤ Ct ≤ c
(x + ‖W‖t )e
c
μt .

As a result,

E
∫ ∞

0
e−αt (‖X − X̃‖t + ‖C − C̃‖t )dt ≤ γ (μ) := E

∫ ∞

0
c2
μt(x + ‖W‖t )e

(c
μ−α)tdt .

Note that γ (μ) does not depend on b. Hence

sup
b∈(0,∞)

|Jμ,b
DOP − J b

HT| ≤ (c1 + c2)γ (μ).

Since γ (μ) → 0 as μ → 0, the result follows. ��
Proof of Proposition 4.2 Let b = bHT[c1, c2]. Then, by Lemma 4.4,

lim sup
μ→0

V μ
DOP ≤ lim sup

μ→0
Jμ,b
DOP = J b

HT = VHT.
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Next, for a lower bound on lim infμ→0 V μ
DOP, let ε > 0 be given. Fix μ0 > 0 be so

small that (i) V μ0
DOP < lim infμ→0 V μ

DOP + ε, and (ii) supb∈(0,∞) |Jμ0,b
DOP − J b

HT| < ε,

where in (ii) we used Lemma 4.4. Let b0 be chosen so that V μ0
DOP > Jμ0,b0

DOP − ε. Then

lim inf
μ→0

V μ
DOP ≥ V μ0

DOP − ε ≥ Jμ0,b0
DOP − 2ε ≥ J b0

HT − 3ε ≥ VHT − 3ε.

The result follows on taking ε → 0. ��

Proof of Theorem 4.3 Based on Proposition 4.2, the proof of Theorem 4.3 is similar to
the proof of Theorem 4.2 based on Proposition 4.1. Hence the details are omitted. ��

5 Simulation results

Here we describe the results of simulation runs that show the dependence of the value
V and the optimal barrier b on the retrial rate μ.

Figure 3a, b shows the dependence of the buffer size and, respectively, the value
on μ as it ranges between 0 and 5000. Figure 3c–f shows a closer look at extreme
cases: around zero (specifically, for μ in [0, 0.01]) and around 5000 (specifically, in
the interval [4990, 5000]). Each graph consists of three lines corresponding to three
values of p. The values are p = 0.1, 0.5, 0.9.

Fig. 3 Optimal buffer size and value
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The graphs suggest that b and V increase with μ, whereas they decrease with p.
The monotonicity of V can be explained heuristically. Asμ grows, retrying customers
return faster to the main station. Because the cost is discounted, this contributes to
more rejection cost as well as the queue length cost, resulting in a greater overall cost.
The monotonicity of b is less obvious. To reduce the rejection costs caused by an
increase in retrials, it is clear that it is profitable to increase the buffer size. However,
this also contributes to an increased queue length. The monotonicity suggested by the
graphs at Fig. 3a indicates that the former factor is more significant than the latter.
Similarly, as p decreases, the fraction of retrials increases, and a similar heuristic may
be valid.

Another property demonstrated by the graphs is that V and b converge to the same
limit for μ small, while their large μ limits depend on p. This agrees with our results
from Sect. 4, where we showed that the μ → 0 limit is characterized by the Harrison–
Taksar problem with parameters (c1, c2), and the μ → ∞ limit corresponds to this
problem at (c1, c2/p). It is thus clear that the former asymptotics should not depend
on p, while the latter should.
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