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a b s t r a c t

Measuring occurrence times of random events, aimed to determine the statistical properties of the
governing stochastic process, is a basic topic in science and engineering, and has been the subject of
numerous mathematical modeling approaches. Often, true statistical properties deviate from measured
properties due to the so called dead time phenomenon, where for a certain time period following
detection, the detection system is not operational. Understanding the dead time effect is especially
important in radiation measurements, often characterized by high count rates and a non-reducible
detector dead time (originating in the physics of particle detection). The effect of dead time can be
interpreted as a suitable rarefied sequence of the original time sequence.

This paper provides a limit theorem for a high rate (diffusion-scale) counter with extendable (Type II)
dead time, where the underlying counting process is a renewal process with finite second moment for
the inter-event distribution. The results are very general, in the sense that they refer to a general inter
arrival time and a random dead time with general distribution.

Following the theoretical results, we will demonstrate the applicability of the results in three appli-
cations: serially connected components, multiplicity counting and measurements of aerosol spatial
distribution.
© 2019 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

1.1. General introduction

Counting and measuring occurrence times of random events in
order to estimate statistical properties of underlying stochastic
processes is a basic topic in science and engineering, and has been
the subject of numerous mathematical modeling approaches. One
of the most prominent problems in high rate measurement is the
dead time phenomenon, where the sensing device takes a certain
time to recover after each detection, during which the counter is
not functional. The effect of dead time on the detection signal can
be interpreted as the process of rarefying the sequence of occur-
rence times, by removing events within the dead time period
following a previous event. One distinguishes two types of dead
lear Research Center of the

by Elsevier Korea LLC. This is an
time models [1], In a type I counter, also referred to as non-
extendable dead time, only counts that are within a dead time
period following an actual detection are lost. Thus, for an event to
inflict a dead time, it must appear in the rarefied sequence. In a type
II counter, also called an extendable dead time, counts within a
dead time period following an original event (detected or not) are
lost. Thus, all events in the original sequence inflict a dead time. In
nuclear engineering, type II counters are sometimes referred to as a
paralyzing dead time, due to the fact that for sufficiently high count
rates, the counter will be totally saturated, and the count rate will
drop to 0. The effect of a type II counter, that is the topic of this
work, may be described by considering a sequence L of random
variables 0� t1 < t2 </, where tn gives the occurrence time of the
nth event after time 0. Let tnþ1 � 0 denote the dead time following
the nth detection (the duration of the dead time might also be
random). The rarefied sequence is obtained from L by

L
0 ¼ ft1g∩fti 2L jti � ti�1 � ti; i�2g: (1)

Equation (1) is simply a formal way of removing all detections
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for which the waiting time from the previous detection is less than
the dead time. We associate a counting process with each of the
sequences L and L

0
. Namely,1 RðtÞ ¼ #fi : ti 2L ; ti � tg and

R
0 ðtÞ ¼ #fi : ti 2L

0
; ti � tg. The statistical properties of R

0 ðtÞ are of
interest. It is clear that they depend not only on the count rate, but
on the statistical properties of RðtÞ; this is true even for the average
count, and certainly for the higher moments. If the waiting times
between consecutive events (or inter-arrival time) in L form a
sequence of Independent and Identically Distributed (IID) random
variables, then the counting process RðtÞ is referred to as a renewal
process [2]. The theory of renewal processes is a well developed
theory with numerous application, and is a basic concept in the
present study.

The practical significance of the dead time phenomenon has
been widely recognized. It is observed in all types of measurement
systems provided that the count rate is sufficiently high. Since high
detection rates are very often in radiation measurements, there is a
wide treatment of the subject in radiation literature [3e5] (to state
a few), but questions of identifying and compensating for the dead
time have also been studied in control theory [6], signal processing
[7], medical imaging [8], mass spectrometry [9] and more.

The contribution of this paper is a limit theorem for the detec-
tion count distribution R

0
in a type II counter. The technique relies

on providing formulas for the first and second moments of the
waiting time between consecutive detections (also called the inter
arrival time) in terms of thewaiting time distribution of the original
sequence of events and the dead time distribution, and on a
limiting result for renewal processes, which will give an approxi-
mation formula for the average count rate as well as a Central Limit
Theorem (CLT) approximation of the count distribution. Clearly,
these approximations will be effective if the count rate is suffi-
ciently high (with respect to the measurement time). In the
renewal process literature, such approximations are referred to as
“diffusion limits”, and their applicability region is referred to as the
“diffusion scale”. For all practical purposes, the diffusion scale is
obtained if the number of counts is sufficiently high.

1.2. Aims and motivation

The foundations of themathematical treatment to the dead time
phenomenon were laid in a series of papers by Feller [10] (1948),
Hammersley [11] (1953), Takacs [1] (1956) and Pyke [12](1957). Not
surprisingly, the deep interest in the dead time phenomenon came
right after the rapid emergence of nuclear engineering, since
radioactive measurements are often characterized by very high
count rates, while the radiation detectors suffer from a non
reducible dead time, caused by the physics of particle detection.
These early works have presented seminal results in terms of the
mathematical formalism and the existence of limit distributions,
allowing us to refer to issues as the detector availability and average
count losses. But often, from a practical point of view, numeric
results are restricted to simplifying assumptions, such as expo-
nential inter-arrival time, constant dead time and more. It should
be mentioned that in the perspective of the 50's of the previous
century, the assumption of an exponential inter-arrival time (which
resolves to a Poisson distribution of the counts) seems to be fair,
since in basic radioactive measurements, caused by simple radio-
active decay, the inter-arrival time is indeed exponential.

As time went by, further and more elaborated examples of dead
time effect emerged, where in many cases we can no longer assume
an exponential inter-arrival waiting time; some still in the context
of nuclear engineering, such as reactor noise experiments [13] and
1 the symbol # indicates to the size of a (finite) set.
neutron multiplicity counting [14], but examples are also found in
aerosol distribution and atmospheric sciences [15] (A list of dead
time problems with non-Poisson count distribution is presented in
Ref. [16]).

Clearly, the state of the art did not stay still since the 1950's. But
the vast majority of later studies on the dead time effect are very
narrow by nature, treating the dead time in a very practical aspect
and in the context of a very specific process (often suggesting
experimental or phenomenological corrections) and the theoretical
problem, as described in the early papers, is rarely met. A recent
literature review is provided in Ref. [17].

In the present study, we return to a more classic approach, of-
fering rigorous mathematical analysis of a very general setting, but
with a clear practical motivation. On one hand, we analyze what is
perhaps the most general problem: we consider a general inter-
arrival time and a general dead time distribution, and on the
other hand, we will give practical examples for the theoretical
model. As such, the main contribution of paper will be divided into
two parts: in sections 2 and 3 we will discuss the general problem
and provide the general formula, and in section 4 we will give
examples of physical problems that are solved by the presented
formulas.
2. Preliminaries and scientific background

2.1. Counting and renewal processes

The object in our study is associated with two sequences of
random variables L ¼ ft1; t2;…; tn;…g and t ¼ ft1; t2;…; tn;…g
with the following properties:

1. ftng∞n¼1 is monotonically increasing.
2. Denoting qn ¼ tnþ1 � tn, fqng∞n¼1 are (positive) IID random var-

iables, possessing first and second moments.
3. ftng∞n¼1 are non-negative IID random variables, possessing first

and second moments.

Thus tn indicates the time of the nth detection (or, in a more
general setting, the nth event), qn gives the waiting time between
the nth and ðnþ1Þ event and ftng∞n¼1 describes the dead time
following the nth detection. The Cumulative Distribution Function
(CDF) of qi will be denoted by FqðtÞ and the CDF of ti by FtðtÞ.

Throughout the study we will use the indicator function I of an
event A: IA ¼ 1 if A occurs, and IA ¼ 0 otherwise. We define the
stochastic process:

RðtÞ¼
X∞
n¼1

Iftn�tg; t � 0; (2)

Eq. (2) might seem hard to follow, but it is simply a counter of
how many events have occur prior to t: the indicator function is
either 0 or 1, and a detection contributes to the sum if and only if
the indicator is 1- which means that thedetection is prior to t. Since
fqng∞n¼1 are IID, the stochastic process RðtÞ forms a renewal process.
We will often refer to RðtÞ as the counter associated with L .

The Renewal function, or average counter is defined by mðtÞ ¼
E½RðtÞ�, and satisfies the elementary renewal theorem,

lim
t/∞

mðtÞ
t

¼ 1
E½q1�

: (3)

An even stronger version is the central limit theorem for renewal
process, stating the following (Th. 14.6 of [2]). Let ‘0’ denote
convergence in distribution, and N ð0;1Þ denote the standard
normal distribution.
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Theorem 1. Let RðtÞ be a renewal process corresponding to waiting
times fqigi ¼ 1∞. Denote m ¼ E½q1� and s2 ¼ Var½q1�<∞. Then, as t/
∞,

RðtÞ � t
m

s
ffiffiffiffiffiffiffiffiffiffi
t
�
m3

q 0N ð0;1Þ:

The two aforementioned theorems provide first and second
order approximations for the counting process RðtÞ as the mea-
surement time t gets large. We may state these approximations as
follows. If t[E½q� then

mðtÞz t
E½q1�

; RðtÞzN

 
1

E½q1�
t;
Var½q1�
E½q1�3

t

!
: (4)

Note that these two approximations (often referred to as the
diffusion scale approximation) require only the knowledge of the
first and second moments of the waiting time. The first equation in
(4) is fairly intuitive: it simply states that for large measurement
times, the average number of detections is simple the measure-
ment time divided by the average waiting time between consecu-
tive counts. For the variance we do not know how to give a simple
intuition.
2.2. Formal representation of detection counting

Recall that in ameasurement systemwith extendable dead time,
the recorded events form a rarefied sequence of L , defined by

equation (1). We denote the rarefied sequence byL
0 ¼ ft01;t

0
2;…;t

0
n;

…g. The waiting times between consecutive events in the rarefied

sequence are given by q
0
i ¼ t

0
iþ1 � t

0
i. It is not hard to see that if

fqig∞i¼1 and ftig∞i¼1 are IID then fq0
ig

∞
i¼1 are IID as well. The counting

process R
0 ðtÞ, corresponding to fq0

ig is thus also a renewal process.
In order to use the result (3) and Theorem 1, so as to obtain a large
time approximation for R

0 ðtÞ, we need to compute the mean and

variance of q
0
1. This is carried out in x3.

Since L
0
is a rarefaction of L , there exists a unique monotone

function f : N/N such that for all n, t
0
n ¼ tfðnÞ (in other words, fðnÞ

is the location of t
0
n in the original time series). Let the nth dead time

chain length be defined by
q
0
1 ¼

X∞
n¼0

0
@
0
@Yn

j¼1

Ifqj�tjg

1
AIfqnþ1 > tnþ1g

Xnþ1

j¼1

qj

1
A

¼
X∞
n¼0

0
@Xn

j¼1

Ifqj�tjgqj

0
@ Yn

k¼1;ksj

Ifqk�tkg

1
AIfqnþ1 > tnþ1g þ

 Yn
k¼1

Ifqkleqtkg

!
Ifqnþ1 > tnþ1gqnþ1

1
A:

(7)
Ln¼max
n
[
���qfðnÞ<tfðnÞ;qfðnÞþ1<tfðnÞþ1;…;qfðnÞþ[�1<tfðnÞþ[�1

o
¼fðnþ1Þ�fðnÞ�1:
Then Ln is the number of lost detections between t
0
n and t

0
nþ1.

The waiting time between t
0
n and t

0
nþ1 is explicitly given by

q
0
n ¼

XLn
[¼0

qfðnÞþ[: (5)

Clearly, fq0
ng is a series of IID random variables. The simple

decomposition above of fq0
ng in the rarefied series will prove useful

when we compute the first two moments of q
0
1.

In what follows, we keep the notation R
0 ðtÞ for the renewal

process corresponding to thewaiting times fq0
ng, denote its renewal

function by m
0 ðtÞ. We refer to R

0 ðtÞ as the Type II counter associated
with fqng under a dead time series t.

In our future analysis, wewill always assume the that at time t ¼
0 there is a detection (or equivalently, that t1 ¼ 0). This will
simplify the analysis, because other wise q

0
1 might have a different

distribution than q
0
n (n>1). This does not effect the validity of the

results, since at a high rate approximation, the first waiting time is
negligible.
3. Large time approximation for type II counters

3.1. The first and second moments of q
0
1

The waiting time between the first and second detections is a
random variable that depends on the length of the dead time chain,
L1, and on the first L1 þ 1 waiting times, as presented in equation
(5). Specifically, the first accumulated waiting time is given by q

0
1 ¼

q1 þ q2 þ …þ qL1 þ qL1þ1. It is convenient to write this as

q
0
1 ¼

X∞
n¼0

IfL1¼ngðq1 þ q2 þ…þ qn þ qnþ1Þ

¼
X∞
n¼0

0
@IfL1¼ng

Xnþ1

j¼1

qj

1
A:

(6)

Since L1 ¼ n if and only if qj � tj for all j ¼ 1;2;…;n and
qnþ1 > tnþ1, we have

IfL1¼ng ¼
0
@Yn

j¼1

Ifqj�tjg

1
AIfqnþ1 > tnþ1g

and thus
We now fix the values of the random sequence
t ¼ ft1; t2;…; tn;…g and compute the conditional expectation
E½q0

1
��t�. By the independence of fqig∞i¼1, we have



E
h
q
0
1

���ti¼ X∞
n¼0

 Xn
j¼1

E
h
Ifqj�tjgqj

���ti
0
@ Yn

k¼1;ksj

Pðqk � tkjtÞ
1
APðqnþ1 > tnþ1jtÞ

þ
"Yn
k¼1

Pðqk � tkjtÞ
!
E
h
Ifqnþ1 > tnþ1jtgqnþ1

���ti
#
:

(8)
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Denote Ptk ¼ Pðqk � tkjtÞ. Then

Ptk ¼ FqðtkÞ
1� Ptk ¼1� FqðtkÞ

E
�
Ifqk�tgqk

��t�¼ ðtk
0

xdFqðxÞ:
(9)

and (3) can be written as:

E
h
q
0
1

���ti¼ X∞
n¼1

2
4Xn

j¼1

Yn
k¼1;ksj

Ptkð1� Ptnþ1Þ
ðtk
0

xdFqðxÞ

þ
Yn
k¼1

Ptk

ð∞
tk

xdFqðxÞ

3
75

(10)

Since ftkgk ¼ 1∞ are IID, we may apply the law of total expec-
tation for each random value of tk. Denoting

S¼ E
�
Ptk
� ¼ E½Pt1 � ¼

ð∞
0

ðt
0

dFqðxÞdFtðtÞ
E
h
q
0
1

i
¼
 X∞

n¼0

nSn�1ð1� SÞ
! ð∞

0

ðt
0

xdFqðxÞdFtðtÞþ
X∞
n¼0

Sn
ð∞
0

ð∞
t

xdFqðxÞdFtðtÞ

¼ ð1� SÞ d
dS

	
1

1� S


 ð∞
0

ðt
0

xdFqðxÞdFtðtÞþ
1

1� S

ð∞
0

ðt
0

xdFqðxÞdFtðtÞ

¼

ð∞
0

ðt
0
xdFqðxÞdFtðtÞ
1� S

þ

ð∞
0

ðt
0
xdFqðxÞdFtðtÞ
1� S

¼

ð∞
0

ð∞
0
xdFqðxÞdFtðtÞ
1� S

¼ E½q1�
1� S

:

(11)
Computation of the second moment of q
0
1 is fairly similar, but a

bit more complicated. We first write

�
q
0
1

�2 ¼
2
4X∞

n¼0

IfL1¼ng
Xn
j¼1

qj þ qnþ1

3
52 (12)

The events L1 ¼ n and L1 ¼ m are disjoint for msn, and the
product of the indicators in the first term in all off-diagonal terms is
null. Hence

2
4X∞

n¼0

0
@IfL1¼ng

Xn
j¼1

qj þ qnþ1

1
A
3
52 ¼ X∞

n¼0

IfL1¼ng

0
@Xn

j¼1

qj þ qnþ1

1
A2

¼
X∞
n¼0

IfL1¼ng

0
@Xn

j¼1

qj

1
A2

þ 2
X∞
n¼0

IfL1¼ng

0
@Xn

j¼1

qj

1
Aqnþ1

þ
X∞
n¼0

IfL1¼ngðqnþ1Þ2

The conditional expectation of the first term in (7), using the
same argument as for the mean value, is



E

2
64X∞

n¼0

IfL1¼ng

0
@Xn

j¼1

qj

1
A2
�������t
3
75¼ E

2
4X∞

n¼0

IfL1¼ng
Xn
j¼1

q2j

������t
3
5þ E

2
4X∞

n¼0

IfL1¼ng
Xn
jsk

qjqk

������t
3
5¼

X∞
n¼0

Xn
j¼1

Y
k¼1;ksj

Pn�1
tk

ð1� Ptnþ1ÞE
h
Iqj�tjq

2
j

���tiþ
X∞
n¼0

X
j;k�n;jsk

Y
l�n;[sj;k

Pt[ ð1� Ptnþ1ÞE
�
Iqk�tkqk

��t�EhIqj�tjqj

���ti
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and by averaging over t we have:

E

2
64X∞

n¼0

IfL1¼ng

0
@Xn

j¼1

qj

1
A2
3
75¼ X∞

n¼0

nSn�1ð1� SÞ
ð∞
0

ðt
0

x2dFqðxÞdFtðtÞþ

X∞
n¼0

nðn�1ÞSn�2ð1� SÞ
ð∞
0

0
@ðt

0

xdFqðxÞ
1
A
1
A

2

dFtðtÞ¼

1
ð1� SÞ

ð∞
0

ðt
0

x2dFqðxÞdFtðtÞþ
1

ð1� SÞ2
ð∞
0

0
@ðt

0

xdFqðxÞ
1
A
1
A

2

dFtðtÞ

(13)

The conditional expectation of the second term in (7) is:
E

2
4X∞

n¼0

IfL1¼ng

0
@Xn

j¼1

qj

1
Aqnþ1

������t
3
5¼

E

2
4X∞

n¼0

0
@Xk

j¼1

0
@ Y

k¼1;ksj

Ifqk�ttg

1
AIfqj�tjgqj

1
AIfqnþ1 > tnþ1gqnþ1

������t
3
5¼

X∞
n¼0

0
@Xk

j¼1

0
@ Y

k¼1;ksj

E
�
Ifqk�ttg

��t�
1
AE
h
Ifqj�tjgqj

���ti
1
AE
�
Ifqnþ1 >unþ1gqnþ1

��t�
(14)
And thus:
E2½q1� ¼
1

ð1� SÞ2

0
@ ð∞

0

xdFqðxÞ
1
A2

¼ 1

ð1� SÞ2
ð∞
0

0
@ ð∞

0

xdFqðxÞ
1
A2

dFtðtÞ¼ ð1

1

ð1� SÞ2

0
B@ ð

∞

0

0
@ðt

0

xdFqðxÞ
1
A

2

dFtðtÞþ
ð∞
0

0
@ ð∞

t

xdFqðxÞ
1
A2

dFtðtÞþ2
ð∞
0

0
@ðt

0

x

E

2
4X∞

n¼0

IfL1¼ng

0
@Xn

j¼1

qj

1
Aqnþ1

3
5¼

X∞
n¼0

nSn�1
ð∞
0

0
@ðt

0

xdFqðxÞ
1
AdFtðtÞ

ð∞
0

0
@ ð∞

t

xdFqðxÞ
1
AdFtðtÞ¼

1

ð1� SÞ2
ð∞
0

0
@ðt

0

xdFqðxÞ
1
AdFtðtÞ

ð∞
0

0
@ ð∞

t

xdFqðxÞ
1
AdFtðtÞ

(15)

Before we continue, we offer the following manipulation of
equation (11), which will prove very useful later on. By equation (6)
we can write
1

� SÞ2
ð∞
0

0
@ðt

0

xdFqðxÞ þ
ð∞
t

xdFqðxÞ
1
A

2

dFtðtÞ¼

dFqðxÞ
1
AdFtðtÞ

ð∞
0

0
@ ð∞

t

xdFqðxÞ
1
AdFtðtÞ

1
CA
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Hence

2E

2
4X∞
n¼0

IfL1¼ng

0
@Xn

j¼1

qj

1
Aqnþ1

3
5¼

E2½q1��
1

ð1�SÞ2

0
B@ð

∞

0

0
@ðt

0

xdFqðxÞ
1
A

2

dFtðtÞþ
ð∞
0

0
@ð∞

t

xdFqðxÞ
1
A2

dFtðtÞ

1
CA

(16)

Finally, we carry out the exact same analysis on the last term in
(7). The conditional expectation reads

E
h
IfL1¼ngq

2
nþ1

���ti¼ X∞
n¼0

E

"Yn
i¼1

Iqi�ti

�����t
#
E
h
Iqnþ1 > tnþ1

q2nþ1

���ti

¼
X∞
n¼1

Yn
i¼1

Pti

ð∞
ti

x2fqðxÞdx

and following the averaging with respect to t, we have:

E
h
IfL1¼ngq

2
nþ1

i
¼ 1

1� S

ð∞
0

ð∞
t

x2dFqðxÞdFtðtÞ (17)

Substituting the results of (9), (12) and (13) in (7) gives:

Var
h
q
0
1

i
¼
E
h
q21

i
1� S

þ

ð∞
0

2
4ðt

0
xdFqðxÞ

3
5
2

dFtðtÞ

ð1� SÞ2

�

ð∞
0

2
4ð∞

t
xdFqðxÞ

3
52dFuðtÞ

ð1� SÞ2
(18)

Equations (14) and (6), from a theoretical point of view, form the
main contribution of the study. In these two, the mean value and
variance of the inter-arrival time is given (in a closed form) in terms of
the two relevant distributions: the original inter-arrival time and the
dead time. Softer versions of these equations may be found in liter-
aturewe have discussed earlier, considering specific distributions for
either qi or ti (most of the time, exponential). One noticeable
reductionof equations (14) and (6) iswhen thedead time isfixed, and

FtðtÞ ¼
�
0; t < t0
1; t� t0

in such case, we have:

E
h
q
0
1

i
¼ E½q1�

1� Pt0
(19)
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h
q
0
1

i
¼

E
h
q21

i
1� Pt0

þ

2
6664
ðt0
0
xdFqðxÞ

1� Pt0

3
7775
2

�

2
6664
ð∞
t0

xdFqðxÞ
1� Pt0

3
7775
2

(20)

Where Pt0 is simply the probability of an inter-arrival time less than
the dead time t0.

3.2. Diffusion scale approximations for the count distribution

Once the first and second moments of q
0
1 are computed, we
obtain the following limit theorems for the Type II counters and the
associated renewal function.

Theorem 1. Let mðtÞ be the renewal function associated with the
waiting times fqjg∞j¼1, and let m

0 ðtÞ be the renewal function of the Type
II counter associated with fqjg∞j¼1 under a dead time series t. Then

lim
t/∞

m
0 ðtÞ
t

¼ ð1� SÞ lim
t/∞

mðtÞ
t

:

Where S ¼ R∞0 R t0 dFqðxÞdFtðtÞ ( FqðxÞ and FtðxÞ as defined earlier).

Theorem2. Let fqjg∞j¼1 be IID and let R
0 ðtÞ be the corresponding Type

II counter under dead time t. Then, as t/∞,

R
0 ðtÞ � t

m0 ðtÞ
s0 ðtÞm0 ðtÞ�3=2 ffiffi

t
p 0N ð0;1Þ;

where ð∞ 2ðt 32
m
0 ðtÞ¼ E½q1�

1� S

�
s

0 ðtÞ
�2 ¼

E
h
q21

i
1� S
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0
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0
xdFqðxÞ5 dFtðtÞ

ð1� SÞ2

�

ð∞
0

2
4ð∞
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52dFtðtÞ

ð1� SÞ2

Alternatively, one may state Theorems 1 and 2 as results
providing approximations. That is, if t[E½q1� then

E
h
R

0 ðtÞ
i
z

1� Pt
E½q1�

t; R
0 ðtÞzN

 
t

m0 ðtÞ;
�
s

0 ðtÞ
2
ðm0 ðtÞÞ3

t

!
:

4. Examples and applications

So far, the study has focused on theoretical results, summed up
in formulas (14) and (6) and the corresponding limit theorems. If
we assume that the inter arrival time is exponential, then the re-
sults are well known, and previously presented in Refs. [1,11]. For
the results to be significant from a practical point of view, we must
consider examples of high rate counting procedures (with respect
to the detector dead time) in which the inter-arrival times are non-
exponential but IID.

First, we will start with a fairly simple example, comparing
between exponential and uniform waiting times. The uniform
waiting time does not have any deep scientific or technological
significance, but they will demonstrate how the formulas are
implemented in a non-trivial manner.

Then, in what follows, we give several examples of relevant
counting processes: the first involve serial connection of counters,
followed by two examples where the deviation from exponential
waiting time is given through the so called pair correlation function
(PCF). Two of the examples are directly connected to nuclear en-
gineering. The third example, which comes from aerosol science, is
included due the its relevance to this study.

In all examples, we will use the Probability Density Functions
(PDF) fqðxÞ and ftðxÞ (rather than the CDF), using the equivalence

dFqðxÞ¼ fqðxÞdx; dFtðxÞ ¼ ftðxÞdx



Fig. 2. Sampled mean of the CPS with a uniformly distributed waiting time.
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4.1. Exponential vs. uniform waiting time distribution

As a first example, we compare through both simulation and
equalities (14) and (6) between two simple examples.

In thefirstweconsideranexponentialwaiting time,definedby the
density function fqðxÞ ¼ le�lx. In the second, we take a waiting time
uniformly distributed in the interval ½0;1�, defined by the distribution

fqðxÞ ¼
�
1; 0� x�1
0; else

for both examples, we have computed the integral in (14) and (6),
and verified the results with numeric simulation. A description of
the simulation setting is as follows. A simulation of 5000 [sec]
measurement was executed. To obtain a sample mean and a sample
standard deviation, we have repeated the simulation 104 times. To
measure the effect of the dead time, we have artificially inflicted
dead time on the simulation, by deleting events that occur less then
t seconds after the previous event. This was done for 19 values of t,
evenly separated between t ¼ 0:05 and t ¼ 0:95½sec�.

Since we assume fixed dead time, we use the simplified for-
mulas in (15) and (16). For the exponential waiting time, through
direct calculations we have that:

m
0 ðtÞ¼ elt

l

�
s

0 ðtÞ
�2 ¼ 2elt

l2
þ
	
ltþ 1

l


2

�
 
elt

l
� ltþ 1

l

!2

And for the uniform distribution, we have computed:

m
0 ðtÞ¼ 1

2ð1� tÞ;
�
s

0 ðtÞ
�2 ¼

"
1

3ð1� tÞ þ
t4

4ð1� tÞ2
�
�
1� t2


2
4ð1� tÞ2

#
:

To insure that both associated renewal process will have the
same reaction rates (with zero dead time), we take l ¼ 2 for the
numeric simulations.

Fig. 1 shows a histogram of the simulated values for the Counts
Per Second (CPS) in all simulations, with a dead time of t ¼
0:2½sec�. Running a chi-squared test on the values accepted the null
hypothesis with a p-value of 0:479.

Figs. 2 and 3 shows the sample mean of the CPS as a function of
t, (for both simulations) together with the analytic prediction. First,
we can see there is an excellent correspondence between the
simulation and analytic prediction. Next, we see that the dead time
Fig. 1. Sampled CPS histogram, t ¼ 0:2½sec�
effect has a very different nature. In the uniform waiting time, the
count reduction is precisely linear, up until a total loss of counts at
t ¼ 1. In the exponential model, the count reduction also follow an
exponential law, and the counts can vanish only at t/∞.

Figs. 4 and 5 show the sampled standard deviation for both
examples (again, as a function of t), and now we see an even more
distinctive behavior. For the exponential model, the reduction in
not exactly exponential, since the exponent is multiplied by a linear
term, but the behavior is still very close to exponential. In the
uniform distribution, on the other hand, the standard deviation is a
rational function (as a function of t), that once again vanishes at t ¼
1. It is surprising to find out that in the uniform distribution, the
variance of the count distribution is not a monotonic function of t,
but has a local minimum and maximum (see Fig. 4).

As we have mentioned, the uniform distribution does not carry
any scientific of engineering significance (that the authors are
aware of), but it does serve as a very elegant example for demon-
strating the strong dependence between the dead time effect to the
original waiting time.

4.2. Serially connected components

In most counting models, the model consists of two elements:
Fig. 3. Sampled mean of the CPS with exponentially distributed waiting time.



Fig. 4. Sampled standard deviation of the CPS in a uniformlly distributed waiting time.

Fig. 5. Sampled standard deviation of the CPS in an exponentially distributed waiting
time.

Fig. 6. Sampled PCF as a function of the lag time. Figures taken from Larsen [15].
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the source and the detector (counter). However, in real life, the
detector itself is often constructed as a serial connection of two (or
more) elements [17]. In radiation measurements, for instance, the
detector module is often constructed from the physical detector,
which is a tube containing materials that create a noticeable reac-
tion with the detected particles, serially connected to a signal
amplifier, or a computer sampling card. This is not a unique attri-
bute of radiation measurements, and often counters consist of two
serially connected elements: a physical component ðAÞ which de-
tects the events, and a second component ðBÞ, which digitally re-
cords them. In the terminology used so far, if both components ðAÞ
and ðBÞ have a dead time period (and, as mentioned, to some extent
they always do), then the rarefied (output) signal from component
ðAÞ becomes the non-rarefied input signal for component ðBÞ.

To demonstrate the applicability of our results, we will consider
the following two settings: in both we assume that the original
inter-arrival time is exponentially distributed with an average
waiting time of 1 =l. In the first setting we assume that component
ðAÞ has a fixed non extendable (Type I) dead time t0 and compo-
nent ðBÞ has a fixed extendable (Type II) dead time t1. In the second
wewill look at a slightlymore elaborate setting, where the duration
of the dead time of component ðBÞ has an exponential distribution,
with a mean value t1.

4.2.1. Example I: both components suffer from fixed dead time
In the first example, since the original waiting time between

consecutive events has an exponential distribution, the waiting
time between the recuperation of the detector ðAÞ and the
following detection is once again exponential with the exact same
parameters. Therefore, the inter-arrival time in the rarefied series
created by detector ðAÞ- which serves as the unrarefied series for
component ðBÞ - is of the form qi ¼ xi þ t0, where xi is a random
variable exponentially distributed with mean value 1 =l. The PDF of
fqjg∞j¼1 is given by fqðxÞ ¼ U0ðx�t0Þle�lðx�t0Þ (where U0ðxÞ ¼ 0 if
x<0 and U0ðxÞ ¼ 1 if x � 0), and:

E½q1� ¼ E½x1� þ t0 ¼ 1
l
þ t0

Var½q1� ¼Var½x1� ¼
1

l2

E
h
q21

i
¼Var½q1� þ E2½q1� ¼

1

l2
þ
	
1
l
þ t0


2

Again, since we assume that the dead time of component ðBÞ is
fixed, wemay apply formulas (15) and (16). We nowdivide into two
cases: t1 � t0 and t1 > t0. For the first, the dead time of the second
component ðBÞ is irrelevant, since the minimal waiting time in the
signal entering the component is t0. For t1 > t0 we compute
directly:

Pt1 ¼1� e�lðt1�t0Þ;
ðt1
0
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dq¼
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and we have:
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4.2.2. Example II: component (A) suffer from fixed dead time, and
component (B) has an exponentially distributed dead time

In the second example, we use the set of equations (6) and (14),
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with:

fqðxÞ ¼ U0ðt� t0Þle�lðt�t0Þ;

ftðxÞ ¼ 1
t1
e

1
t1
x

Through direct computation
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and thus
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For the variance, computations are more complicated. First, we
have that E½q21� ¼ 1

l
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. For the integral terms in (?) we
have:

ð∞
0

2
4ðt

0

xfqðxÞ
3
5
2

ftðtÞdt¼
ð∞
t0

2
4 ðt

t0

xle�lðx�t0Þdx

3
5
2

1
t1
e�

t
t1dt

ð∞
0

2
4 ð∞

t

xfqðxÞ
3
52ftðtÞdt¼ ðt0

0

2
4 ð∞

t0

xle�lðx�t0Þdx

3
52 1

t1
e�

t
t1dtþ

ð∞
t0

2
4 ð∞

t

xle�lðx�t0Þdx

3
52 1

t1
e�

t
t1dt

The last integrations can be executed fully (although the results
would be fairly lengthy), and once substituted in (6) and (14) would
then give explicit formulas for s2, fromwhich the parameters of the
diffusion scale approximation can be computed.
4.3. Pair correlation function

The exponential distribution with parameter l is defined by the
its PDF FxðtÞ ¼ Pðx � tÞ ¼ ð1 � e�ltÞ. Renewal processes with
exponential inter-arrival times are of utmost importance, since
they describe a memory-less waiting time between consecutive
events. An alternative definition of exponential inter-arrival time is
the following: if we denote by Pðt;Dtjt0Þ the probability of an event
in the interval ½t0 þt; t0 þtþD� given an event at t0, then Pðt;Dtjt0Þ
satisfies:

Pðt;Dtjt0Þ¼ lDt þ oðDtÞ (21)

A function hðtÞ is called the Pair Coefficient Function (PCF) if (1)
can be replaced by

Pðt;Dtjt0Þ¼ lð1þ hðtÞÞDt þ oðDtÞ (22)

Since the left hand is a probability function, it is assured that
hðtÞ� � 1. The PCF can be interpreted as ameasure of the deviation
from exponential distribution where hðtÞ<0 means a negative
correlation between an event at t ¼ t0 and an event in the interval
½t0 þt; t0 þtþD� and hðtÞ>0 means a positive correlation between
an event at t ¼ t0 and an event in the interval ½t0 þt; t0 þtþD� (and
if h ¼ 0, we have a memory-less property, as in (1)). Any counting
process where the inter-arrival time satisfies (2) must be a renewal
process, since the right hand side only depends on t (and not t0). In
the following section, we give two physical examples of a counting
procedure with a non negligible dead time, where the PCF
following a detection is not zero.

Before we continue, we notice that the previous example can
also be formulated by the PCF, with

h ¼
��1; t < t0
0; t� t0
4.31. Neutron multiplicity counting
Radioactive decay has an exponentially distributed waiting time

between consecutive nuclear events. If in each nuclear reaction a
single particle is emitted, then the waiting time between consec-
utive detections is once again exponential. However, if in each re-
action a number of particles are emitted (for example, is
spontaneous fissions of 240Pu or 252Cf) then the probability of a
detection at an infinitesimal interval dt starting t seconds after a
detection at t0 is give by Ref. [14]:

Pðt; dtjt0Þ¼
�
C0 þ C1e

�lt
�
dt ¼ C0

	
1þ C1

C0
e�lt



dt (23)

The coefficient C0 describes the amplitude of the uncorrelated
source (“accidentals”) while C1 describes the detection rate of the
neutrons that are correlated with the detection at t ¼ t0, which
decays exponentially with a coefficient l. Equation (3) is in wide
use, and is the basic consideration in the theory of neutron coin-
cidence counting, aimed to determine the multiplication and mass
of a sample by measuring the so called doubles to singles rate [18].
Clearly, equation (3) is a special case of (2), with hðtÞ ¼ C1

C0
e�lt .

The dead time effect in neutron multiplicity counting is a well
studied topic, due to its applicable nature. The effect on the first and
second moments of the count distribution in coincidence counting
was studied in Ref. [14], using some analytic considerations, but the
study is based on a phenomenological model, and empirical fitted
data. In Ref. [19], an applicable closed formof the formulas in Ref. [14]
was introduced. The dead time effect on higher moments was
modeled in Ref. [20] using multi dimensional distribution (and later
extended in Ref. [21]). A more pragmatic approach for estimating the
dead time parameter was given in Ref. [22], and the list goes on.

To implement the formulas presented in this study, we must
first derive the waiting time distribution from (3). We denote by
FðtÞ the CDF of the inter-arrival time. For simplicity, we assume a
detection at t ¼ 0. The probability for a first event in the interval
½t; tþdt� following a detection at t ¼ 0 is given by:

FðtþdtÞ� FðdtÞ ¼ ð1� FðtÞÞ
�
C0 þ C1e

�lt
�
dt

The right hand side of the above is a product of the probabilities
of two independent events: the first is that there are no detections
in the interval ½0; t� and the second is a detection in the interval ½t;
t þ dt�. By taking the limit dt/0, we obtain the equation for FðtÞ

dF
dt

¼ ð1� FðtÞÞ
�
C0 þ C1e

�lt
�

admitting a solution:

FðtÞ¼1� Exp
�
C0t þ

C1
l

�
1� e�lt

��
(24)

(in the last, we also account for the initial condition Fð0Þ ¼ 0).
Finally, the PDF of the waiting time is given by:
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fqðtÞ¼
dF
dt

¼ Exp
�
C0t þ

C1
l

�
1� e�lt

���
C0 þ C1e

�lt
�

For the variance, explicit integration is non trivial, due to the
factor tfqðtÞ appearing under the integration- but from a practical
point of view, once the parameters are known, numeric integration
is clearly doable.

For the average count rate, the correction is trivial: for a dead
time t, the dead time losses are given bymultiplying the theoretical

count rate by 1 � E½FðtÞ� ¼ E
�
Exp

�
C0tþ C1

l
ð1� e�ltÞ

��
. In Ref. [14],

the correction factor is given by Exp½C0t0 þ C1t0�, which is obtained
by a first order approximation of the inner exponent in the earlier
expression, under the assumption that the dead time is fixed.

4.3.2. Spatial distribution of aerosol particles
Measuring the spatial distribution of aerosol particles is a basic

topic in atmospheric and aerosol science. Often, it is assumed that
the aerosol particles follow a Poisson spatial distribution [23],
which means that if the space is scannedin a constant rate, an
exponential waiting time between detections will be measured.
However, the Poisson distribution assumption is still in debate, and
in Ref. [15] we find a discussion on the subject. In particular,
experimental results for the measured PCF as a function of t
(referred to as the lag time) were presented, showing explicit non
exponential behavior. Figure (6) below is taken from Ref. [15],
showing the sampled PCF as a function of the lag time (for two
different data sets, and for particle larger that 1mm).

The results are exactly consistent with the situation analyzed in
the present study: the sharp drop on the left hand side of both plots
indicate a detector dead time of approximately t0 ¼ 30ms, and the
strict positive values in the interval u0 � t � 150½mSec� (approxi-
mately) clearly indicate non exponential “clustering”. This was
already observed and discussed in Ref. [16], but the analysis was not
complete. Using the results in the present study, an explicit analytic
correction (for large scalemeasurements) can be given as a function
of h. First, as in section 1, the CDF is defined by the ODE:

dF
dt

¼ð1� FðtÞÞlð1þ hðtÞÞ; Fð0Þ ¼ 0;

Admitting the solution

FðtÞ¼1� Exp

2
4ðt

0

lð1þ hðxÞÞdx
3
5 (25)

and the PDF of the waiting time is give by:

fqðtÞ¼
dF
dt

¼ Exp

2
4ðt

0

lð1þ hðxÞÞdx
3
5lð1þ hðtÞÞ

To obtain a full correction term, h must be known, and clearly,
we cannot say anything about h. But once h is known, the correction
is straight forward, and explicitly given.

5. Concluding remarks

This paper studies a limiting distribution of detection counts in a
Type II (extendable dead time) counter, under a general waiting
time distribution between consecutive events (inter-arrival time)
and a randomly distributed dead time. In particular, explicit for-
mulas for the distribution are provided in terms of the CDF's of the
inter-arrival time distribution and the dead time distribution.
Following the theoretical results, we have introduced three

examples for applications: serially connected components, neutron
multiplicity counting and spatial distribution of aerosol particles. In
all three examples, the deviation from a Poisson distribution of the
number of counts can be measured by the pair coefficient function.

Future work would include the case of non-extendable dead
time (Type I counters). The main challenge in this case is that the
time period between the recuperation of the counter and the pre-
vious event is not described simply by the dead time distribution,
and the method we have used in this paper fails.
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