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Abstract

We consider a load balancing problem for a network of parallel queues where information
on the state of the queues is subject to a delay. In this setting, adopting a routing policy
that performs well when applied to the current state of the queues can perform quite poorly
when applied to the delayed state of the queues. Viewing this as a problem of control under
partial observations, we propose using an estimate of the current queue lengths as the input
to the join-the-shortest-queue policy. For a general class of estimation schemes, under a heavy
traffic condition, we prove convergence of the diffusion scaled process to a solution of a so-
called diffusion model, where an important step toward this goal establishes that the estimated
queue lengths undergo state space collapse. In some cases, our diffusion model is given by a
novel stochastic delay equation with reflection, where the Skorokhod boundary term appears
with delay. We illustrate our results with examples of natural estimation schemes, discuss their
implementability and compare their relative performance using simulations.

1 Introduction

In this paper we consider the problem of routing a stream of jobs to load balance a network of
parallel queues, where information on the state of the queues is subject to delay. The problem is
relevant, for example, when there are messaging or routing delays due to the physical separation
between the dispatcher that routes the incoming jobs and the locations of the servers. Furthermore,
the distance between the dispatcher and the servers may not be uniform, leading to heterogeneous
delays. In this setting, a naive approach is to adopt a routing policy that performs well when
applied to the current state of the queues and instead apply it with the delayed state of the queues
as the input. As explained below, this approach may perform poorly and result in large oscillations
of the queue lengths (QLs). Instead, we take a viewpoint from the literature of control under
partial observations, which divides the problem into two parts: state estimation and control based
on estimation. Specifically, routing is performed in two stages: (i) estimating the current state of
the queues using their delayed state and past routing decisions, and (ii) executing a load balancing
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algorithm that normally runs on actual QLs, but using the estimated QLs as the input since the
actual QLs are not available. In the first stage we consider a general class of estimation schemes,
while in the second stage the load balancing scheme is join the shortest queue (JSQ); that is, upon
arrival of an incoming job, the dispatcher estimates the current QLs and routes the job to the
queue with the shortest estimated QL. We consider convergence of the diffusion scaled system
under a heavy traffic condition, which states that the arrival rate of exogenous jobs and the service
rates of the servers are asymptotically balanced. Our main result states that for a general class of
estimation schemes, the limit is characterized by a so-called diffusion model, in which the estimates
of the QLs are load balanced. In addition, we show that for a certain subclass of estimation schemes,
solutions of the diffusion model satisfy a novel stochastic delay equation with reflection, where the
(Skorokhod) boundary term appears with delays. For this subclass of estimators we also obtain
asymptotic bounds on the load balance of the QLs that are linear in the coefficient of variation
of the scaled service times. We illustrate our results with examples of estimators, we comment on
their implementability and, when feasible, compare their relative performance using simulations.

The model consists of a queueing system with multiple single server stations, each with an
infinite capacity buffer. There is a single stream of jobs arriving to the system and upon arrival
of a job the dispatcher estimates the state of the queues and routes the job to the queue with
the shortest estimated length. At each server jobs are served according to the first-in-first-out
discipline, and the server remains busy as long as there are customers in its buffer. Information
about the QLs reaches the dispatcher with delay, where the delays are possibly heterogeneous as
well as time-inhomogeneous. We assume the dispatcher stores information about its past routing
decisions and so the number of jobs routed to each queue up until the current time is also available
to the dispatcher during the estimation stage. Thus the information used in the estimation stage
consists of the QL processes up to delayed times and the (routed) arrival processes up to the current
time.

The main goal of this paper is the analysis of the model at the diffusion scale under heavy
traffic conditions. More specifically, the exogenous arrival processes and the service processes are
accelerated renewal processes that satisfy an asymptotic balance condition. The basic lemma used
to prove the diffusion limit results in this paper asserts that, for a general class of estimators, the
estimated QL processes undergo state space collapse (SSC). This term refers to the property that
the differences between these processes vanish in the scaling limit. SSC is broadly known in the
heavy traffic literature to play an important role in describing the limit diffusion process as well
as in proving convergence. Specifically, for load balancing policies such as JSQ, it constitutes a
key step in establishing the limit (of QL and workload) in the form of a one-dimensional reflected
Brownian motion (BM). In the present setting, however, this phenomenon does not apply to the
actual QLs but rather to their estimators. Building on the SSC result, we prove convergence of
the diffusion scaled versions of the estimated and actual QLs, as well as the idleness processes. For
general estimation schemes, the limit is characterized by a diffusion model. This model is specified
in terms of three equations which can be described as follows: (i) a balance equation for QLs;
(ii) a balance equation for routing processes; and (iii) an SSC equation for the estimated QLs.
In addition, the formal limits of the scaled exogenous arrival process and scaled service processes
are BMs. An advantage of the diffusion model characterization of the heavy traffic limits is that
the diffusion model is more analytically tractable than the prelimit scaled processes. For example,
an interesting future problem is to analyze stationary distributions of the diffusion model (under
suitable stability conditions).
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We now provide a rough description of our estimation scheme for the QLs. Since the delayed
QLs and past routing decisions are known, estimating the QLs is equivalent to estimating the
number of jobs served at each queue over its delay interval. In particular, at each queue,

estimated QL = delayed QL + routed arrivals over the delay interval

− estimated jobs served at the queue over the delay interval.

Our approach is to estimate the number of jobs served at a queue over its delay interval as the
estimated potential service of the server over the delay interval (assuming it remains busy over
the delay interval) minus the estimated unused service over the delay interval. With some abuse
of terminology, we refer to the unused service process as the idleness process since it is a process
that increases only when the server is idle. Under the heavy traffic assumption, our estimate of the
centered potential service vanishes and as a result the scaled estimated QL is given by

scaled estimated QL = scaled delayed QL

+ centered & scaled routed arrivals over the delay interval

+ scaled estimated idleness over the delay interval. (1)

In this way the problem of estimating the QLs is reduced to a problem of estimating the idleness
over the delay interval. We consider a general class of schemes for estimating the idleness over the
delay interval. Our main assumptions for the estimators are technical contraction-type conditions.
The main theoretical results proved in this generality consist of existence of continuous weak limits
of the diffusion scaled processes, their characterization as the unique solution to the diffusion model
equations, and the aforementioned SSC.

We illustrate the generality of the permissible estimation schemes with four examples. In our
first example (referred to as a zeroth order estimator), we drop the last term on the right hand
side of (1); that is, we set the estimated idleness to be identically zero. [Note from (1) that the
QL estimator still uses past routing information even if the idleness estimator does not.] This
is the simplest estimator to implement that utilizes past routing decisions. It is motivated by
the fact that when QLs are large it is unlikely that idleness is incurred during the delay interval.
Furthermore, as we elaborate below, under this estimation scheme, solutions of the diffusion model
satisfy a novel stochastic delay equation with reflection. In addition, one can derive asymptotic
bounds on the load balance of the QLs. Our second and third examples (respectively referred
to as first and second order estimators) are refined versions of the first, in which the idleness is
estimated using a first order approximation and, respectively, a second order approximation. These
two examples have the advantage that they account for the fact that idleness is likely incurred when
the QLs are small, while still being easy to implement. We compare the relative performance of
our three estimators under various conditions and demonstrate that they significantly outperform
the naive estimator that is simply equal the delayed QLs and does not utilize information about
past routing decisions. (Interestingly, the zeroth order estimator and the first order estimator yield
the same relative ordering of the estimated QLs, despite the fact that the estimates of the QLs are
different, and therefore the estimators lead to identical routing decisions.) Our fourth example is
a conditional expectation-type estimator, where the scaled service process is replaced by its BM
limit. While implementing this schemes does not appear to be practically feasible, it has theoretical
significance. It shows that our results cover estimators that are asymptotically equivalent to the
conditional expectation given the complete observable information.
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When the delay time is constant and identical for all queues (we consider a more general setting
in our main results section) and the estimate of the idleness depends continuously and only on the
delayed QL (e.g., as in our first estimator), the solution of the diffusion model satisfies a stochastic
delay equation with (normal) reflection of the form:

Z(t) = Z(0) +W (t)A +W ([t− r]+)B + L([t− r]+)C + g(t, Z([t− r]+)) + L(t). (2)

Here K ≥ 2, r > 0 is the delay/lag, Z is a continuous K-dimensional process on [0,∞) taking values
in the non-negative orthant RK+ , W is a multidimensional BM, [t−r]+ = max{t−r, 0}, A, B and C
are matrices of compatible dimension, g is a continuous vector-valued function on [0,∞)×RK+ , and
L is a K-dimensional continuous non-decreasing regulator process on [0,∞) starting at zero whose
kth component can increase only when Zk is zero. (Note that throughout this work we interpret
vectors as row vectors.) In (2) the term [t − r]+ appears because we assume Z, W and L are
processes on [0,∞). An alternative approach would be to specify initial conditions for Z, W and L
over the delay interval [−r, 0] and let Z, W and L be processes on [−r,∞), in which case [t− r]+
would be replaced by t− r in (2).

The stochastic delay equation with reflection (2) can be contrasted with the form of a stochastic
delay differential equation (SDDE) with reflection,

dZ̃(t) = b(t, Z̃t)dt+ σ(t, Z̃t)dW (t) + dL̃(t), Z̃0 = ξ. (3)

Here Z̃ is a continuous K-dimensional process on [−r,∞) taking values in the non-negative orthant
RK+ ; Z̃t denotes the path segment in C([−r, 0],RK+ ), the space of continuous functions on [−r, 0]

taking values in RK+ , defined by Z̃t(s) = Z̃(t + s) for s ∈ [−r, 0]; b and σ are time inhomogeneous

coefficients of compatible dimension defined on these path segments; L̃ is a K-dimensional regulator
process on [0,∞) satisfying the same conditions as L in (2); and ξ is a random element taking values
in C([−r, 0],RK+ ). While there is a rich literature on SDDEs without reflection (see [12] and [14]
for general references), there is relatively limited work on SDDE with reflection. Some exceptions
include the work [8] on stationary distributions of SDDE with reflection and the book [9] which
treats numerical methods for SDDE with reflection as well as control. It appears that equations of
the form (2) have not previously been considered. Furthermore, the equation has some interesting
features that are not apparent in the SDDE with reflection setting. For example, in the SDDE
with reflection setting, the C([−r, 0],RK+ )-valued lag process {Z̃t, t ≥ 0} is Markovian. In contrast,
the analogous lag process for the solution Z of (2) is not Markovian because the boundary term L
and the Brownian motion W appear with a delay.

There are a few other works that consider load balancing problems in the presence of delays
[13, 15, 16]. Each of these works considers the case that routing decisions are based solely on
the delayed QLs (and hence could be categorized as using the delayed QL estimator) and it is
shown that using natural load balancing schemes with the delayed QLs as inputs can lead to large
oscillations in QLs (especially as the length of the delay increases). This is perhaps not surprising as
it is well known in the theory of delay differential equations that delayed negative feedback can lead
to sustained oscillations (see, e.g., [11]). The work [13] considers a load balancing problem similar
to the one considered here, but implements a routing policy that, upon arrival of an incoming
job, selects a fixed number of queues uniformly at random and routes the job to the queue with
the shortest delayed length (if all the queues are selected then the policy simply routes incoming
jobs to the queue with the shortest delayed length). It is shown (using analysis of fluid equations
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and numerics) that as the delay increases, the performance of the policy decreases and the QLs
can exhibit large oscillations. To counteract this, the author suggests incorporating increased
randomness into the routing policy by selecting fewer queues when incoming jobs arrive. The main
contrasts between this work and [13] is that we account for past routing decisions in our policy
and consider scaling limits, which allows us to prove SSC of the estimated QLs. Another closely
related model is analyzed in [16] (see also [15]). In this work arriving customers individually select
which service station to join and there is a delay either because only delayed states of the stations
are available to the customers and/or because there is a non-negligible travel time for the customer
to the stations. Because routing decisions are made by individual customers rather than by a
single dispatcher, it is assumed that when a customer selects a service station to join past routing
decisions of other customers are not available. This is the most significant difference between the
model studied in [16] and the one studied in this paper, as we elaborate on below. There are
several additional differences. For instance, in [16] service stations consist of infinite-server queues,
and thus the state corresponds to the number of served customers rather than QLs; service times
are exponential with the same service rates at all of the stations; and the selection scheme is not
according to JSQ but is probabilistic, where the probabilities are a function of the delayed states
of the stations.

The main results of [16] are on fluid and diffusion scaling limits as well as the analysis of
oscillations of the fluid model. These limits are characterized as unique solutions of two equations.
In the case of the fluid limit, the equation is a deterministic delay differential equation. As for the
diffusion limit, the characterizing equation is of the form

dZ(t) = b(t)Z(t)dt+ σ(t)dW (t), Z(0) = ξ(0). (4)

Here, Z is a stochastic process taking values in RK+ , W is a BM, and the coefficients b and σ
are deterministic functions given in terms of the aforementioned fluid limit. In particular, these
coefficients do not depend on the delayed solution Z [in contrast to (3)], and although (4) is referred
to as an SDDE in [16], perhaps the term stochastic differential equation with time inhomogeneous
coefficients captures its dynamics more precisely. (Alternatively, if the state is instead taken to be
the joint process consisting of the fluid limit and diffusion limit, then the joint process satisfies an
SDDE with time homogeneous coefficients and degenerate noise coefficient.)

The difference in the information structure between the model in [16] and the one studied
in this paper leads to strikingly different qualitative properties of the fluid limit. The following
comparison is presented to demonstrate this point and is partially based on a formal argument.
While a probabilistic routing is used in the model of [16], it is possible to obtain JSQ (but using
the delayed QLs) as a formal limit of this probabilistic scheme. In particular, as θ → ∞, where
θ is a parameter used there to define the probabilistic scheme, the probability of the customer
selecting the queue with the shortest delayed length converges to one. In [16] it is shown that
there is a threshold r0 > 0 for the delay, depending on θ, such that if the delay is greater than r0,
the fluid limit exhibits sustained oscillations. (When the delay is less than this threshold, there
may still be oscillations, but those oscillations decay in time.) According to the formulas in [16],
r0 converges to zero as θ → ∞. Formally, this shows that under JSQ oscillations always occur in
presence of positive delay. In contrast, in the setting of this paper, no oscillations occur in the fluid
limit, simply because this limit is given by the zero trajectory. (This is an immediate corollary of
the fact that diffusion limits exists, because, in our setting, the fluid scaled QL is given by n−1/2

times the diffusion scaled QL, where n is the usual scaling parameter.) Thus, using information
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on past routings, which constitutes the main difference between the two models, gives rise to a
significant qualitative difference: in one model oscillations always occur, in the other they never
occur. (This comparison is limited by the difference in structure of the stations between these
two models. An analogous comparison for same queueing station structure using different policies
would be interesting to carry out, but requires further work.)

The remainder of this paper is organized as follows. In Section 2, before defining the routing
policy, we introduce the general structure of the queueing network and our heavy traffic assumption.
Then in Section 3 we give a precise formulation of the routing policy and state our main assumptions.
We present an important class of estimators in this section as well. In Section 4 we present our
main results on the convergence of the scaled system to the diffusion model. Here we also introduce
the constrained stochastic delay equation. The proofs of our main results are given in Section 5. In
Section 6 we prove a load balancing bound on the QLs for a certain class of estimators. In Section
7 we present numerical results on the performance of our policy. Concluding remarks and open
problems appear in Section 8. The appendix contains well known results on the one-dimensional
Skorokhod problem and some proofs that our estimators satisfy technical conditions.

Before introducing our model, we list some notation that is used throughout this work. Let
N = {1, 2, . . . } denote the natural numbers and N0 = N∪{0}. For d ∈ N let Rd denote d-dimensional
Euclidean space and Rd+ denote the non-negative orthant in Rd. When d = 1 we drop the superscript
1 and write R for the real numbers and R+ for the non-negative axis. Given s ∈ R let s+ = max{s, 0}
and s− = max{−s, 0}. Given row vectors v, u ∈ Rd we let 〈v, u〉 = v1u1 + · · · + vdud denote their
inner product and |v| =

√
〈v, v〉 denote the Euclidean norm of v. Let 1 = (1, . . . , 1) ∈ Rd denote the

vector with one in each component. For a subset E ⊂ Rd, let D(E) denote the set of functions from
[0,∞) to E that are right continuous with finite left limits (RCLL). Let D0(E) denote the subset
of functions f ∈ D(E) with f(0) = 0, and let D+(R) denote the subset of functions f ∈ D(R) with
f(0) ≥ 0. We let C(E) and C0(E) respectively denote the subsets of continuous functions in D(E)
and D0(E). We equip D(E) and its subsets with the J1-Skorokhod topology and recall that when
restricted to C(E) the J1-Skorokhod topology coincides with the topology of uniform convergence
on compact intervals in [0,∞). Given a function f ∈ D(Rd) and t ≥ 0, we let f(t−) = lims↑t f(s)
denote the left limit of f at t with the convention that f(0−) = f(0), and we let f |t denote the
restriction of the function to the interval [0, t]. In addition, we let

f [s, t] = f(t)− f(s), 0 ≤ s < t <∞.

We let ι ∈ C(R) denote the identity function ι(t) = t for all t ≥ 0. The following inequality will be
useful throughout this work. For v ∈ Rd,

|v − d−1〈v,1〉1| ≤ |v|. (5)

We abbreviate “random variable”, “independent and identically distributed”, “left hand side”,
“right hand side” and “right continuous with finite left limits” as RV, IID, LHS, RHS and RCLL,
respectively.

2 General description of the model

Before introducing our routing policy in the next section, we first introduce a general description of
our model, the heavy traffic assumption and the diffusion scaling regime that we focus on. Fix an
integer K ≥ 2, which denotes the number of servers in the queueing system, and let K = {1, . . . ,K}.

6



2.1 A sequence of networks

Fix a probability space (Ω,F ,P) that supports K+1 independent renewal processes: X,S1, . . . , SK .
We assume the first arrival and the interarrival times for X (resp. Sk) are positive IID random
variables with mean 1 and finite variance α2 > 0 (resp. γ2k > 0). Consider a sequence of queueing
networks indexed by n ∈ N described as follows:

• For t ≥ 0 and k ∈ K let Qnk(t) denote the number of jobs in the kth queue at time t, including
those currently in service. We refer to Qn = {Qn(t) = (Qn1 (t), . . . , QnK(t)), t ≥ 0} as the QL
process. For convenience, we assume the queues are initially empty, i.e., Qn(0) = 0.

• For t ≥ 0 let Xn(t) denote the number of exogenous arrivals to the queueing system in the
interval [0, t]. We refer to Xn = {Xn(t), t ≥ 0} as the exogenous arrival process. We assume
Xn is defined as a time acceleration of X. In particular, Xn(t) = X(λnt) for t ≥ 0, where
λn > 0 denotes the exogenous arrival rate.

• For t ≥ 0 and k ∈ K let Ank(t) denote the number of exogenous arrivals that are routed to the
kth queue in the interval [0, t]. We refer to An = {An(t) = (An1 (t), . . . , AnK(t)), t ≥ 0} as the
(routed) arrival process. Note that Ank(t) counts the number of jobs that were routed to the
kth server in the interval [0, t], and that the number of (routed) arrivals to the queues in the
interval [0, t] must sum to the number of exogenous arrivals in [0, t], i.e.,

〈An(t),1〉 = Xn(t). (6)

• For t ≥ 0 and k ∈ K let Snk (t) denote the number of service completions at the kth server after
the server is busy for a total of t units of time. We refer to Sn = {Sn(t) = (Sn1 (t), . . . , SnK(t)), t ≥
0} as the service process. For each k ∈ K we assume Snk is defined as a time acceleration of
Sk. In particular, Snk (t) = Sk(µ

n
k t) for t ≥ 0, where µnk > 0 denotes the service rate of the kth

server. Let µn = (µn1 , . . . , µ
n
K).

• For t ≥ 0 and k ∈ K let Bn
k (t) denote the amount of the time the kth server is busy in the

interval [0, t]. Since we assume the servers are non-idling, it follows that

Bn
k (t) =

∫ t

0
1{Qn

k (s)>0}ds. (7)

Then Snk (Bn
k (t)) denotes the total departures from the kth server in the interval [0, t] and the

QL process satisfies, for k ∈ K,

Qnk(t) = Ank(t)− Snk (Bn
k (t)), t ≥ 0. (8)

Note that the above equations do not uniquely define the model because the routing policy
has not been specified. The routing policy, which is the main focus of this work, is introduced in
Section 3.
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2.2 Diffusion scaling and heavy traffic assumption

For each n ∈ N we define the centered and scaled processes as follows: for t ≥ 0, let

Q̂nk(t) =
Qnk(t)√

n
, k ∈ K, (9)

X̂n(t) =
Xn(t)− 〈µn,1〉t√

n
, (10)

Ânk(t) =
Ank(t)− µnk t√

n
, k ∈ K, (11)

Ŝnk (t) =
Snk (t)− µnk t√

n
, k ∈ K, (12)

L̂nk(t) =
µnk(t−Bn

k (t))√
n

, k ∈ K. (13)

By relations (6) and (8), and the above definitions, we have the following relations for the diffusion
scaled processes:

〈Ân(t),1〉 = X̂n(t), t ≥ 0, (14)

and, for k ∈ K,

Q̂nk(t) = Ânk(t)− Ŝnk (Bn
k (t)) + L̂nk(t), t ≥ 0. (15)

Remark 2.1. For k ∈ K by the definition of L̂nk in (13) and the definition of Bn
k in (7), we see that

L̂nk is non-decreasing and can increase only when Q̂nk(t) = 0; that is, when the kth server is idle. We

refer to L̂n as the scaled idleness process. Since Q̂nk is non-negative and (15) holds for each k ∈ K,

it follows that (Q̂nk , L̂
n
k) is the solution of the one-dimensional Skorokhod problem for Ânk − Ŝnk ◦Bn

k

(see Definition A.1). It is well known that the solution of the one-dimensional Skorokhod problem
is unique and has an explicit form; in particular, (Q̂nk , L̂

n
k) = Γ(Ânk − Ŝnk ◦Bn

k ), where Γ = (Γ1,Γ2)
is the one-dimensional Skorokhod map (SM) defined in (72)–(73) of Proposition A.2.

According to the functional central limit theorem for renewal processes, the centered and scaled
service processes {Ŝn}∞n=1 converge in distribution to a K-dimensional BM with zero drift and
suitable diffusion coefficients, as n→∞. The following heavy traffic condition on the (exogenous)
arrival and service rates ensures that the centered and scaled exogenous arrival processes {X̂n}∞n=1

also converge in distribution to a one-dimensional BM with suitable drift and diffusion coefficient,
as n→∞ (see Proposition 2.3 below).

Assumption 2.2. There are positive constants λ̄ and µ̄k, k ∈ N, and real-valued constants λ̂ and
µ̂k, k ∈ K, such that

λn = nλ̄+
√
nλ̂+ o(

√
n),

µnk = nµ̄k +
√
nµ̂k + o(

√
n), k ∈ K,

and the following heavy traffic condition holds:

〈µ̄,1〉 = λ̄. (16)
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We assume the probability space (Ω,F ,P) supports a one-dimensional BM X̂ = {X̂(t), t ≥ 0}
with drift λ̂ − 〈µ̂,1〉 and variance λ̄α2, and an independent K-dimensional BM Ŝ = {Ŝ(t) =
(Ŝ1(t), . . . , ŜK(t)), t ≥ 0} with zero drift and diagonal covariance matrix whose (k, k)th entry is
given by µ̄kγ

2
k , for k ∈ K.

Proposition 2.3. Under the heavy traffic condition on the arrival and service rates stated in
Assumption 2.2, the sequence {(X̂n, Ŝn)}∞n=1 converges in distribution to (X̂, Ŝ) as n→∞.

Proof. This follows from the functional central limit theorem for renewal processes (see, e.g., [1,
Theorem 14.6]).

Throughout the remainder of this work we assume, without restatement, that the heavy traffic
condition stated in Assumption 2.2 holds.

3 The routing policy: Join the shortest estimated queue

We now provide a precise description of our routing policy.

3.1 The delay function

In this work we assume that when incoming jobs arrive, the dispatcher has access to the state of
the queues at some delayed time (as well as all past routings). In order to indicate the information
the routing policy depends on, we fix a componentwise non-decreasing delay function τ : [0,∞)→
[0,∞)K satisfying τk(t) ≤ t for all k ∈ K and t > 0. At time t ≥ 0, the routing policy can depend
on the number of jobs in queue k only up until time τk(t), for k ∈ K. We impose the following
technical assumption on the delay function.

Assumption 3.1. The delay function τ is continuous and there is an increasing sequence {Tm}∞m=0

with T0 = 0 and Tm →∞ as m→∞ such that τk(t) ≤ Tm for all t ∈ [0, Tm+1] and k ∈ K.

Remark 3.2. It is also interesting to consider the case that the delay function has jump discontinu-
ities. For example, a piecewise constant delay function with positive jumps is natural in applications
where the dispatcher is updated at discrete time points (see [13]). In this work we restrict to the
case of continuous delay functions, which yields a continuous diffusion model, and leave the case of
discontinuous delay functions for future consideration.

Remark 3.3. The existence of the sequence {Tm}∞m=0 is repeatedly used throughout this work to
inductively prove our results hold on the intervals [0, Tm], m ∈ N. Note the function τ = (ι, . . . , ι),
where we recall that ι(t) = t for all t ≥ 0, does not satisfy Assumption 3.1.

Remark 3.4. Given a function f ∈ D(RK), a delay function τ : [0,∞) → [0,∞)K and t ≥ 0, we
adopt the notation

(f ◦ τ)(t) = f(τ(t)) = (f1(τ1(t)), . . . , fK(τK(t))) ∈ RK , (17)

and
f [τ(t), t] = f(t)− f(τ(t)) ∈ RK . (18)

In addition, we let

f |τ(t) = (f1|τ1(t), . . . , fK |τK(t)) ∈ D([0, τ1(t)],R)× · · · × D([0, τK(t)],R), (19)

where D([0, T ],R) denotes the set of RCLL functions from [0, T ] to R, for T ≥ 0.
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We close this section with two examples of delay functions that satisfy Assumption 3.1.

Example 1 (Zero information). Suppose τ(t) = 0 for all t ≥ 0. Then Assumption 3.1 holds with
any increasing sequence {Tm}∞m=0 satisfying T0 = 0 and Tm →∞ as m→∞.

Example 2 (Delayed information). Suppose r1, . . . , rK ≥ r > 0 and τk(t) = (t− rk)+ for t ≥ 0 and
k ∈ K. Then Assumption 3.1 holds with Tm = mr for m ∈ N0.

3.2 Estimator functions

In this work we assume the routing policy is based on (a) estimating the state of the queues and
(b) selecting the queue with the shortest estimated QL (ties are broken in lexicographical order).
To motivate the assumptions we impose on the estimators, recall the balance equation (15), which
implies that for k ∈ K and t ≥ 0,

Q̂nk(t) = Q̂nk(τk(t)) + Ânk [τk(t), t]− (Ŝnk ◦Bn
k )[τk(t), t] + L̂nk [τk(t), t]. (20)

Note that in the setting considered here, the first two terms on the RHS (i.e., the delayed QL and
the past routings over the delay interval) are observable whereas the last two are not. Therefore,
estimating QL can be achieved by estimating the third and fourth terms in (20). We are motivated
by the role that the conditional expectation plays in estimation theory. While our approach does
not insist that the estimator for QL be given by the conditional expectation (or approximations
thereof), it does treat the third term on the RHS of (20) as if conditional expectation is used.
A formal limit of this term is given as the increment of a zero drift BM over the delay interval,
where this BM increment is independent of the observed data, and therefore its limiting conditional
expectation is zero. In our treatment, the estimate of this term is always zero. In view of this,
the task of estimating Q̂nk(t) is transformed into that of estimating the incremental idleness term

L̂nk [τk(t), t]. Consequently, given an estimator for the incremental idleness term, the corresponding
estimator for QL is informally given by

estimate of Q̂nk(t) = Q̂nk(τk(t)) + Ânk [τk(t), t] + estimate of L̂nk [τk(t), t]. (21)

(A precise version of this identity appears in (31) below.) Whereas (20) is a balance equation for
scaled QL, (21) can be viewed as a corresponding balance equation for the scaled estimated QL. All
of the assumptions that we impose are related to the structure of the two estimators which appear
in (21). They are, however, first presented in the context of the unscaled processes, so as to relate
them directly to the queueing model, and rescaling is performed in the next section (Section 3.3).
We also introduce an important class of estimators at the end of Section 3.3.

Fix measurable estimator functions

Φn : D0(NK0 )× D0(NK0 )→ D0(RK), (22)

Ψn : D0(NK0 )× D0(NK0 )→ D0(RK+ ), (23)

such that for (q, a) ∈ D0(NK0 )× D0(NK0 ), k ∈ K and t > 0,

Φn
k(q, a)(t) = qk(τk(t)) + ak[τk(t), t]− µnk(t− τk(t)) + Ψn

k(q, a)(t) (24)

and (Φn,Ψn)(q, a)(t) depends only on (q|τ(t), a|t). Define the RCLL processes Rn = Φn(Qn, An)
and Mn = Ψn(Qn, An) so that for all k ∈ K and t ≥ 0,

Rnk (t) = Qnk(τk(t)) +Ank [τk(t), t]− µnk(t− τk(t)) +Mn
k (t). (25)

10



Then Rnk (t) serves as our estimate of the length of the kth queue at time t, and the terms µnk(t−τk(t))
and Mn

k (t) can respectively be interpreted as the estimated service capacity of the kth server over
the delay interval [τ(t), t] and the expected idleness at the kth queue over the delay interval. This
estimate on service capacity, which is independent of the observable data, is in line with our setting
to zero the estimate of service fluctuations. We refer to Rn = {Rn(t) = (Rn1 (t), . . . , RnK(t)), t ≥ 0}
as the estimated QL process and we refer to Mn = {Mn(t) = (Mn

1 (t), . . . ,Mn
K(t)), t ≥ 0} as

the estimated idleness process. The fact that (Φn,Ψn)(Qn, An)(t) depends only on (Qn|τ(t), An|t)
reflects our condition that the estimators depend only on the delayed QLs as well as past routing
decisions. Note from (22)–(23) that we allow the estimated QL process to take negative values;
however, we require that the estimated idleness be non-negative. In addition, we require that both
processes are initialized to be zero.

With an estimate of the QLs in hand, the dispatcher routes an incoming job to the queue with
the shortest estimated QL, where ties are broken according to lexicographical order. For i ∈ N
let σni = inf{t ≥ 0 : Xn(t) ≥ i} denote the exogenous arrival time of the ith job. Then upon
arrival to the queue, the ith job is routed to the kth queue if Rnk (σni −) < Rnj (σni −) for all j < k

and Rnk (σni −) ≤ Rnl (σni −) for all l ≥ k. In other words, the ith job is routed to the queue with
the fewest estimated number of jobs at time σni . We formalize this policy as follows. Define the
measurable routing function

Θn : D0(NK0 )× D0(NK0 )→ D({e1, . . . , eK}).

as follows. Given t > 0, q ∈ D0(NK0 ) and a ∈ D0(NK0 ), we set Θn(q, a)(t) equal to ek, where k ∈ K
is the unique index such that

Φn
k(q, a)(t) < Φn

j (q, a)(t) for all j < k,

Φn
k(q, a)(t) ≤ Φn

l (q, a)(t) for all l ≥ k.

Then the arrivals process An satisfies

An(t) =

∫ t

0
Θn(Qn, An)(s−)dXn(s).

Along with the equations introduced in Section 2.1, this uniquely defines the queueing model
(since the trajectories are piecewise constant and the routing function immediately prior to time
s, Θn(Qn, An)(s−), depends only on (Qn1 |[0,τ1(s)), . . . , QnK |[0,τK(s)), A

n|[0,s)), this can be argued by
induction on the jump times).

3.3 Scaled estimator functions

In order to state our main results, that are concerned with the diffusion scaled model, we need
scaled versions of the estimator functions introduced in the last section. Such scaled versions are
introduced in this section. At the end of this section we also present an important class estimators,
along with their scaled versions.

For each n ∈ N, define the scaled functions

Φ̂n : D0(RK+ )× D0(RK)→ D0(RK),

Ψ̂n : D0(RK+ )× D0(RK)→ D0(RK+ ),
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by

Φ̂n(q, a)(t) =
Φn (
√
nq,
√
na+ µnι) (t)√
n

, (26)

Ψ̂n(q, a)(t) =
Ψn (
√
nq,
√
na+ µnι) (t)√
n

, (27)

for all q ∈ D0(RK+ ) and a ∈ D0(RK). Then by (24),

Φ̂n(q, a)(t) = q(τ(t)) + a[τ(t), t] + Ψ̂n(q, a)(t). (28)

Define, for each n ∈ N,

R̂nk (t) =
Rnk (t)√

n
, k ∈ K, (29)

M̂n
k (t) =

Mn
k (t)√
n

, k ∈ K. (30)

It follows from the above definitions that

R̂n = Φ̂n(Q̂n, Ân) and M̂n = Ψ̂n(Q̂n, Ân).

Finally, with these definitions, it follows from equation (28) that equation (21) is satisfied with the
rescaled estimators that are now well defined, namely

R̂nk (t) = Q̂nk(τk(t)) + Ânk [τk(t), t] + M̂n
k (t), t ≥ 0. (31)

In particular, R̂nk (t) and M̂n
k (t) serve as estimates of the scaled QL Q̂nk(t) and increment of idleness

L̂nk [τk(t), t], respectively. In addition, let

Φ̂ : C0(RK+ )× C0(RK)→ C0(RK),

Ψ̂ : C0(RK+ )× C0(RK)→ C0(RK),

be measurable functions such that given (q, a) ∈ C0(RK+ )× C0(RK) and t > 0,

Φ̂(q, a)(t) = q(τ(t)) + a[τ(t), t] + Ψ̂(q, a)(t), t > 0. (32)

and (Φ̂, Ψ̂)(q, a)(t) depends only on (q|τ(t), a|t). In the next section we will require that the scaled

estimator functions {(Φ̂n, Ψ̂n)}∞n=1 converge to (Φ̂, Ψ̂), which we refer to as the limiting estimator
functions, in an appropriate sense.

In Section 7 we provide four detailed examples of estimators (Φn,Ψn) and discuss their mo-
tivation and relative performance. For now we present an important class of estimators for the
reader to keep in mind throughout the remainder of this work (in fact, the first three examples to
be provided in Section 7 lie in this class).

Example 3. This is a generic example in which the estimator Ψ̂n is given by

Ψ̂n(q, a)(t) = h (t, q(τ(t)), a[τ(t), t]) , (33)

12



for a fixed function h within a rich class of functions. The unscaled estimator function Ψn is
defined in such a way that the relation above holds. Moreover, conditions are imposed on h so that
it satisfies several assumptions stated in the next subsection.

To this end, let h : R+ × RK+ × RK → RK+ be a function satisfying h(0, 0, 0) = 0 and the
following continuity property: for each T <∞ there exist a constant η ∈ [0, 1) and a non-decreasing
continuous function κ : [0, T ] → R+ with κ(0) = 0 such that for all t, t′ ∈ [0, T ], v, v′ ∈ RK+ and
u, u′ ∈ RK

|hk(t, v, u)− hk(t′, v′, u′)| ≤ κ(|t− t′|) + |vk − v′k|+ η|uk − u′k|, k ∈ K. (34)

Define the estimator Ψn, for q ∈ D(NK0 ) and a ∈ D0(NK0 ), by

Ψn(q, a)(t) =
√
nh

(
t,
q(τ(t))√

n
,
a[τ(t), t]− νn(t))√

n

)
, t ≥ 0, (35)

where νn(t) is the vector in RK+ defined by νnk (t) = µnk(t − τk(t)) and Φn is defined so that (24)

holds. Then Ψ̂n is of the form (33). In this case, the limiting estimator Ψ̂ is also given by

Ψ̂(q, a)(t) = h(t, q(τ(t)), a[τ(t), t]), t ≥ 0. (36)

This estimator depends in a rather general way on the delayed QLs and the increment of arrivals
over the delay interval. However, it does not use information about the timings of those arrivals
within the delay interval. As mentioned above, the condition (34) is required to ensure that it
satisfies assumptions on the estimators that are introduced in the next section.

3.4 Assumptions on the estimators

We now state three assumptions on the estimator functions. These assumptions are rather technical,
but they reflect our attempt to provide a setting that is as general as possible for the main results
to hold. At the end of this section we discuss the generality of our assumptions.

Convergence of the scaled estimator functions

The following is our main convergence assumption on the scaled estimator functions, which assumes
that the sequence {Ψ̂n}∞n=1 converges to the function Ψ̂ in an appropriate sense.

Assumption 3.5. If the following hold:

(i) {(qn, an)}∞n=1 is a sequence in D0(RK+ )× D0(RK),

(ii) (q, a) lies in C0(RK+ )× C0(RK), and

(iii) {(qn, an)}∞n=1 converges to (q, a) in D0(RK+ )× D0(RK) as n→∞,

then {Ψ̂n(qn, an)}∞n=1 converges to Ψ̂(q, a) in D0(RK+ ) as n→∞.

Remark 3.6. Recall that the Skorokhod J1-topology relativized to the continuous functions coincides
with the topology of uniform convergence on compact intervals. Therefore, conditions (i)–(iii) imply
that the sequence {(qn, an)}∞n=1 converges to (q, a) uniformly on compact intervals.

From (28) and (32) we note that Assumption 3.5 also implies that if (i)—(iii) hold, then
{Φ̂n(qn, an)}∞n=1 converges to Φ̂(q, a) in D0(RK) as n→∞. This assumption is used to show that
sub-sequential limits of the scaled estimator processes exist provided that sub-sequential limits of
the QL and arrival processes exist.
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Modulus of continuity of the scaled estimated idleness

Our next assumption ensures that the sequence of scaled idleness estimators is C-tight, which
implies that the sequence has continuous sub-sequential limits. In the following we recall the
definition of C-tightness. Given d ≥ 1, a function f : [0,∞) → Rd, T < ∞ and δ ∈ (0, T ), define
the modulus of continuity by

w(f, δ, T ) = sup {|f(t)− f(s)| : s, t ∈ [0, T ], |t− s| ≤ δ} .

Definition 3.7. We say a sequence of RCLL processes {Y n}∞n=1 is C-tight if the following hold:

lim
C→∞

lim sup
n→∞

P (|Y n(0)| ≥ C) = 0,

and, for all T <∞ and ε > 0,

lim
δ→0

lim sup
n→∞

P (w(Y n, δ, T ) ≥ ε) = 0.

The assumption states that the modulus of continuity of the scaled estimator function Ψ̂n(q, a) is
appropriately bounded by the moduli of continuity of certain transformations of the input functions
(q, a).

Assumption 3.8. There is a constant ζ1 ∈ [0, 1) such that for all n ∈ N, q ∈ D0(RK+ ), a ∈ D0(RK),
T <∞, δ ∈ (0, T ) and k ∈ K,

w(Ψ̂n
k(q, a), δ, T ) ≤ w(qk ◦ τk, δ, T ) + 2w(ak ◦ τk, δ, T ) + ζ1w(ak, δ, T ) + oδ,n(1), (37)

where oδ,n(1) denotes a function of n and δ that does not depend on (q, a) and is such that

lim
δ→0

lim
n→∞

oδ,n(1) = 0.

The use of this assumption in our treatment is in showing that subsequential limits of various
scaled processes, such as estimators and QLs, have continuous sample paths.

Contraction property of the limiting estimator

Under Assumption 3.5 and Assumption 3.8, (sub-sequential) limits of the scaled processes are
shown to be solutions of a so-called diffusion model. The following contraction property ensures
uniqueness of solutions to the diffusion model.

Assumption 3.9. There exists ζ2 ∈ [0, 1) such that for each q ∈ C0(RK+ ), a, a′ ∈ C0(RK), t > 0,
and k ∈ K,

|Ψ̂k(q, a)(t)− Ψ̂k(q, a
′)(t)| ≤ ζ2 sup

τk(t)≤s≤t
|ak[τk(t), s]− a′k[τk(t), s]|. (38)
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Discussion of the assumptions

We now discuss the generality of our assumptions. Recall that, for k ∈ K and t ≥ 0, Ψ̂n
k(Q̂n, Ân)(t)

serves as an estimate of the scaled increment of idleness L̂nk [τk(t), t]. From Remark 2.1 and the
semigroup property of Γ (Proposition A.2), we have

L̂nk [τk(t), t] = Γ2

(
Q̂nk(τk(t)) + Ânk [τk(t), τk(t) + ·]− Ŝnk ◦Bn

k [τk(t), τk(t) + ·]
)

(t− τk(t)).

By an oscillation inequality for the SM (Lemma A.3), for all 0 < δ < T ,

w
(
L̂nk [τk(·), ·], δ, T

)
≤ w

(
Q̂nk(τk(·)), δ, T

)
+ 2w

(
Ânk(τk(·)), δ, T

)
+ 2w

(
Ŝnk (Bn

k (τk(·))), δ, T
)

+ w
(
Ânk , δ, T

)
+ w

(
Ŝnk (Bn

k (·)), δ, T
)
,

and by the Lipschitz(1) continuity of the SM (Proposition A.2), for fixed t ≥ 0, the mapping(
Q̂nk(τk(t)), Â

n
k [τk(t), τk(t) + ·], Ŝnk ◦Bn

k [τk(t), τk(t) + ·]
)
7→ L̂nk [τk(t), t]

is Lipschitz(1). Since Ψ̂n(Q̂n, Ân)(t) serves as an estimator for L̂n[τk(t), t] and Ŝnk ◦ Bn
k is C-tight

[due to the facts that Ŝnk is C-tight and Bn
k is Lipschitz(1)], it is reasonable to assume that its

estimator Ψ̂n (and its limit Ψ̂) should satisfy Assumptions 3.5, 3.8 and 3.9 with ζ1 = ζ2 = 1.
Here we must take ζ1, ζ2 < 1 for technical reasons — specifically, to ensure strict contraction type
properties hold in the proofs of C-tightness of the scaled processes (Lemma 5.2) and uniqueness
of the diffusion model (Proposition 5.1). Since ζ1 and ζ2 can be chosen arbitrarily close to 1, our
assumptions (asymptotically) treat any reasonable estimator of the idleness.

We conclude this section with the following lemma, which states that the class of estimators
introduced in Example 3 satisfies our main assumptions.

Lemma 3.10. Let h : R+ × RK+ × RK → RK+ satisfy the conditions stated in Example 3. Suppose

the estimators {Ψn}∞n=1 are defined as in (35) and Ψ̂ is defined as in (36). Then Assumptions 3.5,
3.8 and 3.9 hold.

The proof of Lemma 3.10 is given in the appendix.
Having stated our main assumptions, we are now ready to introduce the diffusion model and

state our main result on the convergence of the diffusion scaled processes.

4 Diffusion limits

We start by introducing the diffusion model. Recall the BMs X̂ and Ŝ introduced in Section 2.2
and the limiting estimator function Φ̂ introduced in Section 3.3.

Definition 4.1. A solution of the diffusion model associated with (X̂, Ŝ, Φ̂) is a pair of processes
(Q̂, Â) on (Ω,F ,P) satisfying the following conditions, with {F̂t} and {Ĝt} denoting the filtrations
generated by {X̂(t), Ŝ(t)} and {X̂(t), Ŝ(τ(t))} respectively:
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(i) Q̂ = {Q̂(t) = (Q̂1(t), . . . , Q̂K(t)), t ≥ 0} is a K-dimensional {F̂t}-adapted continuous process
such that almost surely

Q̂(t) = Â(t)− Ŝ(t) + L̂(t) ∈ RK+ , t ≥ 0, (39)

where L̂ = {L̂(t) = (L̂1(t), . . . , L̂K(t)), t ≥ 0} is an auxiliary K-dimensional {F̂t}-adapted
continuous process such that almost surely L̂k(0) = 0, L̂k is non-decreasing and L̂k can
increase only when Q̂k is zero, for k ∈ K.

(ii) Â = {Â(t) = (Â1(t), . . . , ÂK(t)), t ≥ 0} is a K-dimensional {Ĝt}-adapted continuous process
such that almost surely

Â1(t) + · · ·+ ÂK(t) = X̂(t), t ≥ 0. (40)

(iii) Almost surely
R̂1(t) = · · · = R̂K(t), t ≥ 0, (41)

where R̂ is the {Ĝt}-adapted process defined by R̂ = Φ̂(Q̂, Â).

In this diffusion model, equations (39) and (40) are derived from equations (15) and, respectively,
(14), by taking formal limits. Equation (41), on the other hand, that expresses state space collapse
of the QL estimators, does not have an analogue in the prelimit equations. Rather, it is related to
the fact that the routing policy routes jobs to the queue with the shortest estimated QL, and this
action is immediately reflected in the estimators (as follows from the fact that the scaled arrivals
Ânk(t) appears in equation (31) for the scaled estimator R̂nk (t)). Hence routing tends to drive the
estimators toward equalization. Equation (41) asserts that exact equalization of the estimators is
achieved in the limit.

Remark 4.2. By condition (i) of Definition 4.1, almost surely (Q̂k, L̂k) is a solution of the one-
dimensional Skorokhod problem for Âk − Ŝk (see Definition A.1), for k ∈ K.

Remark 4.3 (A constrained stochastic delay equation). Let (Q̂, Â) denote the unique solution of
the diffusion model associated with (X̂, Ŝ, Φ̂). Then, for k ∈ K,

Q̂k(t) = K−1〈R̂(t),1〉 − Ŝk[τk(t), t]− M̂k(t) + L̂k[τk(t), t]

= K−1X̂(t)−K−1〈Ŝ(τ(t)),1〉+K−1〈L̂(τ(t)),1〉 − Ŝk[τk(t), t]− M̂k(t) + L̂k[τk(t), t].

Suppose Ψ̂ = g(t, Q̂(τ(t))) for some continuous function g : R+ × RK+ → RK+ ; in particular, the
estimated idleness does not depend on the increment of routed arrivals. Let m = (K−1, . . . ,K−1)
and M denote the K ×K matrix whose diagonal entries are all equal to K−1 − 1 and whose off
diagonal entries are equal to K−1. Then Q̂ satisfies the constrained stochastic delay equation:

Q̂(t) = X̂(t)m− Ŝ(t)− Ŝ(τ(t))M + L̂(τ(t))M− g(t, Q̂(τ(t))) + L̂(t). (42)

Existence and uniqueness of solutions to the constrained stochastic delay equation (42) follows
directly from the form of equation (42) and Assumption 3.1 on the delay function τ(·) using a proof
by induction on intervals of the form [0, Tm], m ∈ N, and the explicit form of the one-dimensional
SM shown in the appendix.
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We can now state our main diffusion limit result.

Theorem 4.4. Suppose the delay function τ(·) satisfies Assumption 3.1, the sequence of scaled
estimators {Ψ̂n}∞n=1 and the limiting estimator Ψ̂ satisfy the convergence condition stated in As-
sumption 3.5, the modulus of continuity condition stated in Assumption 3.8, and the contraction
property stated in Assumption 3.9. Then there exists a unique solution (Q̂, Â) of the diffusion
model associated with (X̂, Ŝ, Φ̂) and the sequence {(Q̂n, Ân)}∞n=1 converges in distribution to (Q̂, Â)
as n→∞.

The next section is devoted to the proof of Theorem 4.4.

5 Convergence of the diffusion scaled processes

In this section we prove Theorem 4.4. The proof is established by arguing that the scaled processes
associated with the model are tight, that every subsequential weak limit solves the diffusion model,
and that uniqueness holds for solutions of the diffusion model. This is achieved in the following
steps. First, in Section 5.1, the diffusion model is analyzed and it is shown that it has at most one
solution. In Section 5.2, a certain sequence of stopping times is introduced, and it is proved that
the collection of rescaled stopped processes is C-tight. These stopping times are directly related to
the SSC property, in that one can deduce from their convergence in law to +∞ that SSC holds.
This is carried out in Section 5.3. The SSC property is thus key in showing that C-tightness holds
for all processes involved. In addition, it governs one of the equations forming the diffusion model.
With these elements at hand, it only remains to show that every subsequential limit satisfies the
diffusion model. This is the content of Section 5.4 where the proof of the main result is completed.

5.1 Uniqueness of solutions to the diffusion model

The following proposition establishes uniqueness for solutions of the diffusion model. Note that
for the purpose of proving our main result, Theorem 4.4, there is no need to argue directly that
existence of solutions holds for this model. Rather, one obtains existence as a consequence of the
main result; namely, the scaling limits are solutions of the diffusion model.

Proposition 5.1. Suppose the delay function τ(·) satisfies Assumption 3.1 and the limiting esti-
mator Ψ̂ satisfies the contraction property stated in Assumption 3.9. Then there is at most one
solution (Q̂, Â) of the diffusion model associated with (X̂, Ŝ, Φ̂).

Proof. Suppose (Q̂, Â) is a solution of the diffusion model. Set M̂ = Ψ̂(Q̂, Â). Let k ∈ K. By
condition (iii) of Definition 4.1, the fact that R̂ = Φ̂(Q̂, Â) and the relation (32), we see that

Q̂k(τk(t)) + Âk(t)− Âk(τk(t)) + M̂k(t) = K−1〈Q̂(τ(t)) + Â(t)− Â(τ(t)) + M̂(t),1〉.

Rearranging and using condition (ii) of Definition 4.1 yields

Âk(t) = K−1X̂(t) + Âk(τk(t))−K−1〈Â(τ(t)),1〉 −
(
Q̂k(τ(t))−K−1〈Q̂(τ(t)),1〉

)
(43)

−
(
M̂k(t)−K−1〈M̂(t),1〉

)
.
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Now suppose (Q̂′, Â′) is also a solution of the diffusion model. As above, set M̂ ′ = Ψ̂(Q̂′, Â′). Fix
a sample path ω ∈ Ω. We show that

(Q̂(ω, t), Â(ω, t)) = (Q̂′(ω, t), Â′(ω, t)), t ∈ [0, Tm], (44)

for all m ∈ N0, which, along with the fact that Tm → ∞ as m → ∞, will complete the proof. For
notational convenience, we omit the ω dependence throughout the remainder of the proof.

In order to prove (44) holds for each m ∈ N, we proceed with a proof by induction. The base
case m = 0 follows immediately because T0 = 0 and Q̂(0) = Q̂′(0) = Â(0) = Â′(0) = 0. To prove
the induction step let m ∈ N0 and suppose that (44) holds. Let t ∈ [0, Tm+1]. Since τk(t) ≤ Tm by
Assumption 3.1, it follows from the induction hypothesis that

(Q̂ ◦ τ, Â ◦ τ)(t) = (Q̂′ ◦ τ, Â′ ◦ τ)(t), t ∈ [0, Tm+1] (45)

and Â[τ(t), t]− Â′[τ(t), t] = Â(t)− Â′(t) for all t ∈ [0, Tm+1]. Thus, by the contraction property for
Ψ̂ stated in Assumption 3.9, there exists ζ2 ∈ [0, 1) such that

|M̂(t)− M̂ ′(t)| = |Ψ̂(Q̂, Â)(t)− Ψ̂(Q̂′, Â′)(t)| ≤ ζ2 sup
0≤s≤t

|Â(s)− Â′(s)|.

Note that the terms on the RHS of (43) involving Â and Q̂ appear with delay, and therefore (45)
is applicable. Consequently, by (43), (45), the bound (5) and the previous display, we have, for all
t ∈ [0, Tm+1],

sup
0≤s≤t

|Â(s)− Â′(s)| ≤ sup
0≤s≤t

|M̂(s)− M̂ ′(s)| ≤ ζ2 sup
0≤s≤t

|Â(s)− Â′(s)|.

Since ζ2 ∈ [0, 1), it holds that Â = Â′ on [0, Tm+1]. Then due to the fact that Q̂ = Γ1(Â− Ŝ) and
Q̂′ = Γ1(Â

′ − Ŝ), it follows that Q̂ = Q̂′ on [0, Tm+1]. This completes the proof of the induction
step. Hence, by the principle of mathematical induction (44) holds for all m ∈ N.

5.2 C-tightness of stopped processes

The goal of this section is to introduce a sequence of stopping times, θn, that are closely related
to the SSC property, and show that some of the processes associated with the model (specifically,

Ân, Q̂n, L̂n, M̂n) stopped at θn, form a C-tight sequence.
For n ∈ N define the one-dimensional non-negative process ∆̂n = {∆̂n(t), t ≥ 0} by

∆̂n(t) = max
k∈K

R̂nk (t)−Rn(t), t ≥ 0, (46)

where R
n
(t) = K−1〈R̂n(t),1〉 for all t ≥ 0. Let Z denote the set of (0,∞)-valued sequences

converging to zero. Given a sequence {rn}∞n=1 ∈ Z define the sequence of stopping times {θn}∞n=1,
by

θn = inf{t ≥ 0 : ∆̂n(t) ≥ rn}, n ∈ N. (47)

Lemma 5.2. Suppose the delay function τ(·) satisfies Assumption 3.1 and the scaled estimator
functions {Ψ̂n}∞n=1 satisfy the modulus of continuity condition stated in Assumption 3.8. Let
{rn}∞n=1 ∈ Z and define the sequence {θn}∞n=1 as in (47). Then the sequence of stopped processes

{(Ân(· ∧ θn), Q̂n(· ∧ θn), L̂n(· ∧ θn), M̂n(· ∧ θn)}∞n=1

in D0(RK)× D0(RK+ )× D0(RK+ )× D0(RK+ ) is C-tight.
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Proof. For each Z ∈ {A,Q,L,M}, by the definition of C-tightness in Definition 3.7, along with
Assumption 3.1 and the fact that Ẑn(0) = 0, it suffices to show that the following limit holds for
each m ∈ N0 and ε > 0,

lim
δ→0

lim sup
n→∞

P
(
w
(
Ẑn, δ, Tm ∧ θn

)
≥ ε
)

= 0. (48)

The proof proceeds by induction on m ∈ N. The base case m = 0 is immediate since T0 = 0.
Next we prove the induction step. Let m ∈ N and suppose that (48) holds for all ε > 0 and

Z ∈ {A,Q,L,M}. By (31), for each n ∈ N,

Ân(t) = Ân(τ(t)) + R̂n(t)− Q̂n(τ(t))− M̂n(t), t ≥ 0.

Since 〈Ân(t),1〉 = X̂n(t) by (14), it follows that

Ân(t) = K−1X̂n(t)1 + Ân(τ(t))−K−1〈Ân(τ(t)),1〉1 + R̂n(t)−K−1〈R̂n(t),1〉1

+ Q̂n(τ(t))−K−1〈Q̂n(τ(t)),1〉1− M̂n(t) +K−1〈M̂n(t),1〉1.

Thus, using the bound (5), we have, for 0 ≤ s < t <∞,

|Ân(t)− Ân(s)| ≤ |Ân(τ(t))− Ân(τ(s))|+
√

2K−1|X̂n(t)− X̂n(s)|

+ 2
√
K sup

u∈[s,t]
∆̂n(u) + |Q̂n(τ(t))− Q̂n(τ(s))|+ |M̂n(t)− M̂n(s)|.

Let δ > 0. By the previous display, the fact that M̂n = Ψ̂(Q̂n, Ân), and Assumption 3.8 bounding
the modulus of continuity of Ψ̂n(q, a), there exists ζ1 ∈ [0, 1) such that

(1− ζ1)w
(
Ân, δ, Tm+1 ∧ θn

)
≤ 3w

(
Ân ◦ τ, δ, Tm+1 ∧ θn

)
+
√

2K−1w
(
X̂n, δ, Tm+1 ∧ θn

)
+ 2
√
Krn + 2w

(
Q̂n ◦ τ, δ, Tm+1 ∧ θn

)
+ oδ,n(1).

Thus, by the induction hypothesis (48), the fact that τ(t) ∈ [0, Tm] for all t ∈ [0, Tm+1] by Assump-
tion 3.1, and the C-tightness of {X̂n}∞n=1 that follows from Proposition 2.3, the following limit
holds

lim
δ→0

lim sup
n→∞

P
(
w
(
Ân, δ, Tm+1 ∧ θn

)
≥ ε
)

= 0.

Since (Q̂nk , L̂
n
k) = Γ(Ânk− Ŝnk ◦Bn

k ) for each k ∈ K by Remark 2.1, {Ŝnk }∞n=1 is C-tight by Proposition
2.3 and Bn

k (·) is Lipschitz(1) by definition, it follows from the oscillation inequality for the SM stated
in (74) that the induction hypothesis (48) holds with Z ∈ {Q,L} and m + 1 in place of m. In
view of Assumption 3.8, we conclude the induction hypothesis (48) also holds with Z = M . This
completes the proof of the induction step. Hence, by the principle of mathematical induction, (48)
holds for all ε > 0, m ∈ N and Z ∈ {A,Q,L,M}.
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5.3 State space collapse for the estimated QL process

In this section it is shown that the sequence of random times θn converges in law to +∞. By the
very definition of θn, this directly implies that SSC holds. In view of the results of the previous
section, this also gives the C-tightness of the rescaled processes Ân, Q̂n and L̂n.

Lemma 5.3. Suppose the delay function τ(·) satisfies Assumption 3.1 and the sequence of scaled
estimators {Ψ̂n}∞n=1 satisfy the modulus of continuity condition stated in Assumption 3.8. Given
T ∈ (0,∞) there exists a sequence {rn}∞n=1 ∈ Z such that, if the sequence of stopping times {θn}∞n=1

is defined as in (47), then P(θn < T ) → 0. Consequently, the sequence {(Ân, Q̂n, L̂n, M̂n)}∞n=1 in

D0(RK)× D0(RK+ )× D0(RK+ )× D0(RK+ ) is C-tight, and ∆̂n → 0 in probability.

Proof. The second assertion follows from the first one in view of Lemma 5.2. To prove the first
assertion it suffices to show that for each m ∈ N0,

there exists a sequence {rn}∞n=1 ∈ Z such that P(θn < Tm)→ 0 as n→∞. (49)

The proof of (49) is established in steps 1 and 2 below.

Step 1. We show that for each m ∈ N and sequence {rn}∞n=1 ∈ Z satisfying

lim
n→∞

√
nrn =∞, (50)

there exists a sequence of (0, Tm)-valued RVs {δn}∞n=1 such that, for all n sufficiently large, on the
event {θn < Tm} one has

rn +
√
nδn ≤ c

[
w(X̂n, δn, Tm) + w(Un(· ∧ θn), δn, Tm)

]
+ on(1). (51)

where c < ∞ is a deterministic constant that does not depend on m, n or {rn}∞n=1, and Un =
{Un(t), t ≥ 0} is the K-dimensional RCLL process defined by

Unk (t) = −Ŝnk (Bn
k (τk(t))) + L̂nk(τk(t)) + M̂n

k (t), t ≥ 0.

To this end, fix m ∈ N, a sequence {rn}∞n=1 ∈ Z, and the corresponding sequence of stopping

times {θn}∞n=1. By the definition of θn and the right continuity of R̂n, on the event {θn < Tm}
there exists k∗ = k∗(n) ∈ K, fixed in what follows, such that

R̂nk∗(θ
n)−Rn(θn) ≥ rn.

Let
σn = sup

{
t ∈ [0, θn] : R̂nk∗(t)−R

n
(t) ≤ rn

4

}
,

where we note that the supremum is not over the empty set because R̂n(0) = 0. Since the jumps
of Ân and Ŝn are of size n−1/2 due to the diffusion scaling, it follows from Assumption 3.8 that the
jumps of M̂n are of order O(n−1/2). Hence, by relation (31) for R̂n, the jumps of R̂nk are also of order

O(n−1/2). As a result, for all n sufficiently large, we have σn < θn and R̂nk∗(σ
n)− Rn(σn) ≤ rn/2,

owing to property (50) of rn. Thus,[
R̂nk∗(θ

n)−Rn(θn)
]
−
[
R̂nk∗(σ

n)−Rn(σn)
]
≥ rn

2
(52)
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and
R̂nk∗(t) > R

n
(t) for t ∈ [σn, θn]. (53)

Since the estimated QL for the k∗
th queue is larger than the average estimated QL over the interval

[σn, θn] by (53), it follows from the the routing policy that there are no arrivals to the k∗
th queue

in the interval [σn, θn]. Therefore by (11), letting δn = θn − σn, we have

Ânk∗ [σ
n, θn] = −

µnk∗√
n
δn = −

(√
nµ̄k∗ + µ̂k∗

)
δn + on(1), (54)

where µ̄k∗ > 0 and µ̂k∗ ∈ R are the constants from Assumption 2.2 and on(1) denotes a constant
that converges to zero as n→∞.

Next we write useful equations for R̂nk , k ∈ K, and R
n
. For k ∈ K we have

R̂nk (t) = Ânk(t) + Unk (t), t ≥ 0. (55)

Letting U
n

= K−1〈Un,1〉, it follows from (6) that

R
n
(t) = K−1X̂n(t) + U

n
(t). (56)

Hence, by (52), (54), (55) and (56),

rn
2
≤ −
√
nµ̄k∗δ

n − µ̂k∗δn + Unk∗ [σ
n, θn]−K−1X̂n[σn, θn]− Un[σn, θn] + on(1).

Thus, for a suitable constant c > 0, independent of m, n and the sequence {rn}∞n=1, for sufficiently
large n, on the event {θn < Tm}, we see that (51) holds.

Step 2. We use the principle of mathematical induction to prove (49) holds for each m ∈ N0.
The base case m = 0 is immediate. Now suppose m ∈ N is such that (49) holds. Fix a deterministic
sequence {δn∗ }∞n=1 in (0,∞) such that δn∗ → 0 and

√
nδn∗ →∞ as n→∞. Recall that the sequence

{Un(· ∧ θn)}∞n=1 is C-tight by Lemma 5.2 and the uniform continuity of Bn
k and τk on compact

intervals. Since the processes X̂n and Ŝn are C-tight by Proposition 2.3, and δn∗ → 0 as n → ∞,
the sequence {Nn}∞n=1 in R+ defined for n ∈ N by

Nn = w(X̂n, δn, Tm) + w(Ûn(· ∧ θn), δn, Tm)

converges to zero in probability as n → ∞. Thus we can choose {rn}∞n=1 ∈ Z converging to zero
sufficiently slowly such that

lim sup
n→∞

P (rn ≤ cNn) = 0.

For each n ∈ N,
P(θn < Tm+1) ≤ P (Ωn

1 ) + P (Ωn
2 ),

where
Ωn
1 = {(51) holds and δn < δn∗ }, Ωn

2 = {(51) holds and δn ≥ δn∗ }.

By (51), on Ωn
1 , rn ≤ cNn and so lim supn→∞ P(Ωn

1 ) = 0. As for Ωn
2 , on this event we have, by (51),

√
nδn∗ ≤ 2c

[
sup

t∈[0,Tm+1]
|X̂n(t)|+ sup

t∈[0,Tm+1]
|Ûn(t ∧ θn)|

]
.
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Since, as mentioned above, {X̂n}∞n=1 and {Un(· ∧ θn)}∞n=1 are C-tight, the RHS above forms
a tight sequence of RVs indexed by n ∈ N, whereas the LHS tends to infinity. This implies
lim supn→∞ P(Ωn

2 ) = 0. This completes the proof that P(θn < Tm+1)→ 0 as n→∞ and so the in-
duction step holds. Thus, by the principle of mathematical induction (49) holds for all m ∈ N0.

5.4 Proof of Theorem 4.4

To prove the main result, it remains to show that every subsequential limit of the rescaled processes
satisfies the diffusion model.

Proof of Theorem 4.4. First of all, by Lemma 5.3, the RVs {L̂n}∞n=1 are C-tight; particularly, for

each T , the sequence of RVs {L̂n(T )}∞n=1 is tight. By (13) and the fact that n−1/2µnk → ∞, using

also the non-decreasing property of L̂nk the convergence of Bn
k to ι in distribution as n→∞ follows.

This, along with Proposition 2.3 and Lemma 5.2, implies that given any subsequence {nj}∞j=1, there

is a further subsequence, also denoted {nj}∞j=1, and K-dimensional continuous processes Â, Q̂ and

L̂ such that, as j →∞,(
X̂nj , Ŝnj , Bnj , Ânj , Q̂nj , L̂nj

)
⇒
(
X̂, Ŝ, I, Â, Q̂, L̂

)
,

where I ∈ C0(RK+ ) is defined by Ik = ι for k ∈ K. According to the Skorokhod representation

theorem (see, e.g., [1, Theorem 6.7]), there is a probability space (Ω̃, F̃ , P̃), a sequence of random
variables {(X̃nj , S̃nj , B̃nj , Ãnj , Q̃nj , L̃nj )}∞j=1 on (Ω̃, F̃ , P̃) and random variables (X̃, S̃, Ã, Q̃, L̃) on

(Ω̃, F̃ , P̃) with(
X̃nj , S̃nj , B̃nj , Ãnj , Q̃nj , L̃nj

)
d
=
(
X̂nj , Ŝnj , Bnj , Ânj , Q̂nj , L̂nj

)
, j ∈ N, (57)

and (
X̃, S̃, Ã, Q̃, L̃

)
d
=
(
X̂, Ŝ, Â, Q̂, L̂

)
, (58)

such that P̃-almost surely

(X̃nj , S̃nj , B̃nj , Ãnj , Q̃nj , L̃nj )→ (X̃, S̃, I, Ã, Q̃, L̃) (59)

in D0([0,∞),R)× (D0([0,∞),RK))5 as j →∞. By (57), (11) and (14), for each j ∈ N,

Ã
nj

1 (t) + · · ·+ Ã
nj

K (t) = X̃nj (t), t ≥ 0.

Upon letting j →∞, it follows from (59) that P̃-almost surely

Ã1(t) + · · ·+ ÃK(t) = X̃(t), t ≥ 0.

By (57) and (15), for each j ∈ N,

Q̃nj (t) = Ãnj (t)− S̃nj (B̃nj (t)) + L̃nj (t), t ≥ 0.

Letting j →∞, it follows from (59) that P̃-almost surely

Q̃(t) = Ã(t)− S̃(t) + L̃(t), t ≥ 0.
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By Assumption 3.5 (and the discussion following Assumption 3.5), R̃n = Φ̂n(Q̃n, Ãn) converges in
D0(RK) to R̃ = Φ̂(Q̃, Ã). In addition, by Lemma 5.3, we have, almost surely,

R̃1(t) = · · · = R̃K(t), t ≥ 0.

In particular, by Definition 4.1 and Proposition 5.1 we see that (Ã, Q̃) is the unique solution of
the diffusion model associated with (Φ̂, X̃, S̃), and so by (58), (Â, Q̂) is the unique solution of
the diffusion model associated with (Φ̂, X̂, Ŝ). Since this holds for every convergent subsequence
{nj}∞j=1, the proof is complete.

6 Load balancing bounds

One of our main results is the SSC for the estimated QLs, which asserts that these processes
equalize asymptotically. More important is the question of the degree to which the QLs themselves
are balanced. Whereas the routing processes are fully observable to the dispatcher, the service
processes are not, and therefore their stochasticity necessarily affects the accuracy of any estimation
procedure. As a result, one does not expect that SSC holds for the QLs. However, one expects
that the degree to which QLs are balanced can be estimated in terms of the level of stochasticity
of the service time distributions, and that the QLs nearly load balance when the service times
become close to deterministic. The goal of this subsection is to justify and quantify this heuristic
by deriving a bound on the level of QL imbalance, that specifically can be made as small as desired
by making the service times nearly deterministic. For technical reasons, the load balancing bounds
we obtain are for estimators that depend only on the delayed QLs and not the routed arrivals over
the delay interval; however, we expect these results to hold more broadly.

To state the result we first must be precise about the terms ‘stochasticity level of service times’
and ‘level of QL imbalance’. The role of the former will be played by the coefficients of variation
of the service times. Recall from Section 2.1 that the service process at station k in the nth system
to be an accelerated version of the process; that is, Snk (t) = Sk(µ

n
k t) for all t ≥ 0, where Sk is a

renewal process with mean 1 and finite variance γ2k > 0. Thus, the mean service time at station k
in the nth system is given by 1/µnk and its variance is given by (γk/µ

n
k)2. Whereas these parameters

depend on n, the coefficient of variation (defined for a RV ξ as its standard deviation divided by
its mean) of this rescaled service time is equal to γk, which does not depend on n. Thus given any
γ ∈ (0,∞)K , we denote the dependence on (n, γ) of all the processes involved by indicating (n, γ)
in the superscript, e.g., Qn,γk and Q̂n,γk . Next, the level of QL imbalance is defined, for a given
T <∞, as

Λn,γ(T ) = sup
t∈[0,T ]

max
j,k∈K

|Q̂n,γj (t)− Q̂n,γk (t)|.

The following result asymptotically bounds the QLs imbalance in terms of the coefficient of
variation γ.

Theorem 6.1. Suppose Ψ̂n is defined as in Example 3 for some continuous function h : [0,∞) ×
RK+ × RK → RK satisfying the conditions stated in Example 3 with η = 0; in other words, h does
not depend on the increment of arrivals. Assume that for some fixed r > 0, t − τk(t) ≤ r for all
t ≥ 0 and k ∈ K. Then given T > 0, there exists a (0,∞)-valued RV ξ, that does not depend on n, γ
(but may depend on T , r), such that for every γ ∈ (0,∞)K , the sequence Λn,γ(T ) is asymptotically
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dominated by 〈γ,1〉ξ; that is, for all u > 0,

lim sup
n→∞

P (Λn,γ(T ) > u) ≤ P (〈γ,1〉ξ > u)

Proof. In this proof we suppress the dependence on γ from notation of all processes. By equation
(31) and the definition of the estimator,

R̂nk (t) = Q̂nk(τk(t)) + Ânk [τ(t), t] + M̂n
k (t).

Denote D̂n
k = Ŝnk ◦Bn

k . Then by (15),

Q̂nk(t) = Q̂nk(τk(t)) + Ânk [τk(t), t]− D̂n
k [τk(t), t] + L̂nk [τk(t), t].

Combining these two equations,

Q̂nk(t) = Unk (t) + L̂nk(t), Unk (t) = R̂nk (t)− M̂n
k (t)− D̂n

k [τk(t), t]− L̂nk(τk(t)).

Given k ∈ K, by the properties of Q̂nk and L̂nk , it is readily seen that

(Q̂nk , L̂
n
k) = Γ(Unk ), (60)

where we recall that Γ = (Γ1Γ2) is the SM defined in (72)–(73) of Proposition A.2. Let m ∈ N be
sufficiently large so that T ≤ Tm. Let en = supt∈[0,Tm] maxj,k∈K |R̂nj (t)− R̂nk (t)| and recall that by
Lemma 5.3, for any γ, en → 0 in probability as n→∞. Define vn(T ) = sups∈[0,T ] maxj,k∈K |Unj (s)−
Unk (s)| for all T ∈ R+. By the definition of Un, the bound (35) with η = 0, the Lipschitz(1) property
of Γ2 and the Lipschitz(2) property of Γ1, we have, for all l ≤ m,

vn(Tl) = sup
s∈[0,Tl]

max
j,k∈K

|Unj (s)− Unk (s)|

≤ en + sup
s∈[0,Tl−1]

max
j,k∈K

|Q̂nj (s)− Q̂nk(s)|+ 2 max
k∈K

w(D̂n
k , t− τk(t), Tl) + vn(Tl−1)

≤ en + 2 max
k∈K

w(D̂n
k , t− τk(t), T ) + 3vn(Tl−1). (61)

Letting
ξn = 2 max

k∈K
w(Ŝnk , r, Tm),

it follows by the Lipschitz(1) property of the sample paths of Bn
k , and the assumption t− τk(t) ≤ r

for all t ≥ 0 and k ∈ K, that 2 maxk∈Kw(D̂n
k , r, Tm) ≤ ξn, and thus

vn(Tl) ≤ en + ξn + 3vn(Tl−1).

Then denoting

C =
m∑
j=0

3j ,

we arrive at the bound
vn(Tm) ≤ C(en + ξn).
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By Proposition 2.3, Ŝn ⇒ Ŝ, where Ŝ is a K-dimensional with zero drift and covariance matrix
given by diag(γ2kµ̄k). Hence if we let W be a fixed K-dimensional BM with zero drift and covariance

matrix diag(µ̄k), so that Ŝ
d
= diag(γ)W and Ŝn ⇒ diag(γ)W .

Next, the mapping ψ 7→ w(ψ, r, T ) is continuous in the uniform topology on [0, T ]. Hence

ξn ⇒ 2 max
k∈K

w(γkWk, r, T ) = 2 max
k∈K

γkw(Wk, r, T ) ≤ 〈γ,1〉ξ′,

where ξ′ = 2 maxk∈Kw(Wk, r, T ). We have thus shown that, for each γ, vn(T ) ≤ vn(Tm) is
asymptotically dominated by 〈γ,1〉Cξ′, where ξ′ and C do not depend on γ.

As for Λn(T ), it follows from (60), the Lipschitz(2) property of Γ1 that, for every γ, the sequence
{Λn(T )}∞n=1 is asymptotically bounded by 〈γ,1〉2Cξ′.

7 Examples of estimators and their relative performance

In this section we illustrate the generality of the permissible estimation schemes with four examples.
We discuss the relative performance of the three schemes that are straightforward to implement,
and show that they significantly outperform the delayed QL estimator. As mentioned in Section
3.2, our approach is inspired by the role that conditional expectation plays in estimation theory.
All our examples can be viewed as approximations of conditional expectation. Note that we do not
claim that conditional expectation is an optimal or asymptotically optimal estimator with respect
to a given criterion; in Section 8 the question of finding an optimal scheme is posed as an open
problem.

Recall that the balance equation (21) was obtained by removing service fluctuations process by
arguing that, in the formal limit, the conditional expectation of these fluctuations is zero. As a
result, (21) expresses the scaled QL estimator in terms of observables (delayed QL and incremental
routings) and the scaled incremental idleness estimator. In order to develop an estimator for the
scaled incremental idleness, note first that one can write an explicit expression for incremental
idleness in terms of the observables and the service process fluctuations. To this end recall Remark
2.1, according to which L̂nk is given by Γ2(Â

n
k − Ŝnk ◦ Bn

k ). By the semigroup property of the
Skorokhod map (Proposition A.2), for fixed t, letting

Znk (s) = Q̂nk(τk(t)) + Ânk [τk(t), τk(t) + s]− (Ŝnk ◦Bn
k )[τk(t), τk(t) + s], s ≥ 0, (62)

we have L̂nk [τk(t), τk(t) + s] = Γ2(Z
n
k )(s). Hence we can express the incremental idleness as

L̂nk [τk(t), t] = Γ2(Z
n
k )(t− τk(t)). (63)

Our estimators are approximations of the following conditional expectation:

E
[
Γ2(Z

n
k )(t− τk(t))

∣∣(Q̂n|τ(t), Ân|t)] . (64)

In particular, each estimator replaces Znk with an approximation derived according to certain heuris-
tics.

Our four estimators are explained in detail below, and are arranged in increasing order of
complexity. Roughly speaking, the first three estimators can be viewed as zeroth, first and second
order approximations of the conditional expectation in (64). In particular, in the zeroth, first and
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second order approximations, we respectively replace the difference Ânk − Ŝnk ◦ Bn
k in (62) by the

zero function, a linear trajectory and a diffusion process. The advantage of these three estimators
is that they have explicit formulae and are straightforward to implement. The fourth estimator is
the closest approximation to the conditional expectation (64). Indeed, the estimator is equal to
the conditional expectation (64), but with two modifications that are made for technical reasons —
the term Ŝnk ◦Bn

k in (62) replaced by its weak limit Ŝk and we discount the expectation by a factor
that is less than 1. While this estimator is the closest approximation to conditional expectation, it
has the significant disadvantage that it is impractical to implement.

Finally, we note that the estimator process is only needed to make a routing decision, so while it
is advantageous for the estimators to be close to the actual QL, it is more important that the relative
ordering of the estimators reflect the relative ordering of the QLs. Indeed, as we demonstrate below,
our first two estimators yield different estimates of the QLs but identical relative orderings, and
therefore result in identical routing decisions.

We now provide precise descriptions of the estimators listed above.

7.1 Zeroth order estimator

Our zeroth order estimator is obtained according to the following heuristic. Replacing Ânk and

Ŝnk ◦Bn
k by their zeroth order approximations (i.e., the constant functions identically equal to zero)

in equation (62) for Znk , we obtain a zeroth order approximation for Znk that is identically equal to

Q̂nk(τk(t)). Upon substituting this approximation for Znk in the conditional expectation in (64) and

using the explicit form for Γ2 in (73), we obtain an estimate for L̂nk [τk(t), t] that is identically zero.
Specifically, for n ∈ N, we set

Ψn(q, a) ≡ 0, (q, a) ∈ D0(RK+ )× D0(RK).

Then Ψn clearly lies in the class of estimators introduced in Example 3 with h ≡ 0, and therefore
satisfies our main assumptions by Lemma 3.10. In this case, the scaled estimator is given, for
n ∈ N, by

R̂nk (t) = Q̂nk(τk(t)) + Ânk [τk(t), t], t ≥ 0. (65)

When the system is overloaded and the QLs are expected to be large, it is natural to assume that
the idleness process will be close to zero. The zeroth order approximation takes the estimated
idleness to be identically zero even if the QLs are small. Note that while the estimated idleness is
set to be zero, the estimated QL R̂n still uses past routing decisions, as follows from the fact that
the arrival process Ânk appears on the RHS of (65).

Note that the estimated idleness does not use information about the routing process over the
delay interval. In this case the solution (Q̂, Â) of the diffusion model (see Remark 4.3) satisfies the
constrained stochastic delay equation

Q̂(t) = X̂(t)m− Ŝ(t)− Ŝ(τ(t))M + L̂(τ(t))M + L̂(t),

where m and M are as in Remark 4.3.

7.2 First order estimator

For our first order estimator we replace the processes Ânk and Ŝnk ◦ Bn
k with linear trajectories, as

follows. Since the routing policy has access to past routing decisions, we approximate the centered
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and scaled arrival process Ânk [τk(t), τk(t) + ·] on [0, t− τk(t)] by the linear trajectory

Ânk [τk(t), t]

t− τk(t)
ι(·), (66)

where Assumption 3.1 ensures that τk(t) < t for all t > 0. We then use a first order (LLN) approxi-
mations for Ŝnk ◦Bn

k , which is simply equal to the zero function. Substituting these approximations

into equation (63) for Znk we obtain the following estimate for L̂nk [τk(t), t] when t > 0:

Γ2

(
Q̂nk(τk(t)) +

Ânk [τk(t), t]

t− τk(t)
ι(·)

)
(t− τk(t)).

Finally, in order to ensure the estimator satisfies our main assumptions, we must discount the above
by a constant η(1) ∈ (0, 1), which can be chosen to be arbitrarily close to 1. Our scaled estimator
Ψ̂n is then defined, for q ∈ D0(RK+ ), a ∈ D0(RK) and k ∈ K, by Ψ̂n

k(q, a)(0) = 0 and

Ψ̂n
k(q, a)(t) = η(1)Γ2

(
qk(τk(t)) +

ak[τk(t), t]

t− τk(t)
ι(·)
)

(t− τk(t)), t > 0.

From the explicit expression for Γ2 and the fact that q(τ(t)) ∈ RK+ , it follows that Ψ̂n(q, a)(t) =
h(1)(t, q(τ(t)), a[τ(t), t]), where h(1) : R+ × RK+ × RK → RK+ is defined, for k ∈ K, by

h
(1)
k (t, v, u) = η(1) (vk + uk)

− , (t, v, u) ∈ R+ × RK+ × RK .

It then follows from equation (27) for Ψ̂n that

Ψn
k(q, a)(t) =

√
nh

(1)
k

(
t,
q(τ(t))√

n
,
a[τ(t), t]− νn(t)√

n

)
,

where νn(t) denotes the vector in RK+ defined by wnk (t) = µnk(t−τk(t)). It is readily verified the first
order estimator is of the form introduced in Example 3 and therefore satisfies our main assumptions
by Lemma 3.10. In addition, by (28) and the explicit expression for h(1), we see that

Φ̂n
k(q, a)(t) = q(τk(t)) + ak[τk(t), t] + η(1) {q(τk(t)) + ak[τk(t), t]}−

= {q(τk(t)) + ak[τk(t), t]}+ − (1− η(1)) {q(τk(t)) + ak[τk(t), t]}− .

Note that the relative ordering of the estimates Φ̂n
k does not depend on η(1) ∈ [0, 1). In fact, the

zeroth order estimator is a special case of the first order estimator obtained upon setting η(1) = 0.
Thus, there is no difference in routing when using the zeroth order estimator and the first order
estimator, for any η(1) ∈ (0, 1).

7.3 Second order estimator

Our second order estimator accounts for stochastic fluctuations in the service times. To this end,
we replace the process Ŝnk ◦ Bn

k by its second order (CLT) approximation Ŝk. As in the case of

the first order estimator, we replace Ânk [τk(t), τk(t) + ·] by a linear trajectory. (Here one could
also use a diffusion approximations of the arrivals, such as a Brownian bridge between the points
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Ânk(τk(t)) and Âk(t); however, we are unaware of the explicit formulae needed for implementing
such an estimator.) Substituting these approximations into equation (63) for Znk we obtain the

following estimate for L̂nk [τk(t), t]:

Γ2

(
Q̂nk(τk(t)) +

Ânk [τk(t), t]

t− τk(t)
ι(·) + Ŝk(·)

)
(t− τk(t)).

Finally, as in the first order estimator, in order to ensure the estimator satisfies our main assump-
tions, we must discount the above by a constant η(2) ∈ (0, 1). Our scaled estimator Ψ̂n is then
defined, for q ∈ C0(RK+ ), a ∈ C0(RK) and k ∈ K, by Ψ̂n

k(q, a)(0) = 0 and

Ψ̂n
k(q, a)(t) = η(2)E

[
Γ2

(
qk(τk(t)) +

ak[τk(t), t]

t− τk(t)
ι(·) + Ŝk(·)

)
(t− τk(t))

]
, t > 0.

It follows that

Ψn
k(q, a)(t) =

√
nh

(2)
k

(
t,
q(τ(t))√

n
,
a[τ(t), t]− νn(t)√

n

)
,

where νn(t) denotes the vector in RK+ defined by νnk (t) = µnk(t − τk(t)) for k ∈ K, and h(2) :

R+ × RK+ × RK → RK+ is defined, for k ∈ K, by h
(2)
k (0, v, u) = η(2)v−k and

h
(2)
k (t, v, u) = η(2)E

[
Γ2

(
vk +

uk
t− τk(t)

ι(·) + Ŝk(·)
)

(t− τk(t))
]
, t > 0. (67)

It follows from properties of the SM Γ2 that h(2) is in the class of estimator introduced in Example
3, as stated in the following lemma, whose proof is given in the appendix. In addition, we provide

an explicit expression for h
(2)
k (t, v, u) since it is equal to η(2) times the expected local time of a one-

dimensional reflected BM with drift uk, variance µkγ
2
k , starting at vk on the interval [0, t− τk(t)],

and the transition probabilities for a one-dimensional reflected BM are known (see, e.g., [7, page
48]).

Lemma 7.1. Suppose h(2) is defined as in (67). Then h(2) satisfies the conditions stated in Example
3 and for each k ∈ K,

h
(2)
k (t, v, u) = η(2)g(2)

(
vk,

uk
t− τk(t)

,
√
µkγk, t− τk(t)

)
, (t, v, u) ∈ (0,∞)× RK+ × RK ,

where g(2) : R× R× (0,∞)× (0,∞)→ R is defined by

g(2)(x, b, σ, θ) = −x− bθ + (x+ bθ)Υ

(
x+ bθ

σ
√
θ

)
+ σ
√
θφ

(
x+ bθ

σ
√
θ

)
(68)

+ 1{b6=0}
σ2

2b

[
exp

(
−2bx

σ2

)
Υ

(
−x+ bθ

σ
√
θ

)
−Υ

(
−x− bθ
σ
√
θ

)]
+ 1{b=0}

[
σ
√
θφ

(
− x

σ
√
θ

)
− xΥ

(
− x

σ
√
t

)]
.

Here φ and Υ are respectively the density function and the cumulative distribution functions for
the standard normal RV; that is, for x ∈ R,

φ(x) =
1√
2π
e−x

2/2, Υ(x) =

∫ x

−∞
φ(y)dy. (69)
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7.4 Conditional expectation-type estimator

For the final estimator the arrivals are used directly without any approximation, whereas the
service fluctuations are approximated as a BM as in the second order estimator. This is our closest
example to taking the conditional expectation of the incremental idleness expression given in (63),
conditioned on the observables. In particular, we would like to use the conditional expectation

E
[
Γ2

(
Q̂nk(τk(t)) + Ânk [τk(t), τk(t) + ·]− (Ŝnk ◦Bn

k )[τk(t), τk(t) + ·]
)

(t− τk(t))
∣∣∣(Q̂n|τ(t), Ân|t)]

(70)
as our estimator for L̂nk [τk(t), t]. To ensure it satisfies our assumptions, we replace Ŝnk ◦ Bn

k by its

limit Ŝk, which is independent of (Q̂n, Ân), and discount the conditional expectation by a constant
η(3) ∈ (0, 1), which can be arbitrarily close to 1. In particular, we define

Ψ̂(q, a)(t) = η(3)F̂ (q, a)(t), t > 0,

where, for k ∈ K,

F̂k(q, a)(t) = E
[
Γ2

(
q(τk(t)) + a[τk(t), τk(t) + ·]− Ŝk(·)

)
(t− τk(t))

]
, t > 0,

and set Ψn(q, a) =
√
nΨ̂(q, a) for each n ∈ N. Then formally, Ψ̂n(q, a) is asymptotically equivalent

to the conditional expectation (70) in the limit as n→∞ and η(3) → 1. Note that F̂k(q, a)(0) = 0
clearly holds for all (q, a) ∈ D0(RK+ ) × D0(RK) and k ∈ K. The following lemma, whose proof is
given in the appendix, states that the estimator satisfies our main assumptions.

Lemma 7.2. The sequence of scaled estimators {Ψ̂n}∞n=1 and limiting estimator Ψ̂ satisfy the
convergence condition stated in Assumption 3.5, the C-tightness condition stated in Assumption
3.8, and the contraction condition stated in Assumption 3.9.

In general, there is no explicit expression for F̂k(q, a) when a is an arbitrary function in D0(RK).
However, for the purposes of estimation, we are interested in evaluating the function F̂k at (Q̂n, Ân),
where Ân is our centered scaled routing process (11). The sample paths of this process are piecewise
linear (with drift −µn/

√
n) with positive jumps of size n−1/2. In this case, we can use the explicit

expression for the transition probability (see, e.g., [7, page 48]) for a one-dimensional reflected BM
to derive a formula for F̂k(Q̂

n, Ân) in terms of when the jumps of Ânk occur, as follows.

Lemma 7.3. Let q ∈ D0(RK+ ), a ∈ D0(RK), k ∈ K and t ≥ 0, and suppose ak satisfies

ak(s) = ak(τk(t)) + bk(s− τk(t)) +
J∑
j=1

cj1{s≥tj}, s ∈ [τk(t), t),

where J ∈ N0, {cj}Jj=1 is a sequence in R, and {tj}Jj=1 is an increasing sequence in (τk(t), t). Then

F̂k(q, a)(t) = −qk(τk(t))− ak(t) + ak(τk(t))

+

∫ ∞
c1

dz1 · · ·
∫ ∞
cJ

dzJ

J∏
j=1

πk(zj−1, tj − tj−1; zj − cj)

×
∫ ∞
ak(t)−ak(t−)

zπk(zJ , t− tJ ; z − ak(t) + ak(t−))dz,
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where z0 = qk(τk(t)), t0 = τk(t) and πk(x, s; ·) denotes the transition density, at time s ≥ 0, for a
one-dimensional reflected BM starting at x ≥ 0 with drift b and variance µkγ

2
k.

The proof of Lemma 7.3 is given in the appendix. Given (Q̂n, Ân), t > 0 and k ∈ K, let Jnk
denote the number of jumps Ânk has in the interval (τk(t), t) and let {ρj}

Jn
k
j=1 be the jump times for

Ânk in (τk(t), t), listed in increasing order, so that

Ânk(s) = Ânk(τk(t))−
µnk√
n
s+

1√
n

Jn
k∑

j=1

1{s≥ρnj }, s ∈ (τk(t), t).

Then

F̂k(Q̂
n, Ân)(t) = −Q̂nk(τk(t))− Ânk(t) + Ânk(τk(t))

+

∫ ∞
1/
√
n
dz1 · · ·

∫ ∞
1/
√
n
dzJ

Jn
k∏

j=1

πnk

(
zj−1, ρ

n
j − ρnj−1; zj −

1√
n

)
×
∫ ∞
Ân

k (t)−Â
n
k (t−)

zπnk

(
zJn

k
, t− τk(t)− ρnJ ; z − Ânk(t) + Ânk(t−)

)
dz.

where z0 = Q̂nk(τk(t)), ρ
n
0 = τk(t) and πnk (x, s; ·) denotes the transition density, at time s ≥ 0, for a

one-dimensional reflected BM starting at x ≥ 0 with drift −µnk/
√
n and variance µkγ

2
k . Thus, the

lemma provides an explicit expression for F̂ (Q̂n, Ân)(t) in terms of the jumps of Ân in the interval
[τk(t), t]. However, the expression contains

∑
k∈K J

n
k +K integrals, and

∑
k∈K J

n
k is of order n, so is

it impractical to compute the explicit expression for F̂ (Q̂n, Ân) each time an exogenous job arrives.
Therefore, the significance of this estimator is not practical but rather theoretical. It shows that
an approximation of conditional expectation, which is formally equal to conditional expectation in
the limit, can be addressed by our theoretical results.

7.5 Relative performance

We now compare the relative performance of the zeroth order estimator and the second order
estimator, which we respectively abbreviate as JSEQ(0) and JSEQ(2), and also compare their
performance to JSQ and the naive policy that routes jobs to the queue with the shortest delayed QL,
abbreviated JSDQ. (Recall there is no difference in routing when using the zeroth order estimator
and the first order estimator.)

In Figures 1 and 2 we plot sample paths of the scaled QLs (Q̂n1 , Q̂
n
2 ) for a system of two parallel

servers with exponential interarrival times and log normal service times under routing schemes JSQ,
JSDQ, JSEQ(0) and JSEQ(2). In the case of JSEQ(0) and JSEQ(2), we also plot sample paths of
the scaled estimated QLs (R̂n1 , R̂

n
2 ). In Figure 1 the difference b := λ̂− 〈µ̂,1〉 (i.e., the drift of the

BM X̂) is negative whereas in Figure 2 the difference is positive. As observed in Figures 1 and 2,
under the JSDQ policy the scaled QLs exhibit large sustained oscillations and both the JSEQ(0)
and JSEQ(2) policies significantly outperform the JSDQ policy. (Note that the QLs under JSDQ
are plotted on a different scale than the QLs under the other routing policies.) The oscillations
under JSDQ arise because JSDQ does not account for routing decisions over the delay interval. In
addition, we note that while the scaled estimator under the JSEQ(0) takes negative values when
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(a) (Q̂n
1 , Q̂

n
2 ) under JSQ (b) (Q̂n

1 , Q̂
n
2 ) under JSDQ

(c) (Q̂n
1 , Q̂

n
2 ) under JSEQ(0) (d) (R̂n

1 , R̂
n
2 ) under JSEQ(0)

(e) (Q̂n
1 , Q̂

n
2 ) under JSEQ(2) (f) (R̂n

1 , R̂
n
2 ) under JSEQ(2)

Figure 1: Sample paths for the scaled QLs (Q̂n1 , Q̂
n
2 ) and scaled estimated QLs (R̂n1 , R̂

n
1 ) (when

applicable) under the following routing policies: JSQ, JSDQ, JSEQ(0), and JSEQ(2) with η(2) =
.99. The interarrival times are exponential (so α = 1) and the service times are log normal with
γ21 = γ22 = 1. The sample paths are generated using common input RVs for each routing policy.
The parameters are τ(t) = (t− 1)+, λ̄ = 10, λ̂ = −5, µ̄1 = 3, µ̂1 = 0, µ̄2 = 7, µ̂2 = 0 and n = 25.
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(a) (Q̂n
1 , Q̂

n
2 ) under JSQ (b) (Q̂n

1 , Q̂
n
2 ) under JSDQ

(c) (Q̂n
1 , Q̂

n
2 ) under JSEQ(0) (d) (R̂n

1 , R̂
n
2 ) under JSEQ(0)

(e) (Q̂n
1 , Q̂

n
2 ) under JSEQ(2) (f) (R̂n

1 , R̂
n
2 ) under JSEQ(2)

Figure 2: Sample paths for the scaled QLs (Q̂n1 , Q̂
n
2 ) and scaled estimated QLs (R̂n1 , R̂

n
1 ) (when

applicable) under the following routing policies: JSQ, JSDQ, JSEQ(0), and JSEQ(2) with η(2) =
.99. The interarrival times are exponential (so α = 1) and the service times are log normal with
γ21 = γ22 = 1. The sample paths are generated using common input RVs for each routing policy.
The parameters are τ(t) = (t− 1)+, λ̄ = 10, λ̂ = 5, µ̄1 = 3, µ̂1 = 0, µ̄2 = 7, µ̂2 = 0 and n = 25.
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b < 0, the scaled estimator under JSEQ(2) remains positive. (One can prove that the estimator
under JSEQ(2) remains non-negative if η(2) = 1. When η(2) < 1, one can show that the estimator
remains non-negative with probability converging to one as η(2) ↑ 1.)

To quantify the degree to which two parallel queues are load balanced, define

Θn,γ(T ) =
1

T

∫ T

0
|Q̂n1 (s)− Q̂n2 (s)|2ds. (71)

Then Θn,γ(T ) serves as a measure of the average squared difference between the scaled QLs over the
interval [0, T ]. In Table 1 we evaluate the sample mean and 95% confidence interval for Θ25,γ(100)
obtained via simulation of 100 sample paths in the case of two parallel queues with exponential
interarrival times and log normal service times operating under the JSEQ(0) policy or the JSEQ(2)
policy, for varying values of b and γ21 = γ22 = σ2, where we recall that γ2k denotes the variance of
the interarrival times of the renewal process Sk. We also include the values of Θ25,γ(100) when
operating under the JSQ and JSDQ policies for comparison. As seen in the table, both routing
policies JSEQ(0) and JSEQ(2) significantly outperform JSDQ; however, there does not appear to
be a statistically significant advantage to using the more refined estimator JSEQ(2) over JSEQ(0),
even in the case that b < 0 and one expects the idleness process to have a larger effect on the
dynamics.

8 Conclusion and open problems

We considered the problem of load balancing under delayed information on QL. Borrowing an idea
from the theory of control under partial observations, we divided the problem into estimation and
control parts. For the estimation part we allowed a broad set of QL estimators, whereas as control
we chose to work with a policy that always routes to the shortest estimated queue. Our general
results establish that the estimated QLs undergo SSC, but the QLs themselves do not. In the
heavy traffic literature, SSC for QLs or workload processes has broadly been used in describing the
limit diffusion process and as a tool for establishing convergence (see, e.g., [17]). However, SSC for
estimators of QLs has not been considered before, to the best of our knowledge. Our results also
prove weak limits of diffusion scaled QLs and estimated QL, identified as the unique solution to a
diffusion model. The diffusion model itself builds on the SSC phenomenon, as one of its elements
is an equation asserting that the limiting scaled estimated QLs are equal. There is novelty in this
model, which accounts for both the QLs and their estimators, and in special cases gives rise to a
stochastic delay equation with reflection, in which the reflection term appears with delay.

Although the conditional expectation estimator inspires several aspects of our development, we
do not make any claim about its optimality. In fact, optimality with respect to a given criterion is
a central open question about the model. We formulate it as follows. Given a positive constant β,
consider the criterion

lim
T→∞

1

T

∫ T

0

∑
j,k

E
[
|Q̂nk(t)− Q̂nj (t)|β

]
dt,

where Q̂n denotes the scaled QL process when using an estimator Φ̂n. This criterion reflects an
attempt to load balance, or minimize imbalance among the different QLs. Another criterion of
interest may be the imbalance of delays associated with the different queues.
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Table 1: 95% confidence intervals for E[Θ25,γ(100)], with exponential interarrival times and log-
normal services times, operating under the JSQ, JSDQ, JSEQ(0), and JSEQ(2) with η(2) = .99
policies, with τ(t) = (t − 1)+, λ̄ = 10, µ̄1 = 3, µ̄2 = 7, for varying values of b = λ̂ − 〈µ̂,1〉 and
γ1 = γ2 = σ.

Estimator b σ2 Θ25,γ(100)

JSQ -5 .5 .0438± .0026

JSDQ -5 .5 295.1639± 31.0764

JSEQ(0) -5 .5 .6509± .1953

JSEQ(2) -5 .5 .5249± .1793

JSQ -5 1 .0625± .0059

JSDQ -5 1 315.1499± 38.6355

JSEQ(0) -5 1 1.5770± .5786

JSEQ(2) -5 1 1.3080± .5074

JSQ -5 2 .1060± .0162

JSDQ -5 2 335.6563± 44.9582

JSEQ(0) -5 2 4.1222± 1.7280

JSEQ(2) -5 2 3.5431± 1.8988

JSQ 0 .5 .0523± .0030

JSDQ 0 .5 547.7839± 34.1452

JSEQ(0) 0 .5 2.1006± .5700

JSEQ(2) 0 .5 2.0976± .5418

JSQ 0 1 .0775± .0072

JSDQ 0 1 576.1120± 44.7662

JSEQ(0) 0 1 4.4260± 1.1616

JSEQ(2) 0 1 4.3465± 1.2267

JSQ 0 2 .1318± .0167

JSDQ 0 2 614.6724± 55.4677

JSEQ(0) 0 2 9.2948± 2.8597

JSEQ(2) 0 2 9.2317± 2.6948

JSQ 5 .5 .0522± .0036

JSDQ 5 .5 544.2919± 38.4926

JSEQ(0) 5 .5 2.0565± .1428

JSEQ(2) 5 .5 2.0705± .5885

JSQ 5 1 .0669± .0056

JSDQ 5 1 703.4523± 42.8280

JSEQ(0) 5 1 4.9691± 1.2040

JSEQ(2) 5 1 4.9618± 1.1919

JSQ 5 2 .1097± .0123

JSDQ 5 2 753.4017± 49.4041

JSEQ(0) 5 2 10.6035± 2.4505

JSEQ(2) 5 2 10.2657± 2.5698
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Problem 1. Find a sequence of estimators {Φ̂n}∞n=1 that asymptotically minimizes the above cri-
terion in the limit n→∞.

As a step toward solving Problem 1, we pose an analogous question for the diffusion model.
Consider the criterion

lim
T→∞

1

T

∫ T

0

∑
j,k

E
[
|Q̂k(t)− Q̂j(t)|β

]
dt,

where (Q̂, Â) denotes the solution to the diffusion model (Definition 4.1) associated with the esti-
mator Φ̂.

Problem 2. Find an estimator Φ̂ that minimizes the above criterion for the the diffusion model.

An additional contribution of this paper is the detailed analysis of concrete estimators. One
main conclusion from the simulation results is a clearly seen difference in performance between the
delayed QL estimator and estimators which use the routing information; all our three examples of
estimators use this information for QL estimation even if some of them do not use it for idleness
estimation. It is evident that oscillations occur under delayed QL estimation, but not under the
other estimators.

One may consider extending the approach presented in this paper. First, whereas the estimation
stage is treated here in general, the load balancing stage is according JSQ. There are numerous
other load balancing algorithms treated in the literature, most notably ones that only sample a
subset of QLs and select the shortest (for example, as in [13]). One may ask for scaling limits under
these various policies. Another valid problem is to view this model within the framework of optimal
control under partial state observation. To this end, a criterion must be specified, and it could be the
total QL or the degree to which queues are balanced. Particularly, it is interesting to ask if a form
of a separation principle holds for the asymptotics of the control problem, asserting that estimation
and load balancing can be treated as separate problems without loss of (asymptotic) optimality.
The separation principle is well known to hold in other (non-asymptotic) control problems [5]. This
question is of course in line with the approach presented in this paper.

There are several additional directions of interest when studying load balancing policies in the
presence of delays. For example, while here we consider the case of a fixed number of queues,
one may ask about the performance of the “join the shortest estimated queue” policy under heavy
traffic scaling when the number of queues scale with n or

√
n (and the exogeneous arrival rate

scales with 1 or
√
n, respectively). There have been a number of recent works analyzing JSQ in

these regimes when there are no messaging or routing delays (see [2, 4, 6] and the survey [18]). For
further examples of interesting open problems related to load balancing in the presence of delays,
see [10].

A One-dimensional Skorokhod problem

In this appendix we briefly review some well known properties of the one-dimensional Skorokhod
problem. For proofs of the results here, see [3, Chapter 8].

Definition A.1. Given x ∈ D+([0,∞),R) we say that a pair (z, y) ∈ D([0,∞),R+)×D0([0,∞),R+)
satisfies the one-dimensional Skorokhod problem for x if the following conditions hold,
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1. z(t) = x(t) + y(t) for all t ≥ 0;

2. y is non-decreasing and can increase only when z is zero, i.e.,
∫ t
0 z(s)dy(s) = 0 for all t ≥ 0.

Proposition A.2. Given x ∈ D+([0,∞),R) there exists a unique solution (z, y) of the one-
dimensional Skorokhod problem for x given by (z, y) = (Γ1,Γ2)(x), where, for t ≥ 0,

Γ1(x)(t) = x(t) + Γ2(x)(t), (72)

Γ2(x)(t) = sup
0≤s≤t

(x(s))−. (73)

Consequently, the following properties hold:

1. Oscillation inequality: Denote Osc(f, [s, t]) = sup{|f(u) − f(r)| : s ≤ r, u ≤ t}. Then given
x ∈ D+([0,∞),R) and 0 ≤ s < t <∞,

Osc(Γ1(x), [s, t]) ≤ Osc(x, [s, t]) and Osc(Γ2(x), [s, t]) ≤ Osc(x, [s, t]). (74)

2. Semigroup property: given x ∈ D+([0,∞),R) and 0 ≤ s < t <∞,

Γ1(x)(t) = Γ1(z
s)(t− s) and Γ2(x)(t) = Γ2(x)(s) + Γ2(z

s)(t− s),

where zs(·) = Γ1(x)(s) + x(s+ ·)− x(s).

3. Lipschitz continuity: for x1, x2 ∈ D+([0,∞),R) and t ≥ 0,

sup
0≤s≤t

|Γ1(x1)(s)− Γ1(x2)(s)| ≤ 2 sup
0≤s≤t

|x1(s)− x2(s)|, (75)

sup
0≤s≤t

|Γ2(x1)(s)− Γ2(x2)(s)| ≤ sup
0≤s≤t

|x1(s)− x2(s)|. (76)

Lemma A.3. Let x ∈ D+(R) and (z, y) = (Γ1,Γ2)(x). Let τ : R+ → R+ be non-decreasing such
that t > τ(t) for all t ∈ R+. Define H : R+ → R+ by

H(t) = Γ2(z(τ(t)) + x[τ(t), τ(t) + ·])(t− τ(t)).

Then for 0 ≤ s < t,

Osc(H, [s, t]) ≤ Osc(z, [τ(s), τ(t)]) + Osc(x, [τ(s), τ(t)]) + Osc(x, [τ(s), τ(t)]) ∨Osc(x, [s, t]).

Proof. Since τ is non-decreasing, we have τ(s) ≤ τ(t). By the definition of Γ2 there exists vt ∈
[τ(t), t] such that either

H(t) = [z(τ(vt)) + x(vt)− x(τ(vt))]
−

or
H(t) = [z(τ(vt−)) + x(vt−)− x(τ(vt−))]− .

Let ut stand for either vt or vt−, so that H(t) = [z(τ(ut)) +x(ut)−x(τ(ut))]
−. Analogously, define

us ∈ [τ(s), s]. Then x(ut) ≤ x(u) for all u ∈ [τ(t), t] and x(us) ≤ x(u) for all u ∈ [τ(s), s]. It follows
that

x(τ(t) ∨ us)− x(us) ≤ x(ut)− x(us) ≤ x(ut)− x(s ∧ ut).
Thus,

|H(t)−H(s)| = |(z(τ(t)) + x[τ(t), ut])
− − (z(τ(s))− x[τ(s), us])

−|
≤ |z(τ(t))− z(τ(s))|+ Osc(x, [τ(s), τ(t)]) + Osc(x, [τ(s), τ(t)]) ∨Osc(x, [s, t]).
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B Analysis of estimator functions

B.1 Proof of Lemma 3.10

Proof of Lemma 3.10. From the definitions for Ψ̂n and Ψ̂ and the condition h(0, 0, 0) = 0, we
see that Ψ̂n(q, a)(0) = 0 for all (q, a) ∈ D0(RK+ ) × D0(RK) and Ψ̂(q, a)(0) = 0 for all (q, a) ∈
C0(RK+ )×C0(RK). Now let {(qn, an)}∞n=1 and (q, a) be as in parts (i)–(iii) of Assumption 3.5. Let

t <∞. By the definitions of Ψ̂n and Ψ̂, and the continuity condition (34), for each s ∈ [0, t],

|Ψ̂n
k(qn, an)(s)− Ψ̂k(q, a)(s)| = |h(s, qn(τ(s)), an[τ(s), s])− h(s, q(τ(s)), a[τ(s), s])|

≤ |qnk (τ(s))− qk(τ(s))|+ 2η sup
0≤u≤s

|ank(u)− ak(u)|.

Since {(qn, an)}∞n=1 converges to (q, a) uniformly on compacts (see Remark 3.6), taking supremums
over s ∈ [0, t] on both sides of the previous display and letting n→∞ we see that Assumption 3.5
holds. Next, fix T <∞ and let s, t ∈ [0, T ] satisfy |s− t| ≤ δ. From the continuity condition (34),
it follows that

w(Ψ̂n(q, a), δ, [0, T ]) ≤ κ(δ) + w(q(τ(·)), δ, [0, T ]) + ηw(a ◦ τ, δ, [0, T ]) + ηw(a, δ, [0, T ]),

and so Assumption 3.8 holds. Finally, given q ∈ D0(RK+ ), a, a′ ∈ D0(RK) and t ≥ 0, by the Lipschitz
condition (34),

|Ψ̂(q, a)(t)− Ψ̂(q, a′)(t)| ≤ η|a[τ(t), t]− a′[τ(t), t]|.

Thus, Assumption 3.9 holds, which completes the proof.

B.2 Proof of Lemma 7.1

We first need the following lemma.

Lemma B.1. For x ∈ R+, b ∈ R and σ2 > 0, let (Z, Y ) = Γ(x+ bι+ σW ). That is, Z be a one-
dimensional reflected BM with initial condition x, drift b and variance σ2, and Y is the associated
local time process. Then, for θ ≥ 0,

E [Z(θ)] = x+ bθ + g(2)(x, b, σ, θ), (77)

E [Y (θ)] = g(2)(x, b, σ, θ), (78)

where g(2)(x, b, σ, θ) is defined as in (68).

Proof. By Equation (3.63) on [7, page 48],

E [Z(θ)] =

∫ ∞
0

Υ

(
−u+ x+ bt

σ
√
t

)
du+

∫ ∞
0

exp

(
2bu

σ2

)
Υ

(
−u− x− bt

σ
√
t

)
du,

where Υ denotes the cumulative distribution function for the standard normal distribution. For
r ∈ R and s > 0, after substituting in with the definition of Υ, interchanging the order of integration
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and using the fact that φ′(t) = −tφ(t), we see that∫ ∞
0

Υ (r − su) du =

∫ r

−∞
φ(t)

∫ −t+r
s

0
dudt

=
r

s

∫ r

−∞
φ(t)dt− 1

s

∫ r

−∞
tφ(t)dt

=
r

s
Υ(r) +

1

s
φ(r).

Next, for q 6= 0, r ∈ R and s > 0, after substituting in with the definition of Υ, interchanging the
order of integration and a completion of squares argument, we obtain∫ ∞

0
exp(qu)Υ (−r − su) du =

∫ −r
−∞

φ(t)

∫ − t+r
s

0
exp(qu)dudt

=
1

q
exp

(
q2

2s2
− qr

s

)∫ −r
−∞

φ
(
t+ qs−1

)
dt− 1

q

∫ −r
−∞

φ(t)dt

=
1

q
exp

(
q2

2s2
− qr

s

)
Υ(−r + qs−1)− 1

q
Υ(−r).

Therefore,

E [Z(θ)] = (x+ bθ)Υ

(
x+ bθ

σ
√
θ

)
+ σ
√
θφ

(
x+ bθ

σ
√
θ

)
+ 1{b6=0}

σ2

2b

[
exp

(
−2bx

σ2

)
Υ

(
−x+ bθ

σ
√
θ

)
−Υ

(
−x− bθ
σ
√
θ

)]
+ 1{b=0}

[
σ
√
θφ

(
− x

σ
√
θ

)
− xΥ

(
− x

σ
√
t

)]
.

Since Z(θ) = x + bθ + σW (θ) + Y (θ) by definition and E[W (θ)] = 0, the expressions (77)–(78)
follow.

Proof of Lemma 7.1. The explicit expression for h(2) follows from the fact that h
(2)
k (t, v, u) is equal

to η(2) multiplied by the expected local time of a reflected BM over the interval [0, t− τk(t)] with
initial condition vk, drift uk

t−τk(t) , variance µ̄kγ
2
k .

Fix T <∞. First observe that by definition h(2)(0, 0, 0) = 0. Next, let t, t′ ∈ [0, T ], v, v′ ∈ RK+
and u, u′ ∈ RK . Then

|h(2)k (t, v, u)− h(2)k (t′, v′, u′)| ≤ |h(2)k (t, v, u)− h(2)k (t′, v, u)|+ |h(2)k (t′, v, u)− h(2)k (t′, v′, u′)|.

We treat the two terms on the RHS of the previous display separately. By the definition of h
(2)
k

and the Lipschitz(1) continuity of Γ2,

|h(2)k (t′, v, u)− h(2)k (t′, v′, u′)| ≤ η(2)|vk − v′k|+ η(2)|uk − u′k|.

We are left to show there exists κ : [0, T ]→ R+ continuous and non-decreasing satisfying κ(0) = 0
and such that the first term is bounded by κ(|t − t′|). By the definition of h(2) and the explicit
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expression for Γ2,

|h(2)k (t, v, u)− h(2)k (t′, v, u)|

≤ η(2)E

[∣∣∣∣∣ sup
0≤s≤t−τk(t)

(
vk +

uks

t− τk(t)
− Ŝk(s)

)−
− sup

0≤s≤t′−τk(t′)

(
vk +

uks

t′ − τk(t′)
− Ŝk(s)

)−∣∣∣∣∣
]

Since ι and Ŝk are continuous, there are (random) times ρ ∈ [0, t − τk(t)] and ρ′ ∈ [0, t′ − τk(t′)]
such that

sup
0≤s≤t−τk(t)

(
vk +

uks

t− τk(t)
− Ŝk(s)

)−
=

(
vk +

ukρ

t− τk(t)
− Ŝk(ρ)

)−
,

sup
0≤s≤t′−τk(t′)

(
vk +

uks

t′ − τk(t′)
− Ŝk(s)

)−
=

(
vk +

ukρ
′

t′ − τk(t′)
− Ŝk(ρ′)

)−
.

Note that

ρ′

t′ − τk(t′)
(t− τk(t)) ∈ [0, t− τk(t)] and

ρ

t− τk(t)
(t′ − τk(t′)) ∈ [0, t′ − τk(t′)],

and so the following inequalities hold:(
vk +

ukρ
′

t′ − τk(t′)
− Ŝk

(
t− τk(t)
t′ − τk(t′)

ρ′
))−

≤
(
vk +

ukρ

t− τk(t)
− Ŝk(ρ)

)−
,(

vk +
ukρ

t− τk(t)
− Ŝk

(
t′ − τk(t′)
t− τk(t)

ρ

))−
≤
(
vk +

ukρ
′

t′ − τk(t′)
− Ŝk(ρ′)

)−
.

Thus, we have the following string of inequalities:(
vk +

ukρ
′

t′ − τk(t′)
− Ŝk

(
t− τk(t)
t′ − τk(t′)

ρ′
))−

−
(
vk +

ukρ
′

t′ − τk(t′)
− Ŝk(ρ′)

)−
≤
(
vk +

ukρ

t− τk(t)
− Ŝk(ρ)

)−
−
(
vk +

ukρ
′

t′ − τk(t′)
− Ŝk(ρ′)

)−
≤
(
vk +

ukρ

t− τk(t)
− Ŝk(ρ)

)−
−
(
vk +

ukρ

t− τk(t)
− Ŝk

(
t′ − τk(t′)
t− τk(t)

ρ

))−
.

Therefore,∣∣∣∣∣ sup
0≤s≤t−τk(t)

(
vk +

uks

t− τk(t)
− Ŝk(s)

)−
− sup

0≤s≤t′−τk(t′)

(
vk +

uks

t′ − τk(t′)
− Ŝk(s)

)−∣∣∣∣∣
≤ w(Ŝk, |t− t′|, T ) + (Ŝk ◦ τk, |t− t′|, T ),

where we have used the fact that

max

(∣∣∣∣ t− τk(t)t′ − τk(t′)
ρ′ − ρ′

∣∣∣∣ , ∣∣∣∣ρ− t′ − τk(t′)
t− τk(t)

ρ

∣∣∣∣) ≤ |t− t′|+ |τk(t)− τk(t′)|.
It follows that |h(2)k (t, v, u)− h(2)k (t′, v, u)| ≤ κ(|t− t′|), where, for δ ∈ [0, T ],

κ(δ) = η(2)E
[
w(Ŝk, δ, [0, T ])

]
+ η(2)E

[
w(Ŝk ◦ τ, δ, [0, T ])

]
, δ > 0.

Since Ŝk and τk are continuous, it follows that κ : [0, T ] → R+ is continuous, non-decreasing and
satisfies κ(0) = 0. This completes the proof that (34) holds.
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B.3 Proof of Lemma 7.2

Proof of Lemma 7.2. Let {(qn, an)}∞n=1 and (q, a) be as in parts (i)–(iii) of Assumption 3.5. Let
t <∞. By the Lipschitz(1) continuity of the SM Γ2, for each s ∈ [0, t] and k ∈ K,

|Ψ̂n
k(qn, an)(s)− Ψ̂k(q, a)(s)| ≤ η(3)|qn(τ(s))− q(τ(s))|+ 2η(3) sup

0≤u≤s
|an(u)− a(u)|.

Taking supremums over s ∈ [0, t] on both sides and letting n → ∞ we see that Assumption 3.5
holds. Next, fix T <∞ and let s, t ∈ [0, T ] satisfy |s− t| ≤ δ. By Lemma A.3,

w(Ψ̂n(q, a), δ, [0, T ]) ≤ η(3)w(q(τ(·)), δ, [0, T ]) + 2η(3)w(a ◦ τ, δ, [0, T ]) + η(3)w(a, δ, [0, T ])

+ η(3)E
[
w(Ŝ ◦ τ, δ, [0, T ])

]
+ η(3)E

[
w(Ŝ, δ, [0, T ])

]
.

Thus, Assumption 3.8 holds with ζ1 = η(3) and

κ(δ) = η(3)E
[
w(Ŝk, δ, [0, T ])

]
+ η(3)E

[
w(Ŝk ◦ τ, δ, [0, T ])

]
, δ > 0.

Finally, given q ∈ D0(RK+ ), a, a′ ∈ D0(RK) and t ≥ 0, by the Lipschitz(1) continuity of the SM Γ2,

|Ψ̂(q, a)(t)− Ψ̂(q, a′)(t)| ≤ η(3)|a[τ(t), t]− a′[τ(t), t]|.

Thus, Assumption 3.9 holds with ζ2 = η(3), which completes the proof.

B.4 Proof of Lemma 7.3

Proof of Lemma 7.3. Define the processes Y n
k and Znk on [0, t− τk(t)] by

Y n
k (s) = qk(τk(t))− bks− Ŝk(s), s ∈ [0, t− τk(t)],

and

Znk (s) = Y n
k (s) +

∞∑
j=1

cj1{s≥tj}, s ∈ [0, t− τk(t)].

Then Fk(q, a)(t) = E [Γ2(Z
n
k )(t− τk(t))]. Set t0 = 0 and tJ+1 = t − τk(t). Since the jumps of Znk

are positive, for each j = 1, . . . , J + 1,

Γ1(Z
n
k )(tj) = Γ1(Z

n
k )(tj−) + ak(tj)− ak(tj−).

Furthermore, by the semigroup property of the SM Γ1,

Γ1(Z
n
k )(tj−) = Γ1 (Γ1(Z

n
k ) + Y n

k (tj + ·)− Y n
k (tj)) (tj − tj−1).

Thus
P (Γ1(Z

n
k )(tj−) ∈ dzj) = πk(Γ1(Z

n
k )(tj−1), tj − tj−1; zj)dzj .

It follows that

P (Γ1(Z
n
k )(tj) ∈ dzj) = P (Γ1(Z

n
k )(tj−) + cj ∈ dzj)

= πk(Γ1(Z
n
k )(tj−1), tj − tj−1; z − cj)dzj .
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Therefore, recursively applying the last display, we obtain

P(Γ1(Z
n
k )(t− τk(t)) ∈ dz) = P(Γ1(Z

n
k )(tJ+1) ∈ dz)

=
[ ∫ ∞

c1

dz1 · · ·
∫ ∞
cJ

dzJ

J∏
j=1

π(zj−1, tj − tj−1; zj − cj)

× π(zJ , t− tJ ; z − a(t) + a(t−))
]
dz.

The lemma then follows from the facts that Fk(q, a)(t) = E [Γ2(Z
n
k )(t− τk(t))] and Γ2(Z

n
k )(t −

τk(t)) = Γ1(Z
n
k )(t − τk(t)) − Znk (t − τk(t)), and above expression for the transition density of

Γ1(Z
n
k )(·) and time t− τk(t).
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