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Abstract

We study a many-server queueing model with server vacations, where the population
size dynamics of servers and customers are coupled: a server may leave for vacation only
when no customers await, and the capacity available to customers is directly affected by
the number of servers on vacation. We focus on scaling regimes in which server dynamics
and queue dynamics fluctuate at matching time scales, so that their limiting dynamics
are coupled. Specifically, we argue that interesting coupled dynamics occur in (a) the
Halfin-Whitt regime, (b) the nondegenerate slowdown regime, and (c) the intermediate,
near Halfin-Whitt regime; whereas the dynamics asymptotically decouple in the other heavy
traffic regimes. We characterize the limiting dynamics, which are different for each scaling
regime. We consider relevant respective performance measures for regimes (a) and (b)
— namely, the probability of wait and the slowdown. While closed form formulas for
these performance measures have been derived for models that do not accommodate server
vacations, it is difficult to obtain closed form formulas for these performance measures in
the setting with server vacations. Instead, we propose formulas that approximate these
performance measures, and depend on the steady-state mean number of available servers
and previously derived formulas for models without server vacations. We test the accuracy
of these formulas numerically.

1 Introduction

Scaling limits for stochastic processing networks with a growing number of servers is an active
research area. Since the pioneering work of Halfin and Whitt [13], the novel scaling that
they introduced has attracted substantial interest, and also inspired the study of various other
scaling regimes in which the number of servers grows to infinity in the limit. These studies
include scaling limit results at the law of large numbers (or fluid) scale, as well as several
distinct frameworks at the central limit theorem (or diffusion) scale. For a sample of such
work, see [1], [2], [3], [8], [9], [11], [12], [14], [17], [22], [23], [26], [29], [30].

Queueing models with server vacations arise in computer communication systems and pro-
duction engineering, and their mathematical analysis has a long history in the operations
research literature; see the earlier survey [7], the recent book chapter [15, Ch. 10], and the
recent work [22], as well as the references therein. Server vacations occur in models that ac-
commodate primary and secondary classes of customers, where, from the viewpoint of primary
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customers, a server working non-preemptively on secondary customers may equivalently be
regarded as if it takes a vacation, as it is not available during that time. They also arise for
a variety of other reasons, including machine breakdowns and maintenance. Kella and Whitt
[19] make the distinction between models in which servers leave for vacations according to the
state of the queue and ones in which vacations are triggered exogenously (see [15] for various
other important distinctions and classifications of vacation models). In this paper we consider
a model of the former type, where specifically, as in the case considered in a single-server set-
ting in [19], a server may leave only when the queue is empty. In this case there is an interplay
between the population size dynamics of servers and that of customers: the vacations are trig-
gered by the state of the queue, and the queue dynamics is affected by the number of available
servers. We study these dynamics at the diffusion scale in a class of heavy traffic many-server
regimes, focusing on regimes in which the population size dynamics of customers and of servers
fluctuate on the same time scale, so that the equations describing limiting dynamics remain
coupled. Our first main contribution is to show that diffusion limits can indeed capture such
coupled dynamics, and to classify regimes where it occurs.

To put these results in context some background on classification of heavy traffic regimes
is necessary. A formulation of a continuum of heavy traffic regimes was introduced in [1],
which contains as special cases the well-known conventional and Halfin-Whitt (HW) regimes.
To introduce it, consider the N -server queue, let α ∈ [0, 1] be a given parameter and let n
denote a scaling parameter. Assume that the arrival rate is proportional to n and that the
number of servers Nn is proportional to nα. Impose a critical load condition by letting the
total processing rate be nearly equal to the arrival rate. Then the individual service rate must
be proportional to n1−α. For any α, a diffusion scaled process is obtained by scaling down
the queue size by n1/2. In this spectrum of heavy traffic regimes, the two endpoints, α = 0
and α = 1 give the conventional regime (with a fixed number of servers) and, respectively, the
HW regime, with O(n) servers and no acceleration of service times. A well-known property
of the latter regime, that is unique among all heavy traffic regimes, is that the steady state
probability that an arriving customer waits in the queue is asymptotic to a number strictly
between 0 and 1. At the midpoint, α = 1/2, one obtains the nondegenerate slowdown (NDS)
regime. A unique property of it is that the time in queue and the time in service for a typical
customer are of the same order of magnitude. The slowdown, defined as the ratio of sojourn
time and service time for a typical customer is therefore nondegenerate in this regime (that is,
it is asymptotic to a number strictly between 1 and ∞). The regimes where α ∈ (0, 1/2) and
α ∈ (1/2, 1) were not given any names so far in the literature. In this paper we shall refer to
them as the near-conventional and the near-HW regimes, respectively.

The aforementioned coupling between the dynamics of server population size and queue
size is argued in this paper to occur for α ∈ [1/2, 1] but not for α ∈ [0, 1/2). That is, it
occurs in the HW, the near-HW and the NDS regimes. The first setting we consider is of
exponential vacation lengths. In this case we show that the scaling limits of the joint dynamics
are governed by a pair of coupled one-dimensional equations. In each of the relevant regimes,
the set of equations takes a different form:

(i) In the HW regime, the scaling limit is governed by a coupled stochastic differential
equation (SDE) and ordinary differential equation (ODE) system.

(ii) In the near HW regime, the scaling limit is governed by a coupled SDE with reflection
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(SDER) at zero and ODE system, where the boundary term that constrains the SDER
to remain non-negative also appears as a term in the ODE.

(iii) In the NDS regime, the scaling limit is governed by a coupled SDER and birth-death
process (BDP), where the positive jumps are driven by the boundary term for the SDER.

We also show that for α < 1/2, scaling limits do not exhibit coupled dynamics. Furthermore,
a more involved model is treated, in which vacation lengths follow a phase type distribution.

The second goal of this paper is to study the effect of server vacations on natural perfor-
mance measures, in the special cases of HW and NDS. In these two cases there are performance
measures that are particularly interesting to study. In the HW regime, it is the probability of
wait, that is, the steady state probability that an arriving customer has to wait for service.
This probability was shown in [13] to converge to a number strictly between 0 and 1, and
an explicit formula was given for the limit. It is not a meaningful performance measure in
any other regime α ∈ [0, 1), as in these regimes the limit is always 1. We are interested in
the asymptotics of the probability of wait in presence of server vacations. The diffusion limit
developed here can in principle make it possible to achieve this goal, however explicit expres-
sions are hard to obtain for the two-dimensional dynamics (i). Instead, we propose a further
approximation based on heuristics. This gives rise to a formula that is a variant of the original
formula of [13].

Similarly, in the case of NDS, a property that distinguishes this regime from all regimes
with α ∈ [0, 1/2)∪ (1/2, 1] is that the slowdown, defined as the ratio between expected sojourn
time and expected service time in steady state, is asymptotic to a random variable strictly
between 1 and ∞. A formula for the slowdown asymptotics was provided in [1] for the model
without vacations, and it is of interest to explore how it varies in presence of vacations. Once
again, an explicit expression is hard to obtain as it involves two-dimensional dynamics, and
we turn instead to a heuristic argument. The heuristic gives rise to a variation of the formula
from [1] obtained by introducing a correction term.

In both cases, we test the proposed formulas numerically. We provide arguments suggest-
ing that the heuristic formulas are nearly accurate in specific parameter settings, and these
arguments are validated by our numerical tests. The overall level of accuracy of the heuristic
formulas is also discussed.

While there have been a number of works on exact analysis of queueing systems with
server vacations (see, e.g., [7], [10], [22], [28]) or fluid limits of such queueing systems (see, e.g.,
[24]), there have been relatively few results on diffusion limits for queueing systems with server
vacations, especially in the many-server regime. In terms of dependence of vacations on the
state of the queue, the closest work to ours is the aforementioned [19], which addresses a single
server setting. In their model, the server vacations each time the queue becomes empty. They
also study the case that the server vacations according to an exogenous Poisson process (in
which case there may be service interruptions). In both cases, the heavy traffic scaling limit is a
Lévy processes with a secondary jump input. In follow up work [20] they prove decompositions
for the stationary distributions of these processes. In the many-server setting, Pang and Whitt
[23] prove diffusion limits in the HW regime in the case of exogenous server interruptions (see
also [22] for a related work) that simultaneously affect a proportion of the servers. This is
relevant for models in which exogenous events result in a large number of servers being out of
service (e.g., system-wide computer crashes). The primary difference between our work and
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the works [22, 23] is that our focus is on server vacations triggered by the state of the queue,
which leads to a server-customer population dynamics.

The organization of this paper is as follows. Below, some mathematical notation used in
this paper is introduced. In §2, the main model and scaling regimes are introduced, and the
first main result is stated. Its proof is provided next in §3. An extension of the result to phase
type vacation time distribution is presented and proved in §4. In §5, heuristic formulas are
developed for performance measures in the HW and NDS regimes. Finally, numerical tests of
the level of accuracy of these heuristics are then provided and discussed in the same section.

Notation

Let N = {1, 2, . . . } denote the positive integers and N0 = N ∪ {0}. For d ∈ N let Rd denote
d-dimensional Euclidean space. We use boldface letters to denote vectors. When d = 1 we
suppress the superscript d and write R for the real numbers. Let R+ = [0,∞) denote the non-
negative axis. For a, b ∈ R, the maximum [resp., minimum] is denoted by a ∨ b [resp., a ∧ b].
For a ∈ R, the positive [resp., negative] part is denoted by a+ = a ∨ 0 [resp., a− = (−a) ∨ 0].
For a ∈ R+, let dae = min{n ∈ N0 : n ≥ a}. For d ∈ N and x,y ∈ Rd, let x · y and ‖x‖ denote
the usual scalar product and `2 norm, respectively. Given a sequence {xn} in R+ and α ≥ 0,
we say xn ∼ nα if n−αxn → C as n→∞ for some C ∈ R+.

For f : R+ → Rd, let ‖f‖T = supt∈[0,T ] ‖f(t)‖, and, for θ ∈ (0, T ), let

wT (f, θ) = sup
0≤s<u≤s+θ≤T

‖f(u)− f(s)‖.

For a Polish space S, let CS([0, T ]) and DS([0, T ]) denote the set of continuous and, respectively,
cadlag functions [0, T ]→ S, which is endowed with the Skorokhod J1-topology. Write CS and
DS for the case where [0, T ] is replaced by R+. Write Xn ⇒ X for convergence in distribution.
A sequence of processes Xn with sample paths in DS is said to be C-tight if it is tight and
every subsequential limit has, with probability 1, sample paths in CS . Denote by ι the identity
map on R+ defined by ι(t) = t for t ∈ R+.

A standard Brownian motion, or SBM for short, is a one-dimensional Brownian motion
starting from zero, with zero drift and unit variance. We abbreviate “random variable” and
“independent and identically distributed” with “RV” and, respectively, “IID”.

2 The dynamic server population model

The queueing model consists of a single queue with multiple servers. Customers arrive ac-
cording to a renewal process and are served in the order in which they arrive (i.e., first-come-
first-serve). The service time at each server is exponentially distributed. Furthermore, when
a server becomes idle it waits an exponentially distributed amount of time and then vacations
(provided there are still no customers in queue). Servers spend an exponentially distributed
amount of time vacationing before returning to service. The choice of the exponentially dis-
tribution for service times, idle times before vacationing, and vacationing times is chosen for
mathematical tractability of the limiting process. In particular, we are able to obtain heuristic
formulas which allow us to estimate relevant steady-state quantities. Allowing for general dis-
tributions would require a measure-valued state-descriptor (see, e.g., [18]). In §4 we consider
phase type vacation time distributions.

4



2.1 Scaling regimes

We consider a sequence of queueing networks, indexed by n ∈ N, that are built on a common
probability space (Ω,F , P ). For n ∈ N, let Nn denote the number of servers in the nth system,
λn > 0 denote the inverse of the mean interarrival times of customers to the system and µnind > 0
denote the inverse mean service time. We use ‘ind’ as a mnemonic for individual service
rate. The parameter α ∈ [12 , 1] will differentiate the different scaling regimes we consider. In
particular, we assume

λn ∼ n, Nn ∼ nα, µnind ∼ n1−α.

Then the overall capacity of the servers, which is given by the product µn = µnindN
n, is of

order n and is thus of the same order as the arrival rate λn. The three regimes we consider
are as follows:

(i) α = 1: HW regime.

(ii) α ∈ (12 , 1): near HW regime.

(iii) α = 1
2 : NDS regime.

2.2 Customer dynamics

For n ∈ N let Qn(t) denote the number of jobs in the buffer at time t. At any given time, a
server can be in three possible states: busy, idle, or vacationing. The number of servers that
are idle and vacationing at time t are denoted by In(t) and V n(t), respectively. The number
of busy servers is then given by

Bn(t) := Nn − In(t)− V n(t), (1)

and the number of customers in the system at time t, denoted by Xn(t), is given by

Xn(t) = Qn(t) +Bn(t) = Qn(t) +Nn − In(t)− V n(t). (2)

The initial conditions Qn(0), In(0) and V n(0) are N0-valued RVs represent the number of
customers initially in the buffer, the number of servers initially idle and the number of servers
initially vacationing, respectively.

Let {IA(l) : l ∈ N} be strictly positive IID RVs with mean 1 and variance C2
IA > 0, and

define

An(t) := sup

{
l ≥ 0 :

l∑
k=1

IA(k)

λn
≤ t

}
, t ≥ 0 . (3)

Then An(t) represents the number of customers that arrive in the interval [0, t]. We assume
that, as n→∞,

λ̂n := n−
1
2 (λn − nλ)→ λ̂, (4)

where λ > 0 and λ̂ ∈ R are constants. In the nth system the server pool consists of Nn = dnαe
servers. Each of the servers has IID exponential service times with parameter µnind = µnind(α).
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Recall the overall capacity, given by the product µn = µnindN
n, is of order n. We assume that,

as n→∞,

µ̂n := n−
1
2 (µn − nµ) = n−

1
2 (µnindN

n − nµ)→ µ̂, (5)

where µ > 0 and µ̂ ∈ R are constants. The critical load condition, µ = λ, is assumed throughout
this work. Fix a standard unit Poisson process S. Then the potential service process, denoted
by Sn, is given by Sn(t) := S(µnt) for t ≥ 0. The number of departing customers by time t,
denoted Dn(t), is given by

Dn(t) = S

(
µnind

∫ t

0
Bn(s)ds

)
. (6)

Denoting by Jn(t) the number of jobs routed to the service pool by time t (not counting the
initial number), we also have the following balance equations, namely

Qn(t) = Qn(0) +An(t)− Jn(t), (7)

In(t) + V n(t) = In(0) + V n(0) +Dn(t)− Jn(t). (8)

Equation (7) expresses the fact that the queue length increases by one with each arrival and
decreases by one on every routing of a job from the queue to the service pool. Equation (8)
expresses the fact that the number of non-active servers (due to idleness or vacation) increases
by one on every customer departure and decreases by one on every routing of a new job to
the service pool (in particular, it does not vary when both events occur at the same time). A
work conservation condition is in force, according to which servers may not be idle when there
is work in the queue. This can be expressed as

for every t ≥ 0, Qn(t) > 0 implies In(t) = 0. (9)

It is assumed that the condition above holds even for t = 0, that is, if Qn(0) > 0 then In(0) = 0,
hence a constraint is implicitly assumed regarding the initial condition (Qn(0), In(0)). How-
ever, no constraint is put on V n(0), which may take a positive value even if the initial queue
length Qn(0) is positive.

2.3 Server dynamics

Our model for server vacations has positive parameters βn and γn, which are assumed to satisfy

(βn, γn)→ (β, γ) as n→∞, (10)

for some β ≥ 0 and γ ≥ 0. Note that we allow for the degenerate cases where β = 0 and
or γ = 0; see Remark 2.1(b). (In §4 we treat a more complicated model in which there are
multiple vacationing states.) The model allows a server to start a vacation only if it is idle.
It can be described as follows: an exponential clock operating at rate βn is started when the
server becomes idle, and if it ticks before the server is busy again, it goes on a vacation for a
duration that is exponentially distribution with rate γn (that is, a vacationing server continues
vacation until the exponential clock rings even if there are customers in the queue). Thanks
to the assumed homogeneity of the servers, this mechanism can be modeled by working with
the joint idleness process, and the total number of servers vacationing, rather than accounting
for each server individually. To this end, let SB and SE be two standard Poisson processes,
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where B and E are used as mnemonics for beginning and end of vacation. Then the counting
processes associated with vacation beginnings and endings are

V n
B (t) = SB

(
βn
∫ t

0
In(s)ds

)
, V n

E (t) = SE

(
γn
∫ t

0
V n(s)ds

)
, (11)

respectively. Thus the number of servers vacationing is given by

V n(t) = V n(0) + V n
B (t)− V n

E (t). (12)

It is assumed that the five objects (Qn(0), In(0), V n(0)), IA(·), S(·), SB(·) and SE(·) are
mutually independent.

2.4 Statement of main result

We can now state the main result on the model in the exponential vacation case, characterizing
the scaling limit of (Xn, V n). Define the diffusion scaled process

X̂n =
Xn −Nn

√
n

, (13)

where we recall that Nn = dnαe. Normalize the vacation population size process with scaling
specific to α, namely

Ṽ n =
V n

nα−
1
2

. (14)

Set
b := λ̂− µ̂, σ2 := µ(C2

IA + 1).

The statement of the result uses the following terminology. Given an R+-valued process X =
{X(t), t ≥ 0}, we say that a R+-valued process L = {L(t), t ≥ 0} is a boundary term for X at
zero if a.s.,

(i) L(0) = 0,

(ii) the sample paths of L are non-decreasing, and

(iii) L can only increase when X is zero, i.e.,
∫
[0,∞)X(t)dL(t) = 0.

Theorem 2.1 Fix α ∈ [12 , 1]. Assume that the rescaled initial conditions of Xn and V n

converge, namely that (X̂n(0), Ṽ n(0)) ⇒ (X0, V0) as n → ∞. In the case α ∈ [12 , 1), assume

also that X0 ≥ 0 a.s. Then (X̂n, Ṽ n) ⇒ (X,V ) as n → ∞, where the pair (X,V ) satisfies
coupled equations that depend on α as follows.

(i) (HW regime) In the case α = 1, the pair (X,V ) takes values in R × R+ and forms a
solution to the SDE-ODE system

X(t) = X0 +

∫ t

0
[b+ µmax(−X(s), V (s))]ds+ σW (t),

V (t) = V0 +

∫ t

0
[β(X(s) + V (s))− − γV (s)]ds,

(15)

where W is an SBM, independent of (X0, V0).
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(ii) (near-HW regime) In the case α ∈ (12 , 1), the pair (X,V ) takes values in R+ × R+ and
forms a solution to the SDER-ODE system

X(t) = X0 +

∫ t

0
[b+ µV (s)]ds+ σW (t) + L(t),

V (t) = V0 − γ
∫ t

0
V (s)ds+ βµ−1L(t),

(16)

where L is a boundary term for X at zero, and W is an SBM, independent of (X0, V0).

(iii) (NDS regime) In the case α = 1
2 , the pair (X,V ) takes values in R+ × Z+ and forms a

solution to the system
X(t) = X0 +

∫ t

0
[b+ µV (s)]ds+ σW (t) + L(t),

V (t) = V0 − SE
(
γ

∫ t

0
V (s)ds

)
+ SB(βµ−1L(t)),

(17)

where L is a boundary term for X at zero, W is an SBM, SB and SE are standard
Poisson processes, and W , SB, SE and (X0, V0) are mutually independent.

In case (i) (resp., (ii), (iii)), the system of equations (15) (resp., (16), (17)) uniquely charac-
terizes the law of the pair (X,V ).

Remark 2.1 (On the roles played by various parameters).
(a) It is argued in Appendix A.2 that for α ∈ [0, 12) (the conventional and near-conventional
regimes) the unnormalized process V n simply vanishes in the limit n→∞. Hence there can be
no rescaling under which the pair of processes remains coupled. Thus the meaningful regimes
for the model studied in this paper are only α ∈ [12 , 1].
(b) Our limit theorem allows for the degenerate cases that β = 0 and/or γ = 0. When β = γ =
0 servers do not vacation or return to service and from (15)–(17) we see that V (t) = V (0) for
all t ≥ 0. In (15) we recover the well known SDE for X (with drift b+ µV (0)) studied in [13].
Similarly in (16) or (17) we recover the one-dimensional RBM for X (with drift b + µV (0))
obtained in [1] when the abandonment rate is set to zero. On the other hand, if β = 0 and
γ > 0, then servers only return to service in the limit. In this case, V (t) → 0 as t → ∞ in
all three scaling regimes. Finally, if β > 0 and γ = 0 then servers do not return to service in
the limit. In this case, V (·) is a non-decreasing process in all three scaling regimes. Note that
although the service capacity can only decrease with time, our results indicate that the system
is still in heavy traffic, in the sense that the diffusion-scaled queue length does not blow up in
finite time.
(c) The parameter α does not appear in any of the equations (15), (16), (17), but it plays a
central role in that it determines the regime by controlling how Nn and µnind scale (as well as
how V n scales, see (14)), and it dictates which of these equations is valid in each case. Because
these equations do not depend on α, the dynamics defined by (16) do not approach those of
(15) (resp., (17)) as α tends to 1 (resp., 1/2). It should come as no surprise that such an
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interchange of limits may sometimes fail to hold. Even for the model with no vacations, the
large n limit and the α → 1 limit do not commute: The dynamics defined by the first line of
(16) with V ≡ 0 do not approach those of the first line of (15) with V ≡ 0 as α → 1. (This
cannot be said about the limit α → 1/2, because one obtains the same dynamics when setting
V = 0 in the first line of (16) and in the first line of (17); thus the interchange of limits
n → ∞ and α → 1/2 is valid in the model without vacations and invalid in the model with
vacations).

Remark 2.2 (On the boundary term). Given a solution (X,V ) to either (16) or (17), let L
be a boundary term for X at zero. Define the process ξ = {ξ(t), t ≥ 0} by

ξ(t) = X0 +

∫ t

0
[b+ µmax(−X(s), V (s))]ds+ σW (t).

Then the pair (X,L) is a solution to the well known one-dimensional Skorokhod problem for ξ,
and is explicitly given by (X,L) = Γ (ξ), where Γ = (Γ1, Γ2) is the one-dimensional Skorokhod
map (see Appendix A.1). Moreover, as will become apparent from the proof, L is the weak limit
of a suitably rescaled version of the cumulative idle process (that is, of Ln defined in (31)).

Remark 2.3 (On the queue length and waiting time processes). It follows from Theorem
2.1 and its proof that the rescaled queue length process Q̂n(t) := n−1/2Qn(t) also converges.
Specifically, under the assumptions of Theorem 2.1, (X̂n, Ṽ n, Q̂n)⇒ (X,V,Q), where

Q(t) = (X(t) + V (t))+ when α = 1 and Q(t) = X(t)+ when α ∈ [12 , 1). (18)

This statement is proved in Appendix A.3.
Next, the convergence of the rescaled waiting time process also follows. Specifically, let ATn

t

denote the time of the first arrival to occur after time t,

ATn
t = inf{s > t : An(s) > An(s−)}.

Let WTn
t denote the time the customer arriving at ATn

t waits in the queue before being assigned
a server. A precise definition of this process in terms of the previously defined model quantities
is WTn

t = 0 if Qn(ATn
t ) = 0, and otherwise

WTn
t = inf{s > 0 : Jn(ATn

t + s) = Jn(ATn
t ) +Qn(ATn

t )}.

Namely, it is the time it takes all the Qn(ATn
t ) customers that are in the queue at time ATn

t to

leave the queue. The diffusive rescaling of this process is given by ŴT
n

t = n1/2WTn
t . Reiman’s

snapshot principle [27] relates the diffusion scale asymptotics of the waiting time process to
that of the queue length process, under a heavy traffic condition. According to this principle,
the weak limit of ŴT

n

t is µ−1Qt, where Qt is the weak limit of the diffusion scaled queueing
process. Since we have identified the latter as (18), we obtain the convergence of the processes

ŴT
n
⇒WT, where

WTt = µ−1(X(t) + V (t))+ when α = 1 and WTt = µ−1X(t)+ when α ∈ [12 , 1).

A proof of Reiman’s snapshot principle in various related contexts has been provided before, for
example in [1] (see the online appendix) and [4] (see Section 5). Whereas the settings in these
references are somewhat different, the proof in the current setting is very similar and is thus
omitted.
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3 Proof of main result

3.1 Useful identities and preparatory lemmas

We first define some related scaled processes. Namely, let

Ân(t) =
An(t)− λnt√

n
, Ŝn(t) =

S(nt)− nt√
n

, (19)

Q̂n(t) =
Qn(t)√

n
, Ĩn(t) =

In(t)

nα−
1
2

(20)

(where Q̂n has already been defined in Remark 2.3). The various convergence results in The-
orem 2.1 are largely based on the fact that centered renewal processes (with finite second
moments) satisfy a functional central limit theorem. In particular, Theorem 14.1 of [5] and the
mutual independence of the processes Ân and Ŝn imply that these processes jointly converge
to processes Â and Ŝ, which are mutually independent driftless BMs with diffusion coefficients√
λCIA and, respectively, 1.

We next develop several identities satisfied by the scaled processes. Using first (2), (7) and
(8), and then (6), we obtain

X̂n(t) = X̂n(0) +
An(t)−Dn(t)√

n

= X̂n(0) + σWn(t) + n−
1
2λnt− n−

1
2µnind

∫ t

0
Bn(s)ds,

where

Wn(t) =
Ân(t)− Ŝn

(
n−1µnind

∫ t
0 B

n(s)ds
)

σ
. (21)

Thus by (1), (4), (5) and the critical load condition λ = µ, we have, denoting bn = λ̂n − µ̂n,

X̂n(t) = X̂n(0) + σWn(t) + bnt+ n−1µn
∫ t

0
(Ĩn(s) + Ṽ n(s))ds. (22)

By (2),

Q̂n = X̂n + n−
1
2 (In + V n) = X̂n + nα−1Ĩn + nα−1Ṽ n.

In view of the non-idling condition (9), this gives the identities

(X̂n + nα−1Ṽ n)+ = Q̂n, (n1−αX̂n + Ṽ n)− = Ĩn. (23)

(Notice that it is possible to have simultaneously X̂n(t) < 0 and Q̂n(t) > 0, unlike in the model
without vacations). Define the process Y n = {Y n(t), t ≥ 0} by

Y n := (X̂n, Ṽ n), (24)

and for a constant c0 > 0, define the stopping time τn(c0) by

τn(c0) := inf{t : ‖Y n(t)‖ ≥ c0}. (25)
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Lemma 3.1 Let α ∈ [12 , 1]. Then the processes Wn are C-tight.

Proof. Recalling that Bn(t) ≤ Nn by definition (1), and using the finiteness of the constant
c = supn n

−1µnindN
n <∞, we have n−1µnind

∫ t
0 B

n(s)ds ≤ ct for all t ≥ 0 and n ∈ N. Thus

wT (Wn, θ) ≤ σ−1wT (Ân, θ) + σ−1wcT (Ŝn, cθ).

Since the centered renewal processes Ân and Ŝn are C-tight, it follows that the processes Wn

are also C-tight. 2

The following relations will be useful for cases (i) and (ii), i.e., for α ∈ (12 , 1]. For such α

dividing by nα−
1
2 in (11) and (12) yields the relation

Ṽ n(t) = Ṽ n(0) + βn
∫ t

0
Ĩn(s)ds− γn

∫ t

0
Ṽ n(s)ds+ en(t), (26)

where, with

enB(u) = n−α+
1
2

[
SB(nα−

1
2u)− nα−

1
2u
]
, enE(u) = n−α+

1
2

[
SE(nα−

1
2u)− nα−

1
2u
]
, (27)

we have denoted

en(t) = enB

(
βn
∫ t

0
Ĩn(s)ds

)
− enE

(
γn
∫ t

0
Ṽ n(s)ds

)
. (28)

Lemma 3.2 Let α ∈ (12 , 1]. Then for all T <∞, ‖enB‖T + ‖enE‖T ⇒ 0 as n→∞.

Proof. Let T <∞. The convergence ‖enB‖T + ‖enE‖T ⇒ 0 follows from definition (27) and the
functional law of large numbers for the Poisson processes SB and SE . 2

Next, we record relations that will useful for cases (ii) and (iii), i.e., for α ∈ [12 , 1). Let

X̃n(t) = (X̂n(t))+ and enX(t) = (X̂n(t))− = X̃n(t)− X̂n(t). (29)

Then X̃n is non-negative and by (22), X̃n = ξn + Ln, where

ξn(t) = X̂n(0) +

∫ t

0
[bn + n−1µnṼ n(s)]ds+ σWn(t) + enX(t). (30)

and

Ln(t) = n−1µn
∫ t

0
Ĩn(s)ds. (31)

Furthermore, by (23), Ĩn(t) > 0 implies X̂n(t) < 0. As a result, by (31) and (29), we see that
Ln is non-decreasing and Ln can only increase when X̃n is zero, i.e.,

∫∞
0 1{X̃n(t)>0}dL

n(t) = 0.

Consequently, (X̃n, Ln) is the solution to the one-dimensional Skorokhod problem for ξn (see
Appendix A.1), and so the pair can be expressed in terms of the one-dimensional Skorokhod
map, as follows,

(X̃n, Ln) = Γ (ξn). (32)
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Lemma 3.3 Suppose α ∈ [12 , 1). Then enX ⇒ 0.

Proof. Fix α ∈ [12 , 1) and T <∞. By assumption, the weak limit X0 of X̂n(0) is non-negative,
so it suffices to show that for any ε > 0, P (Ωn,ε)→ 0, where

Ωn,ε =

{
∃ 0 ≤ sn < tn ≤ T : X̂n(sn) > −2ε, X̂n(tn) < −3ε, sup

t∈[sn,tn]
X̂n(t) < −ε

}
.

By (22), on the event Ωn,ε, there exists 0 ≤ sn < tn ≤ T such that

−ε > X̂n(tn)− X̂(sn) ≥ −σwT (Wn, δn)− cδn + n−1µn
∫ tn

sn
(Ĩn(u) + Ṽ n(u))du,

where c = supn ‖bn‖ <∞ and δn = tn− sn. It follows from (23) and the fact that X̂n(t) < −ε
on the interval [sn, tn], that Ĩn + Ṽ n > n1−αε on the interval. As a result, for all sufficiently
large n, on Ωn,ε,

n−1µn
∫ tn

sn
(Ĩn(u) + Ṽ n(u))du ≥ c1εn1−αδn,

where c1 = infn n
α−1µnind = infn n

−1µn > 0. Thus

P (Ωn,ε) ≤ P (σwT (Wn, δn) + cδn ≥ ε+ c1εn
1−αδn).

Fix α′ ∈ (0, 1 − α). Separating the cases δn < n−α
′

and δn ≥ n−α
′
, we obtain that, for all

sufficiently large n,

P (Ωn,ε) ≤ P (σwT (Wn, n−α
′
) + cn−α

′ ≥ ε) + P (2σ‖Wn‖T + cT ≥ c1εn1−α−α
′
).

Both terms on the RHS converge to zero by the C-tightness of Wn shown in Lemma 3.1. Since
ε and T are arbitrary, this shows that enX ⇒ 0. 2

3.2 Proof of Theorem 2.1

We can now prove our main scaling limit result. Throughout the proof, Cn denotes a generic
sequence of constants that satisfy Cn → 1, where by the term ‘generic’ we mean that the values
the sequence takes may vary from one line to another. In addition, the symbol c denotes a
generic positive constant (that, in particular, does not depend on n).

Proof of Theorem 2.1. The three regimes are treated separately. For each regime, our
approach is as follows: (a) prove uniqueness in law of solutions to the limiting equations [i.e.,
(15), (16) or (17)], (b) express the equations for (X̂n, Ṽ n) in a form that resembles the limiting
equations, (c) prove, for each T , tightness of ‖Y n‖T , which implies C-tightness of the relevant
processes, and (d) show that along any convergent subsequent, the limiting processes satisfy
the limiting equations (for which uniqueness in law holds).

(i) The case α = 1. We first establish uniqueness in law of solutions to the system of
equations (15). Observe that (15) can be viewed as a degenerate SDE with Lipschitz drift and
diffusion coefficients (the latter is constant). For such an SDE, pathwise uniqueness of solutions
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holds, and consequently so does uniqueness in law. For the former see Ch. V, Theorem 7 of
[25].

We now write relations for the (X̂n, Ṽ n) that closely resemble the limiting system (15).
Setting α = 1 in (23) shows that Ĩn + Ṽ n = max(−X̂n, Ṽ n), so

Ĩn(t) + Ṽ n(t) ≤ 2‖Y n(t)‖. (33)

In addition, substituting the relation into (22), and recalling relation (26) for Ṽ n, yields the
system of equations

X̂n(t) = X̂n(0) + Cnµ

∫ t

0
[bn + max(−X̂n(s), Ṽ n(s))]ds+ σWn(t),

Ṽ n(t) = Ṽ n(0) +

∫ t

0
[βn(X̂n(s) + Ṽ n(s))− − γnṼ n(s)]ds+ en(t).

(34)

Next, for fixed T < ∞, we prove tightness of ‖Y n‖T . By (34) and the boundedness of bn,
βn and γn, we have

‖Y n‖t ≤ ‖Y n(0)‖+ σ‖Wn‖t + c1t+ c1

∫ t

0
‖Y n‖sds+ ‖en‖t, t ≥ 0. (35)

for some fixed constant c1 that does not depend on n. Appealing to Gronwall’s lemma shows
that, for t ≥ 0,

‖Y n‖t ≤ (‖Y n(0)‖+ σ‖Wn‖t + c1t+ ‖en‖t) exp(c1t). (36)

Recall that the RVs ‖Y n(0)‖+ σ‖Wn‖T form a tight sequence by the assumed convergence of
the initial conditions and the C-tightness of Wn shown in Lemma 3.1. Given ε > 0 let K be
sufficiently large so that lim supn P (‖Y n(0)‖ + σ‖Wn‖T > K) < ε. Choose c0 > (K + c1T +
1) exp(c1T ) and let τn = τn(c0) be defined as in (25). In this case, by (33) and the definition of
τn, Ĩn(t∧ τn) + Ṽ n(t∧ τn) ≤ 2c0 for all t ≥ 0, so, in view of definition (28) for en and Lemma
3.2, we have ‖en‖t∧τn ≤ ‖enB‖2c0βn + ‖enE‖2c0γn ⇒ 0 as n→∞. Therefore, by our choice of K,

lim sup
n→∞

P (‖Y n(0)‖+ σ‖Wn‖T + ‖en‖T∧τn > K + 1) < ε.

From (36) and our choice of c0 we see that on the event ‖Y n(0)‖+σ‖Wn‖T +‖en‖T∧τn ≤ K+1,
we have ‖Y n‖T∧τn < c0. Hence by definition (25), τn > T on that event. As a result,
lim supn P (‖Y n‖T > c0) < ε. Since ε is arbitrary, this shows that ‖Y n‖T forms a tight
sequence of RVs.

Having shown tightness of the RVs ‖Y n‖T , we now establish that (Wn, en)⇒ (W, 0). Using

(1), (33) and the fact that Nn = n, we have 1− 2n−
1
2 ‖Y n‖T ≤ n−1Bn(t) ≤ 1 for all 0 ≤ t ≤ T

and n ∈ N. As a result, ‖n−1Bn− 1‖T ⇒ 0 as n→∞. Using this, along with the convergence
µnind → µ as n→∞, in the definition (21) for Wn shows that Wn(·)⇒ σ−1(Â(·)−Ŝ(µ·)). Note
that the latter process is a driftless BM with diffusion coeffient given by σ−1(λC2

IA + µ)1/2 =
σ−1λ1/2(C2

IA + 1)1/2 = 1. Hence the limit is equal in distribution to the SBM W . Next,

observe that the RVs
∫ T
0 Ĩn(s)ds and

∫ T
0 Ṽ n(s)ds, which appear as arguments of enB and enE in

expression (28) for en(T ), form tight sequences of RVs, as follows from (33). This, along with
Lemma 3.2, yields ‖en‖T ⇒ 0.
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Now, by (34), for every T > 0 and 0 < θ ≤ 1,

wT (X̂n, θ) ≤ Cnµ(|bn|+ ‖X̂n‖T+1 + ‖Ṽ n‖T+1)θ + σwT (Wn, θ),

wT (Ṽ n, θ) ≤ βn(‖X̂n‖T+1 + ‖Ṽ n‖T+1)θ + 2‖en‖T+1.

Hence by the established tightness of ‖Y n‖T+1 and the convergence ‖en‖T+1 ⇒ 0, it is seen
that the sequence (X̂n, Ṽ n) is C-tight. Taking limits in (34) along any convergent subsequence,
and using that (X̂n(0), Ṽ n(0)) ⇒ (X0, V0) by assumption, shows that any limit (X,V,W ) of
(X̂n, Ṽ n,Wn) satisfies (15), where we have used that (Cn, bn, βn, γn) → (1, b, β, γ). Since
uniqueness in law for solutions to (15) holds, this completes the proof in the case α = 1.

(ii) The case α ∈ (12 , 1). As in the previous case we first establish uniqueness in law of
solutions to the system of equations (16), which can be viewed as a degenerate SDER on the
domain R+×R (the non-negativity of the initial condition V0 and the non-decreasing property
of L imply that V (t) ≥ 0 for all t ≥ 0; hence there is no necessity to consider the SDER
on the smaller domain R2

+). The reflection vector field takes the constant value (1, βµ−1) on
the boundary {0} × R. Theorem 4.3 of [21] covers such an SDE with reflection on a bounded
domain and provides pathwise uniqueness. A standard localization argument yields pathwise
uniqueness for the unbounded domain at hand. This shows that uniqueness in law holds for
solutions of (16).

Next, we write relations for the pair (X̂n, Ṽ n) that closely resemble the limiting system
(16). By (22) and (26), for t ≥ 0,

X̂n(t) = X̂n(0) +

∫ t

0
[bn + CnµṼ n(s)]ds+ σWn(t) + Ln(t),

Ṽ n(t) = Ṽ n(0)− γn
∫ t

0
Ṽ n(s)ds+ Cnβnµ−1Ln(t) + en(t),

(37)

where Ln is defined as in (31) and we recall that relation (32) holds.
We now turn to the proof that for fixed T <∞ the RVs ‖Y n‖T are tight. Fix T <∞. By

(30) for ξn, we have, for all t ≥ 0,

‖ξn‖t ≤ ‖X̂n(0)‖+ ct+ c

∫ t

0
‖Y n‖sds+ c‖Wn‖t + ‖enX‖t. (38)

By (32) and the Lipschitz continuity of Γ2 (see Proposition A.1), Ln(t) ≤ ‖ξn‖t for all t ≥ 0.
Thus, using (37), we get, for any t ≥ 0,

‖Y n‖t ≤ c2 (Zn + ‖en‖t + ‖enX‖t) + c2

∫ t

0
‖Y n‖sds,

where c2 is a fixed constant that does not depend on n and

Zn := ‖Y n(0)‖+ ‖Wn‖T + T. (39)

Hence by Gronwall’s lemma, for t ∈ [0, T ],

‖Y n‖t ≤ c2 (Zn + ‖enX‖t + ‖en‖t) exp (c2t) . (40)
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By the assumed tightness of the initial conditions and C-tightness of Wn shown in Lemma 3.1,
the RVs Zn are tight. Given ε > 0 let K be sufficiently large so that lim supn P (Zn ≥ K) < ε.
Choose c0 > c2(K+1) exp(c2T ) and let τn = τn(c0). Since Ṽ n(T ∧τn) ≤ ‖Y n(T ∧τn)‖ ≤ c0, it

holds that the RVs
∫ T∧τn
0 Ṽ n(s)ds are tight. In addition, by (31), the fact that Ln(t) ≤ ‖ξn‖t

for all t ≥ 0, and (38),

n−1µn
∫ T∧τn

0
Ĩn(s)ds = Ln(T ∧ τn) ≤ ‖X̂n(0)‖+ c(1 + c0)T + c‖Wn‖T∧τn + ‖enX‖T∧τn .

Since X̂n(0) are tight by assumption, Wn are C-tight by Lemma 3.1 and ‖enX‖T∧τn ⇒ 0 by

Lemma 3.3, it follows that the RVs
∫ T∧τn
0 Ĩn(s)ds are tight. In view of definition (28) for en

and Lemma 3.2, we see that ‖en‖T∧τn ⇒ 0 as n→∞. Thus, by our choice of K,

lim sup
n→∞

P (Zn + ‖enX‖T∧τn + ‖en‖T∧τn > K + 1) < ε.

From (40) and our choice of c0 we see that on the event Zn + ‖enX‖T∧τn + ‖en‖T∧τn ≤ K + 1,
we have ‖Y n‖T∧τn < c0. Hence by definition (25), τn > T on that event. As a result,
lim supn P (‖Y n‖T > c0) < ε. Since ε is arbitrary, this shows that ‖Y n‖T forms a tight
sequence of RVs.

Having shown tightness of the RVs ‖Y n‖T , it follows that the RVs
∫ T
0 Ṽ n(s)ds are tight.

Hence, by (41), the RVs ξn are C-tight, and since (X̃n, Ln) = Γ (ξn), it follows from Proposition
A.1 that the RVs (X̃n, Ln) are also C-tight. Consequently, since enX ⇒ 0 (Lemma 3.3), the RVs

X̂n are also C-tight. Using that Ln(t) = n−1µn
∫ t
0 Ĩ

n(s)ds and that n−1µn → µ as n→∞, we

see that the RVs
∫ t
0 Ĩ

n(s)ds are tight. Thus, the definition (28) for en gives en ⇒ 0 as n→∞.
Finally, using (1) and (31) yields

Nn − c(‖Y n‖t + Ln(t)) ≤
∫ t

0
Bn(s)ds ≤ Nn.

As a result, ‖n−αBn−1‖T ⇒ 0 as n→∞. Using this, along with the convergence n−1+αµnind →
µ, in the definition (21) for Wn shows that Wn ⇒W . Taking limits in (37) and (32) along any
convergent subsequence, and using that (X̂(0), Ṽ (0))⇒ (X0, V0) by assumption, the Skorokhod
representation theorem, the continuity of Γ and the convergence enX ⇒ 0, shows that any limit

(X,X, V,W,L, ξ) of (X̂n, X̃n, Ṽ n,Wn, Ln, ξn) satisfies the equation (16), and (X,L) = Γ (ξ),
which, by definition, implies that L is a boundary term for X. Since uniqueness in law holds
for solutions of (16), this completes the proof in the case α ∈ (12 , 1).

(iii) The case α = 1
2 . First note that thanks to the non-negativity of X0, the continuity

of the second and third terms in the first equation in (17) and the oscillation inequality for
the SM (Proposition A.1), the processes X and L have continuous sample paths a.s.. Also,
by the second equation in (17), V has piecewise constant, right-continuous sample paths.
Uniqueness in law of solutions to the system of the equations (17) follows from pathwise
uniqueness, which we now establish. That is, given W , SB, SE and (X0, V0), then any two
solutions of (17) are equal a.s. To this end, let Σ = (X,L, V ) and Σ′ = (X ′, L′, V ′) be
two solutions, let τ = inf{t : Σ(t) 6= Σ′(t)}, and consider the event τ < ∞. By definition,
(X(t), V (t)) = (X ′(t), V ′(t)) for t ∈ [0, τ). We first show that V (τ) = V ′(τ). To see this must
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hold, suppose V has a jump of size −1 at τ . Then necessarily SE(u) = SE(u−) + 1, where
u = γ

∫ τ
0 V (s)ds. However, V = V ′ on [0, τ), this implies that V ′ also has a jump of size

−1 at τ . A similar argument holds for a jump of size +1. This shows that V and V ′ agree
on [0, τ ] whenever τ < ∞. Since V is piecewise constant with right-continuous sample paths
and V (τ) = V ′(τ), there exists ε > 0 (depending on the sample path) such that V (t) = V ′(t)
for all t ∈ [0, τ + ε). It follows from the expression for (X,L) and (X ′, L′) in terms of the
one-dimensional Skorokhod map that they are also equal on [0, τ + ε), thus contradicting the
definition of τ . With this contradiction thus obtained, we must have τ = ∞ a.s., so pathwise
uniqueness holds.

Next, we write relations for the (X̂n, Ṽ n) that closely resemble the limiting system (17).
By (22) and (11)–(12),

X̂n(t) = X̂n(0) +

∫ t

0
[bn + CnµV n(s)]ds+ σWn(t) + Ln(t),

V n(t) = V n(0)− SE
(
γn
∫ t

0
V n(s)ds

)
+ SB

(
Cnβnµ−1Ln(t)

)
,

(41)

where Ln is defined as in (31). In addition we recall that (32) holds.
We now turn to the proof of tightness of the RVs ‖Y n‖T . The main difference between this

case and the case α ∈ (12 , 1) is the treatment of the equation that governs V n, where we note

that Ṽ n = V n in this case. We argue as follows. By (30), for all t ≥ 0,

‖ξn‖t ≤ c4Mn + c4

∫ t

0
V n(s)ds, (42)

where Mn := ‖X̂n(0)‖+ T + ‖Wn‖T + ‖enX‖T and c4 ≥ 1 is a suitable constant that does not
depend on n. Hence by (41) and the fact that Ln(t) ≤ ‖ξn‖t,

‖V n‖t ≤ V n(0) + SB(c‖ξn‖t) ≤ V n(0) + SB

(
c4M

n + c4

∫ t

0
V n(s)ds

)
, (43)

where we have chosen c4 to be possibly larger. By the convergence of the initial conditions
(V n(0), X̂n(0))⇒ (V0, X0), the C-tightness of Wn (Lemma 3.1) and the convergence enX ⇒ 0
(Lemma 3.3), it follows that the RVs V n(0) + c4M

n are tight. Let ε > 0 and choose K < ∞
sufficiently large such that P (V n(0) + c4M

n ≥ K) < ε for all n. In addition, since SB is a
Poisson process, by the functional law of large numbers, ‖k−1SB(k·)−ι(·)‖u ⇒ 0 as k →∞, for
u = 1+2c4Te

c4T . Thus, by choosingK <∞ possibly larger, we can ensure that P (Ωn) > 1−2ε,
where

Ωn :=
{
V n(0) + c4M

n ≤ K and SB(t) < t+K for all t ≤ K + 2c4KTe
c4T
}
.

Let c0 := 2K + 4c4KTc
e4T + 2Kec4T and τn = τn(c0). Then c4M

n + c4
∫ t
0 V

n(s) ≤ K +
2c4KTe

c4T for all t ≤ T ∧ τn. Thus, on the event Ωn, we have, for all t ≤ T ,

‖V n‖t∧τn ≤ V n(0) + c4M + c4

∫ t∧τn

0
V n(s)ds+K ≤ 2K + c4

∫ t∧τn

0
V n(s)ds.
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Hence, by Gronwall’s lemma, on this event, ‖V n‖T∧τn ≤ 2Kec4T . Moreover, by (32), the
Lipschitz continuity of the SM (Proposition A.1) and (42), on this event we have

‖X̂n‖T∧τn ≤ 2‖ξn‖T∧τn ≤ 2c4M
n + 2c4

∫ t

0
V n(s)ds ≤ 2K + 4c4KTe

c4T .

Combining the bounds on V n and X̂n gives ‖Y n‖T∧τn ≤ 2K + 4c4KTe
c4T + 2Kec4T . Thus,

τn > T on Ωn. Since ε is arbitrary, this shows the tightness of the RVs ‖Y n‖T .
Having shown tightness of the RVs ‖Y n‖T , we can argue exactly as in case (ii) to conclude

that (X̂n, X̃n, V n, Ln, ξn) are C-tight. Taking limits in (41) and (32) along any convergent
subsequence, and using that (X̂(0), V (0)) ⇒ (X0, V0) by assumption, the Skorokhod repre-
sentation theorem, the continuity of Γ and the convergence enX ⇒ 0, shows that any limit

(X,X, V,W,L, ξ) of (X̂n, X̃n, V n,Wn, Ln, ξn) satisfies the equations (17), and (X,L) = Γ (ξ),
which, by definition, implies that L is a boundary term for X. Since uniqueness in law holds
for solutions of (17), this completes the proof in the case α = 1

2 . 2

4 Multi-stage vacation model

In this section we consider a generalization of the model that allows for multiple vacationing
states. Let m ≥ 2 denote the number of vacationing states. In the multi-stage model, servers
may take the following states: busy, idle, and vacationing state i for i = 1, . . . ,m. Let
M = {1, . . . ,m}. At time t ≥ 0 let In(t) denote the number of idle servers and Uni (t) denote
the number of vacationing servers in state i, for i ∈M. Let Un(t) = (Un1 (t), . . . , Unm(t)). Then
V n(t) = Un(t) · 1 = Un1 (t) + · · ·+ Unm(t) denotes the total number of vacationing servers and
Bn(t), defined as in (1), denotes the number of busy servers.

The customer dynamics described in §2.2 still hold; in particular, equations (1)–(9) hold.
The server dynamics, however, are no longer described by (11)–(12). For the multi-stage
setting, fix vectors βn,γn ∈ Rm+ . Here βni denotes the rate at which idling servers transition
to vacationing state i and γni denotes the rate at which vacationing servers in state i return to
idling, for i ∈M. Fix an m×m transition rate matrix Rn = (rnij) so that rnij denotes the rate
at which vacationing servers transition from state i to j, for i 6= j ∈ M, and rnii = −

∑
j 6=i r

n
ij .

We assume there exist vectors β,γ ∈ Rm+ and an m×m matrix R such that

(βn,γn, Rn)→ (β,γ, R) as n→∞. (44)

As in §2 we allow for the degenerate cases that β = 0 and/or γ = 0. Let M0 = M ∪ {0} and
Sij , for i 6= j ∈M0, be independent unit Poisson processes. For i ∈M, define

Uni,B(t) = S0i

(
βni

∫ t

0
In(s)ds

)
+
∑
j 6=i

Sji

(
rnji

∫ t

0
Unj (s)ds

)
, (45)

Uni,E(t) = Si0

(
γni

∫ t

0
Uni (s)ds

)
+
∑
j 6=i

Sij

(
rnij

∫ t

0
Uni (s)ds

)
. (46)

Then
Uni (t) = Uni (0) + Uni,B(t)− Uni,E(t). (47)
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It is assumed that the objects (Qn(0), In(0),Un(0)), IA(·), S(·) and Sij(·), i 6= j ∈ M0, are
mutually independent. Define X̂n as in (13) and define Ũn by

Ũn =
Un

nα−
1
2

. (48)

Our main result for the multi-stage vacation model characterizes the limit of the scaled pair
(X̂n, Ũn).

4.1 Statement of main result

Let Gn = diag(γn) denote the m ×m diagonal matrix satisfying Gnii = γni for i ∈ M. Recall
the definition of a boundary term given prior to Theorem 2.1. We can now state our main
result on limits of the scaled queue-server processes in the case of multi-stage vacations.

Theorem 4.2 Fix α ∈ [12 , 1]. Assume that the rescaled initial conditions of Xn and V n

converge, namely that (X̂n(0), Ũn(0)) ⇒ (X0,U0). In the case α ∈ [12 , 1), assume also that

X0 ≥ 0 a.s. Then (X̂n, Ũn) ⇒ (X,U), where the law of the limit process (X,U) depends on
α and is specified in what follows.

(i) (HW regime) In the case α = 1, the pair (X,U) takes values in R × Rm+ and forms a
solution to the SDE-ODE system

X(t) = X0 +

∫ t

0
[b+ µmax(−X(s), V (s))]ds+ σW (t),

U(t) = U0 +

∫ t

0
[β(X(s) + V (s))− + (R−G)U(s)]ds,

(49)

where V = U · 1 and W is a SBM, independent of (X0,U0).

(ii) (near-HW regime) In the case α ∈ (12 , 1), the pair (X,U) takes values in R+ × R+ and
forms a solution to the SDER-ODE system

X(t) = X0 +

∫ t

0
[b+ µV (s)]ds+ σW (t) + L(t),

U(t) = U0 +

∫ t

0
(R−G)U(s)ds+ βµ−1L(t),

(50)

where V = U · 1, L is a boundary term for X at zero, and W is a SBM, independent of
(X0,U0).

(iii) (NDS regime) In the case α = 1
2 , the pair (X,U) takes values in R+ × Z+ and forms a
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solution to the system

X(t) = X0 +

∫ t

0
[b+ µV (s)]ds+ σW (t) + L(t),

Ui(t) = U0i −
∑

j∈M\{i}

Sij

(
rij

∫ t

0
Ui(s)ds

)
+

∑
j∈M\{i}

Sji

(
rji

∫ t

0
Uj(s)ds

)
+S0i(βiµ

−1L(t))− Si0
(
γi

∫ t

0
Ui(s)ds

)
,

(51)

where V = U ·1, L is a boundary term for X at zero, W is a SBM, SB and SE are standard
Poisson processes, and W , Sij, i 6= j ∈M0, and (X0,U0) are mutually independent.

(iv) In case (i) (resp., (ii), (iii)), the system of equations (49) (resp., (50), (51)) uniquely
characterizes the law of the pair (X,U).

Remark 4.4 The equations for X in the multi-stage vacation model are exactly the same as
the equations for X in the singe-stage vacation model owing to the fact that the customer
dynamics only require information about the total number of servers on vacation.

4.2 Proof of Theorem 4.2

Define Ân, Ŝn, Q̂n and Ĩn as in (19)–(20). Then, as stated there, the centered and scaled pro-
cesses Ân and Ŝn converge to driftless BMs with diffusion coefficients

√
λCIA and, respectively,

1. Define

Ṽ n =
V n

n1−α
= Ũn · 1.

Then (22) holds with Wn defined as in (21), and relations (23) hold. Define Y n and τn(c0),
for c0 > 0, as in (24)–(25). Then Lemma 3.1 holds by the exact same argument.

We now derive equations for Ũn for cases (i) and (ii), i.e., for α ∈ (12 , 1]. Dividing by nα−
1
2

in (45)–(47), we obtain

Ũni (t) = Ũni (0) + βni

∫ t

0
Ĩn(s)ds+

∑
j∈M\{i}

rnji

∫ t

0
Ũnj (s)ds (52)

− γni
∫ t

0
Ũni (s)ds−

∑
j∈M\{i}

rnij

∫ t

0
Ũni (s)ds+ eni (t),

where, with

enij(u) = n−α+
1
2

[
Sij

(
nα−

1
2u
)
− nα−

1
2u
]
, (53)

for i 6= j ∈M0, we have denoted

eni (t) = en0i

(
βni

∫ t

0
Ĩn(s)ds

)
+

∑
j∈M\{i}

enji

(
rnji

∫ t

0
Ũnj (s)ds

)
(54)

− eni0
(
γni

∫ t

0
Ũni (s)ds

)
−

∑
j∈M\{i}

enij

(
rnij

∫ t

0
Ũni (s)ds

)
.
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Let
en(t) = (en1 (t), . . . , enm(t)), t ≥ 0.

Lemma 4.4 Suppose α ∈ (12 , 1]. Then enij ⇒ 0 for each i 6= j ∈M0.

Proof. This follows from definition (53) and the functional law of large numbers. 2

Next, in cases (ii) and (iii), i.e., for α ∈ [12 , 1), define X̃n and enX as in (29), and define ξn

and Ln as in (30) and, respectively, (31). Then, by the same argument presented there, (32)
holds, as does Lemma 3.3.

We can now prove Theorem 4.2. The convention from the previous section regarding the
notation Cn and c is kept.

Proof of Theorem 4.2. The proof follows a similar structure to the proof of Theorem 2.1
and many of the arguments are identical or quite similar. Here we describe the new aspects of
the proof and refer the reader to the proof of Theorem 2.1 when the arguments are identical.
As in the proof of Theorem 2.1, the different regimes are treated separately.

The case α = 1. Uniqueness in law of solutions to the system of equations (49) follows from
the fact that the system can be viewed as a degenerate SDE with Lipschitz drift and diffusion
coefficients, for which pathwise uniqueness of solutions holds.

Next, we write relations for (X̂n, Ũn) that are similar to (49). As in the single stage setting,
equation for X̂n in (34) holds. After substituting the relation (23) (with α = 1) into equation
(52) for Ũn with relation and recalling that R = (rij) and G = diag(γn), we arrive at the
system of equations

X̂n(t) = X̂n(0) + Cnµ

∫ t

0
[bn + max(−X̂n(s), Ṽ n(s))]ds+ σWn(t),

Ũn(t) = Ũn(0) +

∫ t

0
[βn(X̂n(s) + Ṽ n(s))− + (R−G)Un(s)]ds+ en(t).

(55)

We now prove tightness of ‖Y n‖T for all T <∞. Let T <∞. From (55) we see that (35)
holds with a possibly different choice of c1. The remaining argument that the RVs ‖Y n‖T are
tight follows exactly as in the single stage setting, except that

‖en‖t∧τn ≤
∑

i 6=j∈M0

‖enij‖2c0c̃ ⇒ 0,

with c̃ = supn maxi,j(β
n
i , γ

n
i , r

n
ij), follows from Lemma 4.4 instead of Lemma 3.2. Having

established tightness of the RVs ‖Y n‖T for all T <∞, we argue exactly as in the single stage
setting that (Wn, en) ⇒ (W, 0) (again using Lemma 4.4 instead of Lemma 3.2) and the RVs∫ T
0 Ĩn(s)ds and

∫ T
0 Ṽ n(s)ds form tight sequences of RVs. Thus, in view of Lemma 4.4, en ⇒ 0.

Taking limits in (55) along any convergent subsequence and using that (X̂n(0), Ũn(0)) ⇒
(X0,U0) by assumption, shows that any limit (X,U,W ) of (X̂n, Ũn,Wn) satisfies (49), where
we have used that (Cn, bn,βn,γn, Rn) → (1, b,β,γ, R). Since uniqueness in law of solutions
to (49) holds, this completes the proof.
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The case α ∈ (12 , 1). Uniqueness in law of solutions to the system (50), which can
be viewed as a degenerate SDER on the domain R+ × Rm, with constant reflection vector
(1, β1µ

−1, . . . , βmµ
−1) on the boundary {0}×Rm. Since pathwise uniqueness of such an SDER

holds (again via a localization argument), this implies that uniqueness in law holds for solution
of (50).

By (22) and (52),
X̂n(t) = X̂n(0) +

∫ t

0
[bn + CnµṼ n(s)]ds+ σWn(t) + Ln(t),

Ũn(t) = Ũn(0) +

∫ t

0
(R−G)Ũn(s)ds+ Cnβnµ−1Ln(t) + en(t),

(56)

where Ln is defined as in (31) and we recall that relation (32) holds.
The proof that the RVs ‖Y n‖T are tight for fixed T <∞ follows the same argument as in

the single stage setting and, as in that case, implies C-tightness of ξn, X̃n, Ln and X̂n, and the
convergence Wn ⇒W . Taking limits in (56) along any convergent subsequence, and using the
convergence of the initial conditions, the Skorokhod representation theorem and the continuity
of Γ shows that any limit (X,X,U,W,L, ξ) of (X̂n, X̃n, Ũn,Wn, Ln, ξn) satisfies equation (50)
and (X,L) = Γ (ξ), so L is a boundary term for X. Since uniqueness in law holds for solutions
to (50), this completes the proof in the case α ∈ (12 , 1).

The case α = 1
2 . Uniqueness in law of solutions to (51) follows from pathwise uniqueness,

which is shown using an argument analogous to the one in the proof of Theorem 2.1. By (22)
and (45)–(47),

X̂n(t) = X̂n(0) +

∫ t

0
[bn + CnµV n(s)]ds+ σWn(t) + Ln(t),

Uni (t) = Uni (0)−
∑

j∈M\{i}

Sij

(
rnij

∫ t

0
Uni (s)ds

)
+

∑
j∈M\{i}

Sji

(
rnji

∫ t

0
Unj (s)ds

)
+S0i(C

nβiµ
−1Ln(t))− Si0

(
γni

∫ t

0
Uni (s)ds

)
,

(57)

where Ln is defined as in (31). In addition, we recall that (32) holds.
Next, we prove tightness of the sequence ‖Y n‖T for fixed T < ∞. As in the single stage

server setting, (42) holds. Hence, by (57), for i ∈M,

‖V n‖t = ‖Un1 + · · ·+ Unm‖t ≤ V n(0) +
∑
i∈M

S0i

(
c4M

n + c4

∫ t

0
Uni (s)ds

)
, (58)

where we have chosen c4 possibly larger. As in the single stage setting, the RVs V n(0) + c4M
n

are tight. Let ε > 0 and choose K <∞ sufficiently large such that P (V n(0) + c4M
n ≥ K) < ε

for all n. In addition, we can choose K <∞ possibly larger so that P (Ωn) > 1− 2ε, where

Ωn =
{
V n(0) + c4M

n ≤ K and S0i(t) < t+K for all t ≤ K + 2c4KTe
c4T and i ∈M

}
.

The remainder of the proof proceeds exactly as in the single-stage vacation setting. 2

21



5 Heuristic formulas for steady-state performance

The goal of this section is to quantify the effect of the server vacations on performance measures
that are of particular interest in the HW and the NDS regimes. In the HW regime (i.e., when
α = 1), it was shown in [13] that the probability of wait (POW) converges to a nondegenerate
limit strictly between 0 and 1, where as in all other regimes (i.e., when 0 ≤ α < 1), POW
converges to 1. Furthermore, an explicit formula for the limit of POW was derived in [13]. As
argued in [30], POW is an especially useful performance measure because it requires no scaling
by a function on n in this regime. It is desirable to understand how this limit probability
differs in the case of server vacations of the form that we study. Potentially, this information
could be obtained from the steady state distribution of the diffusion limit of Theorem 2.1(i).
However, one does not expect an explicit formula for this two-dimensional dynamics. Instead,
we develop in §5.1 a formula based on Theorem 2.1(i) and on a heuristic argument in which we
substitute the steady-state mean number of available servers into the explicit formula derived
in [13]. We provide numerical tests of the accuracy of this heuristic formula.

In the NDS regime (i.e., when α = 1/2), the slowdown is a performance measure that is
particularly important. The slowdown converges (without any rescaling) to a number strictly
between 1 and +∞ in the NDS regime, whereas it converges to either 1 or +∞ in all other
regimes (i.e., when α 6= 1/2). A formula for the slowdown in absence of server vacations
was given in [1]. Again, although an expression for the slowdown, based on the steady state
distribution of the coupled pair of Theorem 2.1(iii), could be developed, it would not be explicit.
Thus instead we develop, in §5.2, a variant of the formula from [1], based on Theorem 2.1(iii)
and a heuristic argument similar to the one used for the HW regime, accompanied by numerical
tests.

In both the HW and NDS regimes, the heuristic and the numerics are concerned with the
single stage vacation model.

5.1 Steady-state probability of waiting for service in the HW regime

In the original setting of [13] for the model with no vacations, the diffusion limit is given by
the SDE

X(t) = X(0) +

∫ t

0
[b+ µ(X(s))−]ds+ σW (t), (59)

which is precisely equation (15) with V = 0. In the case b < 0, this Markov process has a
unique invariant distribution, and so the steady state probability POW0 := P (X(t) > 0) is
well defined as a quantity that does not depend on t. We sometimes write this in an informal
fashion as P (X(∞) > 0). It is also proved there that this probability is the n → ∞ limit of
the nth system probability of wait. Throughout, b < 0 is assumed. Denote by Φ the standard
normal cumulative distribution function. Then for the model without vacations, the formula
reads

POW0 =
1

1 +
√

2πb1Φ(b1) exp(b21/2)
where b1 =

√
2

µ

|b|
σ
. (60)

For the original expression from [13], see Th. 4 there; a corrected version of this formula
appeared in [30, eq. (1.1)] (although the original formula is correct in the special case σ =

√
2,
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corresponding to the M/M/n limit law). Formula (60) above follows the corrected version,
albeit with somewhat different notation.

We now go back to the model that accommodates vacations, in which case the limit is given
by (15). For each n ∈ N, define Y n(t) = Qn(t)− In(t) for all t ≥ 0, so that, by the non-idling
policy, Y n(t) > 0 if and only if Qn(t) > 0. On this event, an arriving customer necessarily
waits in the queue. Define the scaled process Ŷ n by

Ŷ n(t) =
Y n(t)√

n
, t ≥ 0.

Then (recalling α = 1)
Ŷ n(t) = X̂n(t) + Ṽ n(t), t ≥ 0,

and so Ŷ n ⇒ Y as n → ∞, where Y (t) = X(t) + V (t) for all t ≥ 0. We are therefore led
to study the probability P (Y (t) > 0) at steady state (where it is independent of t). We have
from (15) 

Y (t) = Y0 +

∫ t

0
[b+ (µ+ β)(Y (s))− + (µ− γ)V (s)]ds+ σW (t),

V (t) = V0 +

∫ t

0
[β(Y (s))− − γV (s)]ds.

(61)

In general an exact expression is beyond the scope of this work. Instead, we use heuristics to
estimate the probability, as follows. Denote by y, v ≥ 0 the a.s. averages

y = lim
t→∞

1

t

∫ t

0
(Y (s))−ds, v = lim

t→∞

1

t

∫ t

0
V (s)ds.

From (61) we obtain that b + (µ + β)y + (µ − γ)v = 0 and βy = γv. Solving for y and v we
have

y =
γ|b|

µ(γ + β)
, v =

β|b|
µ(γ + β)

.

The quantity v is the steady state value of the process V . The main heuristic step is now to
substitute v in for V (s) in (61). This yields the (uncoupled) SDE

Ỹ (t) = Y0 +

∫ t

0
[b̃+ µ̃(Ỹ (s))−]ds+ σW (t), (62)

where we denote

b̃ =
γ(µ+ β)

µ(γ + β)
b, µ̃ = µ+ β.

Then P (Ỹ (∞) > 0) ≈ P (Y (∞) > 0) with equality holding when µ = γ since the SDE for
Y in (43) becomes uncoupled from the ODE for V . In what follows we will use the notation

POW = P (Y (∞) > 0) and P̃OW = P (Ỹ (∞) > 0) for the exact and, respectively, approximate
performance measure.

For an explicit expression for P̃OW we only need to notice the similarity of (62) to (59).
That is, Ỹ satisfies the same equation that X satisfies in the model with no vacations, but
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with different parameters, hence P (Ỹ (∞) > 0) can be obtained from (60) upon modifying the
parameters. This gives

P̃OW =
1

1 +
√

2πb2Φ(b2) exp(b22/2)
where b2 =

√
2

µ̃

|b̃|
σ

=
γ
√

2(µ+ β)

µ(γ + β)

|b|
σ
. (63)

The main heuristic step is replacing the stochastic process V (t) by its average. Hence it
is expected that the approximation is good when the time scale of vacation lengths is long
compared to the time scale at which the queue length fluctuates, which corresponds to the
parameter regime β, γ � µ. In this case, µ̃ ≈ µ and b̃ ≈ rb, where r = γ/(γ + β), so the
limiting dynamics are well approximated by the limiting dynamics of the many-server system
without vacations and with scaled drift rb. We return to this point when discussing the
simulation results.

Remark 5.5 One of the referees of this paper pointed out that a simplification also occurs in
the opposite parameter regime, where β, γ � µ. In this regime the vacation time scale is very
short compared to the queue length fluctuations time scale. In this case, V of (61) arrives at
its quasistationary state v(t) defined via the relation β(Y (t))− = γv(t). Substituting in the
equation for Y , one obtains the approximation

Y (t) = Y0 +

∫ t

0
[b+ µ(1 + βγ−1)(Y (s))−]ds+ σW (t).

Accordingly, in this regime the formula (60) should be updated by replacing the parameter µ by
µ(1 + βγ−1).

5.2 Steady-state slowdown in the NDS regime

It is well known that the steady state distribution of

X(t) = x+ bt+ σW (t) + L(t), (64)

where L is the boundary term for X at zero and b < 0, is exponential with mean EX(∞) =
σ2/(2|b|). Based on this and the fact that the leading term in the expected service time is given
by µ

√
n, the limiting slowdown (SD) in the NDS regime, for the model with no vacationing

servers, was computed in [1] to give

SD0 = 1 + EX(∞) = 1 +
σ2

2|b|
. (65)

For the model with vacations, the relevant quantity for similar considerations is

SD = 1 + EX(∞),

where (X,V ) is a solution to (17), and, throughout, b < 0 is assumed. As before, we do not
aim at an exact calculation because an explicit expression is not expected; however, again one
can proceed via a heuristic argument. Define

` = lim
t→∞

L(t)

t
, v = lim

t→∞

1

t

∫ t

0
V (s)ds.
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Then by (17), b+ µv + ` = 0 and −γv + β`µ−1 = 0. Solving yields

v =
|b|

µ(1 + β−1γ)
> 0.

The main heuristic step is again to substitute v in for V (s) in (17). This yields the approxi-
mation

X̃(t) = X0 + b̃t+ σW (t) + L̃(t),

where

b̃ =
b

1 + βγ−1
.

Thus X̃, that approximates X, is merely a reflected BM, and therefore EX̃(∞) = σ2/(2|b̃|).
Hence we obtain an approximation S̃D for SD in the form

S̃D = 1 + EX̃(∞) = 1 +
σ2

2|b̃|
= 1 +

σ2

2|b|
(1 + βγ−1). (66)

As in the case of §5.1, the approximation is expected to improve as the mean length of the
vacations grows, for the same reasons. By a similar approximation, we see that the limiting
dynamics are well approximated by the limiting dynamics of the many-server system without
vacations and with a scaled drift rb.

5.3 Numerics

In both cases, a standard Euler-Maruyama method is used to simulate the SDE [16]. The Sko-
rokhod constraining mechanism, associated with the boundary term L, is treated by projecting
X back to zero whenever its iteration assumes a negative value. The birth-death processes are
treated by drawing Bernoulli RVs, with suitable state dependent bias, to dictate upward and
downward jumps.

The time step parameter is denoted by δ, the number of steps by N , and the length of the
simulated time interval is thus given by T = Nδ.

Sample paths First we present some sample paths of each of the coupled pairs (15) and (17),
where the coupling between the processes X and V is apparent. The time step parameter is
taken as δ = 10−3. Here the number of steps is N = 2× 105, corresponding to a time interval
of length T = 200. Sample paths for equation (15), corresponding to the HW regime, are
shown in parts (a) and (b) of Figure 1, where σ = 1 and σ = 3, respectively (the remaining
parameters are taken to be b = −0.3, β = 2, γ = 0.1 µ = 2). In both (a) and (b) we notice
clearly the effect of X on V . Namely, an increase of V occurs when X + V is negative. It is
also noticeable that X reaches greater values in (b), where the diffusion coefficient is greater,
than in (a).

For the NDS case, the sample paths of equation (17) are shown in parts (c) and (d) of
Figure 1. Again, σ takes the two values 1 and 3, respectively (and the remaining parameters
are now b = −3, β = 2, γ = 0.1 µ = 2). Here, the effect of each process on the other is visible.
Upward jumps of V occur only when the diffusion process visits zero, and its downward jumps
occur only on excursions of X away from zero. The effect of V on X is particularly sharp in
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(c): on each excursion of X, the path has strong tendency to increase when V = 2, but it
decreases rapidly when V = 1. A similar dependence of the structure of the excursions on the
value of V occurs in (d), where X has a strong negative drift when V becomes zero. Finally, as
in the previous case, when σ is greater (that is, in (d)), X reaches higher values on excursions
than when σ is smaller.

The HW regime We now use simulations to estimate the quality of the heuristic prediction
(63) under various conditions.

As reference for the level of accuracy, we consider the model with V = 0 for which a
theoretical value of POW0 is known, and compare it to simulation runs. This we do for the
set of parameters β = 2, γ = 0.1, b = −2, µ = 1, σ = 3. The theoretical value of POW0 (given
by formula (60)) and the simulation results of 8 runs with N = 2×108 steps (for the case with
V = 0, i.e., based on sample paths of (59)) are summarized in Table 1.

POW0 1 2 3 4 5 6 7 8 max. dev.

0.2470 0.2487 0.2473 0.2487 0.2441 0.2437 0.2459 0.2456 0.2459 0.0033

Table 1: Simulation results for estimating POW0 for N = 2 × 108 steps. The theoretical value is shown on
the left. The maximum absolute deviation from the theoretical result is shown on the right.

Among these 8 runs, the maximum absolute deviation away from the theoretical value is
0.0033, that is, less than 0.4%. This figure is sufficient for the purposes of this study, and
therefore in the simulations described below we keep this value of N .

We control the length of vacations by varying γ. The larger γ is, the shorter is the expected
length of vacations. Since the heuristic is based on substituting the long run average of V for
V in the X dynamics, it is expected that for long vacations (small γ) the heuristic provides
accurate predictions. We also recall that when γ = µ, the equation for X decouples from that
of V and the heuristic prediction is exact.

The results of our simulation are shown in Figure 2. These four graphs show the simulation

results of POW and the heuristic prediction P̃OW of formula (63) as a function of γ, for two
values of µ and two values of σ. Specifically, γ ranges between 0 and 1, and the remaining
parameters are taken as b = −2, β = 2, and µ ∈ {0.5, 1} and σ ∈ {1, 3}.

The arguments given above suggest that the graphs of POW and P̃OW should meet at
two points, namely γ = 0 and when γ = µ. This is seen very clearly in all parts of Figure 2.
As for the level of accuracy, it is overall very good in cases (a), (c) and (d), and is somewhat
less satisfactory in case (b). For the actual numerical values of the maximal error sizes, see
the figure description. Overall, in all these cases the error is no greater than 5%.

Finally, the general behavior observed, where POW (simulated and predicted) is decreasing
as γ increases, is explained by the fact that when the vacations are long (γ small), the system
has effectively less service capacity, consequently it is more loaded, and the probability of wait
must increase.

The NDS regime In the case of the NDS regime, the simulations are aimed at testing the
accuracy of the prediction of formula (66) for the slowdown.
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Again we start by considering the reference model with V = 0, for which there is a precise
formula for the slowdown. The parameters are taken to be β = 5, γ = 3, b = 6, µ = 2, σ = 3.
It turns out that δ must be calibrated. With δ = 10−3 and N = 108, there is a significant bias
between the simulation and theoretical value, explained by the inaccuracy introduced by the
constraining mechanism at zero, as an approximation for the boundary term L. Whereas the
size of this error converges to zero as δ → 0 by theoretical results, the actual error for the above
value of δ is too large for our purposes. When we reduce to δ = 10−4 and keep N = 108, the
bias is considerably smaller. The values of 8 runs (based on simulating sample paths of (64))
appear in Table 2, along with the theoretical value (given by formula (65)) and the maximal
absolute error.

SD0 1 2 3 4 5 6 7 8 max. dev.

1.7500 1.7288 1.7340 1.7352 1.7220 1.7410 1.7231 1.7382 1.7402 0.0280

Table 2: Simulation results for estimating SD0 for N = 108 steps. The theoretical value is shown on the left.
The maximum absolute deviation from the theoretical result is shown on the right.

The maximal relative error is 0.0160, that is less than 2%, and is sufficient for our purposes.
In what follows we keep these values of δ and N .

Figure 3 shows the simulation results of SD and the heuristic prediction S̃D of formula
(66) as a function of γ, for two values of µ and two values of σ. The parameters were chosen
differently than in the HW case. Our concern here was to calibrate the parameters so as to
reach mean delay and mean service time of similar order. This occurs when the slowdown
is not too far from the value 2. Specifically, γ ranges between 1 and 10, and the remaining
parameters are b = −6, β = 5, and µ ∈ {2, 4} and σ ∈ {2, 3}.

Overall, the accuracy of the heuristic prediction is worse than in the HW case, with rel-
ative errors reaching as high as 20% in some cases (see description of Figure 3), although
in parts of the ranges considered the relative error is considerably smaller. In lack of better
approximations, these estimates may be useful in applications as first order approximations.

A Appendix

A.1 One-dimensional Skorokhod problem

In this appendix we briefly review some well known properties of the one-dimensional Sko-
rokhod problem. For proofs of the results here, see [6, Ch. 8].

Definition A.1 Given x ∈ D+([0,∞),R) we say that a pair (z, y) ∈ D([0,∞),R+)×D0([0,∞),R+)
satisfies the one-dimensional Skorokhod problem for x if the following conditions hold,

1. z(t) = x(t) + y(t) for all t ≥ 0;

2. y is non-decreasing and can only increase when z is zero, i.e.,
∫ t
0 z(s)dy(s) = 0, t ≥ 0.
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Figure 1: Parts (a) and (b) [resp., (c) and (d)] show sample paths of the pair X (blue) and V (orange)
corresponding to the HW [resp., NDS] limit law, for different values of σ.
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Figure 2: POW obtained by simulation (blue), and P̃OW of formula (63) (orange) as a function of γ in the
range 0.01 to 1, for different values of µ and σ. Maximum absolute error: (a) 0.013, (b) 0.042, (c) 0.017, (d)
0.020.
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Figure 3: SD obtained by simulation (blue), and S̃D of formula (63) (orange) as a function of γ in the range
1 to 10, for different values of µ and σ. Maximum absolute [resp., relative] error: (a) 0.0696 [0.0390], (b) 1.0931
[0.1988], (c) 0.5996 [0.1999], (d) 0.4081 [0.0900].
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Proposition A.1 Given x ∈ D+([0,∞),R) there exists a unique solution (z, y) of the one-
dimensional Skorokhod problem for h given by (z, y) = (Γ1, Γ2)(h), where, for t ≥ 0,

Γ1(x)(t) = x(t) + Γ2(x)(t), (67)

Γ2(x)(t) = sup
0≤s≤t

(x(s))−. (68)

Consequently, the following properties hold:

1. Oscillation inequality: given x ∈ D+([0,∞),R) and 0 ≤ s < t <∞,

Osc(Γ1(x), [s, t]) ≤ Osc(x, [s, t]) and Osc(Γ2(x), [s, t]) ≤ Osc(x, [s, t]). (69)

2. Lipschitz continuity: for x1, x2 ∈ D+([0,∞),R) and t ≥ 0,

sup
0≤s≤t

|Γ1(x1)(s)− Γ1(x2)(s)| ≤ 2 sup
0≤s≤t

|x1(s)− x2(s)|, (70)

sup
0≤s≤t

|Γ2(x1)(s)− Γ2(x2)(s)| ≤ sup
0≤s≤t

|x1(s)− x2(s)|. (71)

A.2 Nonexistence of relevant scaling for α ∈ [0, 1
2
)

Here we provide an argument showing that for α in the range [0, 12) there can be no rescaling
of the server population process under which the pair of processes (queue length, server popu-
lation) remains asymptotically coupled. This is argued by proving the following claim: Given
any T ∈ (0,∞), the unnormalized process V n, if started at zero, remains zero on the interval
[0, T ] with probability tending to 1 as n→ 0.

To prove the claim, let us first show that Lemma 3.3 remains valid for this range of α. By
(29) and (13), 0 ≤ enX(t) = n−1/2(Nn −Xn(t))+ ≤ n−1/2Nn ≤ nα−1/2 → 0.

Next consider the equation (12) for V n(t) with initial condition V n(0) = 0. Let sn1 denote
the first time when V n assumes the value 1. Our goal is to show that P (sn1 ≤ T )→ 0.

In equation (30), the term
∫ t
0 n
−1µnṼ n(s)ds vanishes for all t ≤ sn1 . The remaining terms

in (30) are C-tight (recall enX ⇒ 0), and thus ‖ξn‖sn1∧T is a tight sequence of RVs. As a
result of (32), this is true also for ‖Ln‖sn1∧T . By (31) and (20) and the convergence µn/n

to a positive constant, we obtain that kn := n−α+
1
2

∫ sn1∧T
0 In(s)ds is a tight sequence of RVs.

By the equation (12) for V n, and the definition of sn1 , SB(βn
∫ sn1
0 In(s)ds) = 1. Consequently∫ sn1

0 In(s)ds ≥ cτ1, where τ1 is the first jump time of SB, that is specifically an exponential
with parameter 1. Combining these facts,

P (sn1 ≤ T ) ≤ P
(∫ sn1∧T

0
In(s)ds ≥ cτ1

)
= P (kn ≥ cn−α+

1
2 τ1)→ 0,

by the tightness of kn. 2

A.3 Proof of convergence stated in Remark 2.3

By the convergence of Ṽ n asserted in Theorem 2.1, the term nα−1Ṽ n that appears in identity
(23) is equal to Ṽ n when α = 1, and converges to zero when α < 1. The convergence
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(X̂n, Ṽ n, Q̂n) ⇒ (X,V,Q) stated in Remark 2.3 follows, with Q defined differently according
as α = 1 or α < 1, as in (18).
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