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Abstract — Fluctuations associated with power and detector readings in a nuclear reactor, commonly 
known as reactor noise, are of great importance in nuclear science and engineering. Two different types of 
noise are described in the literature: internal noise, which is associated with the inherent stochasticity of 
fission chains, and external noise, which is governed by physical fluctuations of the macroscopic system. 
The latter may include temperature fluctuations, vibration of regulation rods, fluent turbulence, bubble 
formation, and more. It is generally true that in power reactors, where high temperatures and strong 
hydrodynamic flows are characteristic, the external noise is dominant. The goal of this paper is to propose 
a stochastic differential equation (SDE) that models the effect of two types of external noise terms: the inlet 
temperature variations, which affect the power through reactivity feedback, and rod vibrations, which affect 
the reactivity directly. Although these aspects were studied in the past, they were only treated via 
nonstochastic equations. It is argued that the SDE approach, previously used only for modeling the effect 
of internal noise on nuclear reactor dynamics, is also highly suitable for modeling external noise. The main 
advantage of our approach is the ability to arrive at analytic formulas.

The contributions presented in this paper based on the SDE approach are as follows. Under a linear 
approximation of thermal feedback, the stabilizing effect of thermal feedback is explained and quantified, 
and a limiting distribution is analyzed in full. An analysis of the detector response on a finite time interval is 
carried out, leading to a version of the Feynman variance-to-mean-ratio formula in the presence of external 
noise. Finally, a calculation of the eigenvalues associated with the linearized system alluded to above is 
performed, showing that in practical cases the rod vibrations and inlet temperature fluctuations correspond 
to eigenvalues in distinct timescales. The significance of these finding is discussed.

Keywords — Reactor noise, stochastic differential equations, rod vibration, inlet temperature fluctuations, 
thermal feedback.  

Note — Some figures may be in color only in the electronic version. 

I. INTRODUCTION

Power and detector reading fluctuations in nuclear 
reactors are commonly known as reactor noise and for 

decades have been one of the basic topics studied in 
nuclear science and engineering. Two types of noise are 
usually considered in the literature. Internal noise is 
associated with the inherent stochasticity of reactions 
and fission chains whereas external noise corresponds 
to physical fluctuations of the macroscopic system. *E-mail: chendb331@gmail.com
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Such fluctuations include temperature fluctuations, 
vibrations of the regulation rods, fluent turbulence, 
bubble formation, and more. In general, in power reac
tors where high temperatures and strong hydrodynamic 
flows are characteristic, the noise is governed by the 
external noise while in zero power reactors (ZPRs), the 
fluctuations are due to internal noises. Therefore, inter
nal noises are sometimes referred to as ZPR noises, and 
external noises are referred to as power reactor noises.

At present, internal noise measurements are a basic tool 
in ZPR analysis and are commonly used to determine the 
kinetic parameters of a subcritical core.1 External noise 
measurements, on the other hand, are used for noise diag
nostics, aimed to determine the origin of the noise. Because 
internal and external noises are governed by different phy
sical phenomena, they have traditionally been analyzed by 
different mathematical tools.2,3 Under the point model 
approximation, internal noises are typically analyzed via 
the probability generating function (PGF) and the so- 
called master equation.4 External noises are typically treated 
in a totally different manner, either by formulating the 
transfer function and analyzing the effect of a random per
turbation in the frequency domain5 or by the Langevin 
technique.3 Some noticeable exceptions are the early work 
of Harris6 in 1958, where the PGF approach is adopted; 
work by Pázsit, where the results are mainly numeric,2 

where a unified model for internal and external noises was 
proposed (still under the point model approximation) based 
on the PGF formalism; and work by Pál and Pázsit,7 where 
external noises are emulated by assuming a stochastic med
ium (again, using the PGF formalism).

Under the point model approximation, it is safe to 
state that internal noises are very well understood. Of 
course, there is room for improving the existing models 
to cover spatial effects, dead-time corrections, uncertainty 
analysis, and many more aspects. However, we have 
a very clear understanding of the dynamics of internal 
noises. As for external noises, on the other hand, there are 
many unresolved issues. An interesting but well-known 
fact about a critical system (that may be obtained by 
taking the k ! 1 limit of a subcritical system, where k 
denotes the multiplication factor) is that it might become 
unstable in the sense that the variance of the steady-state 
distribution grows linearly with time.8 Second, we do not 
have a good understanding of the origin of the noise 
terms and of their statistical properties. Third, many of 
the noise terms have spatial dependency, and therefore, it 
is not clear when the point model is applicable. For these 
reasons we claim that the precise effect of the different 
noise sources on the power fluctuations is not yet fully 
understood under the present state of the art.

In recent years, there has been an effort to model 
reactor noise as a part of the state equations of the whole 
dynamical system by appealing to stochastic differential 
equations (SDEs). We consider the work of Hayes and 
Allen9 to be the first to use SDE to model reactor noise 
(even though the Langevin equation was used in earlier 
studies on reactor noise; see Ref. 10 and references 
within). Indeed, Hayes and Allen9 were the first to ana
lytically derive the intensity of the noise term from first 
principles and to justify the use of the Brownian motion. 
Moreover, they were the first to use the tools from Itô 
calculus to analyze the process. Yet, all the literature so 
far is dedicated to ZPR noise in a subcritical setting.

The goal of this paper is to propose an SDE-based 
model that accounts for two types of external noises: the 
inlet temperature fluctuations, which affect the power 
through reactivity feedback, and rod vibrations, which 
affect the reactivity directly. In addition to introducing 
the model, we analyze its statistical properties and 
describe possible diagnostic tools.

The paper is organized as follows. In Sec. II we 
further discuss the difficulties of modeling external 
noise and describe the contribution of the present study. 
In Sec. III the SDE model is presented and justified. In 
Sec. IV some basic statistical properties of the model are 
studied, and in Sec. VI we discuss through numerical 
examples the applications of our analysis. Section VII 
provides concluding remarks.

II. PRELIMINARIES

II.A. Scientific Background I: External Reactor Noises

The topic of power and detection fluctuations due to 
external noises has long been studied. In 1971, a basic 
study was presented by Williams10 in which the external 
noise was modeled via the Langevin equation in the 
restricted setting of a subcritical core with a fixed exter
nal source and assuming a constant value for the delayed 
neutron precursors. This approach (which is also studied 
in Ref. 3) was soon adopted and further developed by 
many contributors in various directions. In the following 
decade, the validity of the point model approach was 
studied by Analytis11 and Pázsit and Analytis.12 Saito 
studied the frequency response to a periodic noise term 
in the coolant temperature.13

One basic challenge in modeling external reactor 
noise is that the mathematical models lose their stability 
as the system becomes critical. A critical system differs 
from a subcritical system in two aspects: the 
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multiplication factor k becomes unity, and the external 
source is nullified. As it turns out, if in standard stochas
tic models we set k ¼ 1 and set the external neutron 
source S ¼ 0, the system is stochastically unstable. 
Moreover, although in a simplified, deterministic mean 
field model, convergence to a steady-state solution does 
occur, once the noise term is accounted for, the power 
variance increases linearly in time, and therefore, it is not 
possible to consider a steady state. This and related issues 
to instability were recognized for external noises in Ref. 3 
and for internal noises in Ref. 4. Both these standard 
textbooks mention this phenomenon and consider more 
or less the same solutions to this issue: The models 
neglect all power feedback (either physical feedback, 
such as temperature feedback, or designer feedback, 
such as the regulation system), which is bound to have 
a stabilizing effect on the power fluctuations. In a very 
recent study, it has been shown that in a simplified model, 
assuming a direct power feedback, any negative feedback 
will indeed stabilize the system.14

Another approach to deal with instability is to add 
restrictions on the noise term. For example, the system is 
stabilized if the noise term is filtered through a low-pass 
filter. Also, filtering the noise term is significant because 
the sample paths of the solution become smooth, and the 
equation can be treated as an ordinary differential equa
tion driven by a smooth random noise term, as opposed to 
an SDE, which may require an Itô correction term (see 
the treatment in Ref. 10).

In addition to issues of stability, another challenge is 
that external noises appearing in full-power reactors are 
much more complicated to model than in ZPRs. In parti
cular, the spatial distribution of the neutrons and the exis
tence of nonlinear feedback are very hard to analyze both 
in the PGF formalism and via the Langevin technique.

A noticeable effort to model external noises is pre
sented in Ref. 2, where the authors suggest a unified 
theory for both internal and external noises using the 
PGF formalism and by assuming a discrete fluctuation 
on all cross sections in each time interval Δt, which in the 
limit Δt! 0 gives rise to a Wiener process, or white 
noise term. Their model does not restrict noise frequen
cies (as in the case of a low-pass filter), but once again, if 
one assumes a subcritical system (which assures conver
gence of the steady-state distribution), it will not account 
for any nonlinear feedback in the system.

In recent years, with growing computation capabil
ities, we see a growing interest in three-dimensional 
modeling of external reactor noise using state-of-the-art 
neutronic and thermodynamic coupled codes.15–18 These 
mostly rely on time discretization and do not offer any 

analytic treatment of the noise propagation or the input/ 
output relation between the noise terms and the state of 
the system.

The external noises in full-power reactors are gov
erned by macroscopic fluctuations, which eventually 
change the reactivity of the core, creating power fluctua
tions. In existing literature, various mechanical processes 
are studied, including fluctuations in coolant flow, inlet 
coolant temperature, turbulence and bubble formation in 
the channels, and control rod vibrations10 (see also Ref. 19 
for a thorough review on the topic). These different types 
of mechanical processes differ in several aspects. First, 
each random process may have a different input/output 
response with the power and is expected to propagate 
differently. Second, the statistical properties of each pro
cess might be different and may affect the core in different 
amplitudes and frequencies. Third, the appearance of the 
mechanical vibrations is highly dependent on the type of 
reactor, and different noise terms may be dominant in 
different reactor types. It is also important to note that 
the amplitude of the mechanical vibration might change 
over time as part of the aging of the reactor. Recent reports 
indicate power fluctuations of up to 10% in the Kraftwerk 
Union (KWU)–built pressurized water reactors (PWRs) in 
Germany.15

In the present paper we model two types of external 
noises: mechanical vibrations of regulation rods and tem
perature fluctuations of the inlet temperature. The effect 
of absorber rod vibrations was introduced as early as 
1948 (Ref. 20). During the 1970s, the point model was 
extensively studied, and later, because of the strong spa
tial dependence of the mechanical vibrations, the problem 
of identifying the location of the vibrating rod was con
sidered. This involved higher-dimensional analysis (see 
Ref. 12 and references therein). In recent years, following 
reports of increasing power vibrations,15,16 three- 
dimensional dynamic codes have been used to obtain 
simulation results for identifying the noise terms. 
The second type of noise term of interest is the inlet 
temperature, which is also well studied. Perhaps the 
most interesting property of temperature oscillations is 
that the temperature and the power are connected through 
an inherent feedback loop (see Sec. II.B), and a simple 
Langevin equation can no longer adequately describe the 
dynamics of the system. For a linearized system, the 
transfer function approach is studied in Ref. 13. In 
a recent publication, the effect of both mechanical rod 
vibrations and inlet temperature vibrations was analyzed 
using numeric simulations and compared with experi
mental results recorded by a KWU-made German 
reactor.16,17
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II.B. Scientific Background II: Temperature Feedback

Since the macroscopic cross sections of both the fuel 
and the moderator depend on temperature and any reac
tivity change will create a temperature change, the power 
and the temperature are connected through a feedback 
loop. The point-kinetics equation with thermal feedback 
relates the power and delayed neutron precursor concen
tration, denoted PðtÞ and CðtÞ; respectively, with fuel 
temperature Tf ðtÞ, channel coolant temperature TcðtÞ, 
and inlet temperature TiðtÞ. The standard relation is give 
by21

dP
dt
¼

ρ̂� β
Λ P þ λC;

dC
dt
¼

β
ΛP � λC;

dTf
dt
¼

fP

μf
� Ω

μf
Tf þ

Ω
μf
Tc;

dTc
dt
¼
ð1� fÞP

μc
þ Ω

μc
Tc �

Ωþ2M
μc

Tc þ
M
μc
Ti;

ρ̂ ¼ αf Tf;0 � Tf
� �

þ αc Tc;0 � Tc
� �

þ ρ̂rod ;

8
>>>>>><

>>>>>>:

ð1Þ

where the first two equations define the neutron balance 
and the third and fourth equations define the thermal 
balance. The last line in Eq. (1) is an equation for ρ̂, the 
deviation from zero reactivity (as a rule, in this paper 
deviation processes are denoted with a hat, as in ρ̂ for 
reactivity deviations and T̂ for temperature deviations; 
elsewhere in the literature these quantities are often 
denoted by δρ and δT). The first two terms correspond 
to reactivity changes due to temperature deviations from 
the steady state, and the last term, ρ̂rod , describes reactiv
ity changes due to the position of the control rods. Often, 
ρ̂rodis the control function and is defined by the control 
logic.21 In the present study, this term will be used to 
describe reactivity perturbations due to vibrations of the 
control rod.

The system (1) has a steady-state solution defined by 
three equations. The neutron equilibrium (derived from 
the first two equations with ρ̂ ¼ 0) is given by 
P0 ¼

Λλ
β C0, and the thermal equilibrium is defined by 

a set of equations:

fP0

μf
� Ω

μf
Tf;0 þ

Ω
μf
Tc;0 ¼ 0

ð1� fÞP0

μc
þ Ω

μc
Tf;0 �

Ωþ2M
μc

Tc;0 þ
M
μc
Ti;0 ¼ 0 :

8
><

>:

ð2Þ

Equation (2) can be interpreted as a set of equations in 
four variables: P0; Tf ;0; Tc;0; and Ti;0, allowing two 
degrees of freedom. Indeed, the steady state is eventually 
determined by two operational parameters: the working 
power and the inlet temperature. Note that the dynamics 
of inlet temperature is not prescribed in the set of Eq. (1). 
That is because we assume the second coolant loop, 
which absorbs heat from the coolant once it exits the 
channel, is large enough to be considered an infinite 
sink. In other words, this model assumes that the inlet 
temperature is fixed (although the fourth equation does 
assume heat loss from the coolant to the inlet).

II.C. Motivation and Goals

As already stated, the goal of the present study is to 
construct an SDE model for external noise in power 
reactors due to rod vibrations and inlet temperature fluc
tuations. With the very rich literature on the subject, it is 
important to clarify the contribution and novelty. First, 
from a modeling point of view, we incorporate both the 
nonlinear temperature feedback and mechanical rod 
vibrations in a single framework while giving a physical 
justification to the use of Brownian motion as the driving 
term. Second, we show that the use of thermal feedback 
has a stabilizing effect on the stochastic system: As stated 
before, in a critical setting the variance of the power 
grows linearly with time, and a limiting distribution 
does not exist. Yet, under a linear approximation of 
thermal feedback, a limiting distribution exists and can 
be analyzed in full (the stabilization effect of a negative 
feedback on the mean field deterministic equation is well 
known and understood). Third, since we analyze our 
model in the time domain (rather than studying the trans
fer function), we are able to analyze not only the power in 
a time epoch but also the detector response on any finite 
interval. As we will see, this allows us to construct 
a Feynman variance-to-mean-ratio formula in the context 
of external noise. Finally, the time domain analysis 
allows us to compute the eigenvalues of the system of 
equations, which suggests diagnostic tools for noise ana
lysis. We demonstrate that the rod vibrations and inlet 
temperature fluctuations correspond to eigenvalues in 
distinct timescales. The significance of this finding is 
that the effect of these two causes on the noise can be 
analyzed by comparing statistical properties of the detec
tion signal in different time regions.

Underlying the approximations offered by the SDE 
approach is the central limit theorem, according to which 
only the first and second moments of the primitives are 
used to form the SDE. In particular, the higher moments 
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of the primitive processes involved are not reflected in 
this approximation. Whereas this higher-moment infor
mation is lost, it is this simplification that makes the SDE 
more tractable than exact analysis, allowing for explicit 
formulas and simplified expressions otherwise. One may 
think of a hierarchy of tools for analyzing stochastic 
models in which the SDE approach is located between 
first-order (or mean field) approximations (using only 
first-moment information, incorporating no stochasticity, 
and are thus often considered oversimplified) and exact 
analysis (often giving rise to problems that are too hard to 
solve).

III. THE POINT MODEL SDE WITH THERMAL FEEDBACK

The basic model for the point reactor with thermal 
feedback is given in the set of Eq. (1). For simplicity, it 
will prove useful to study the relative power and precur
sor concentration, defined by

PrðtÞ ¼
P ðtÞ

P0

and

CrðtÞ ¼
CðtÞ

C0

:

In terms of PrðtÞ and CrðtÞ, Eq. (1) can be rewritten as

dPr
dt
¼

ρ̂� β
Λ Pr þ

β
ΛCr;

dCr
dt
¼ λPr � λCr;

dTf
dt
¼ fP0

μf
Pr �

Ω
μf
Tf þ

Ω
μf
Tc;

dTc
dt
¼
ð1� fÞP0

μc
Pr þ

Ω
μc
Tf �

Ωþ2M
μc

Tc þ
M
μc
Ti;

ρ̂ ¼ αf Tf;0 � Tf
� �

þ αc Tc;0 � Tc
� �

þ ρ̂rod :

8
>>>>>><

>>>>>>:

ð3Þ

Recentering gives

dP̂ r

dt
¼ �

β
Λ P̂ r þ

β
Λ Ĉr þ

αf T̂ fþαcT̂ ,þρ̂rod
Λ 1þ P̂ r

� �
;

dĈr

dt
¼ λP̂ r � λĈr;

dT̂ f
dt
¼ fP0

μf
P̂ r �

Ω
μf
T̂ f þ

Ω
μf
T̂ c;

dT̂ c
dt
¼
ð1� fÞP0

μc
P̂ r þ

Ω
μc
T̂ c �

Ωþ2M
μc

T̂ c þ
M
μc
T̂ i ;

8
>>>>>>><

>>>>>>>:

ð4Þ

where for each variable Y , Ŷdenotes the deviation from 
the steady-state solution (as described in Sec. II.B).

In standard applications, Eq. (4) is used to model the 
system response to a reactivity increment ρ̂, and the inlet 
temperature is assumed to be fixed, setting ΔT̂i ¼ 0. 
Here, we assume that both ρ̂rod and T̂i are stochastic 
processes. An SDE is obtained by further assuming that 
the set of equations is driven specifically by Brownian 
motion. Therefore, in what follows we assume both the 
reactivity variations due to rod vibrations and an inlet 
temperature having Brownian motion increments. This 
corresponds to setting (this special indexing is for later 
use, where it will allow us to simplify notation)

T̂ idt ¼ σTidW
ð1Þ

and

ρ̂roddt ¼ σρroddW
ð4Þ ;

ð5Þ

where W ð1Þ and W ð4Þ are two independent Brownian 
motions.

To justify the use of Brownian motion in our model, 
recall that the increment of a Brownian motion has 
a normal distribution and can thus be interpreted as the 
overall effect of many small independent random vari
ables. For the first equality in Eq. (5), the approximation 
T̂idt ¼ σTi dW ð1Þ is a commonly used approximation in 
heat convection (see, for instance, Ref. 22 and references 
therein). This arises naturally if we consider heat transfer 
as an average over a large ensemble of minor environ
mental fluctuations, which are transferred through 
a spatial diffusion.22 As for the reactivity term ρ̂rod

Λ dt, 
we use an argument similar to that introduced in Refs. 
23 and 2. Since the lifetime of a single neutron in the 
system is an exponential random variable with mean Λ, 
for an infinitesimal increment of time dt, 1

Λ dtgives the 
probability for a neutron to react in the interval ½t; t þ dt�. 
Since we neglect the internal noises, if we assume 
ρ̂rod ¼ 0, we obtain the deterministic model in which 
each neutron creates exactly 1 � β neutrons with prob
ability 1. To account for the stochasticity added by the rod 
vibration, as in Ref. 2, we assume that the deviation in the 
neutron production (per neutron) ρ̂vibis a discrete random 
process (the assumption that ρ̂vib is discrete is only for 
simplification and can easily be dropped) with zero mean 
and finite variance. We denote p ρ̂vib ¼ að Þ ¼ pρ̂vibðaÞ and 
σ2

ρ̂vib
¼
P

a pρ̂vibðaÞa
2 [since it is the deviation from 

0, Eðρ̂vibÞ ¼ 0�.
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In this formulation, the probability for the number of 
neutrons created by any reacting neutron to deviate from 
1 � β by a value of a in the interval ½t; t þ dt� is given by 
pρ̂vibðaÞ

1
Λ dt. Hence, the deviation from the mean 1 � β is 

a random variable with 0 mean and variance 
P

a pρ̂vibðaÞa
2 1

Λ dt. As in Ref. 23, we now use a central 
limit theorem approximation. When considering the huge 
number of neutrons in the system (which are all indepen
dent), the overall deviation from the mean value is 
a normal random variable with 0 mean and standard 

deviation 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nðtÞ
P

a pρ̂vibðaÞa2 1
Λ dt

q

, where nðtÞ is the num
ber of neutrons at time t. Finally, if we assume that the 
power fluctuations are small compared to the working 
power, then under the square root sign we may take the 
mean value of the number of neutrons, and we have that 
for an infinitesimal interval, the random variable ρ̂roddt 
has a normal distribution with zero mean and standard 
deviation 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0σ2

ρ̂vib
dt

q
.

This formally gives rise to the SDE

dP̂ r ¼ �
β
Λ P̂ r þ

β
Λ Ĉr þ

αf T̂ fþαcT̂ ,

Λ 1þ P̂ r

� �� �
dt

þ 1þ P̂ r

� � σρrod
Λ dW ð1Þ;

dĈr ¼ λP̂ r � λĈr

� �
dt;

dT̂ f ¼
fP0

μf
P̂ r �

Ω
μf
T̂ f þ

Ω
μf
T̂ c

� �
;

dT̂ c ¼
ð1� fÞP0

μc
P̂ r þ

Ω
μc
T̂ c �

Ωþ2M
μc

T̂ c

� �
dt

þ
MσTi

μc
dW ð4Þ ;

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ð6Þ

where ρrod ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
n0σ2

ρ̂vib

q
.

Let us emphasize that the use of a Brownian motion 
increment does not correspond to assumptions made on 
the statistical properties of rod vibrations or the inlet 
temperature but is a mere consequence of the fact that 
both heat convection and fission chains are averaged over 
a large number of independent identically distributed 
stochastic increments.

We treat the nonlinear Eq. (6) by linearization. It is 
achieved by neglecting the second-order terms in T̂f P̂r 

and T̂cP̂r [technically, this is achieved by setting ð1þ
P̂rÞ � 1 in the first equation of Eq. (6)]. This is reason
able if we assume that the power fluctuations are much 
smaller than the working power. Since this study focuses 
on the steady-state distribution, this assumption is in 

force (and is considered standard). Thus, we obtain 
a linear SDE as follows:

dX ¼ AXdtþ BdW

with

X ¼

P̂ r

Ĉr

T̂ f

T̂ c

0

B
B
B
B
@

1

C
C
C
C
A

;

A ¼

�
β
Λ

β
Λ

αf
Λ

αc
Λ

Λ � Λ 0 0
fP0

μf
0 � Ω

μf
Ω
μf

ð1� fÞP0

μc
0

fΩ
μc
� Ωþ2M

μc

0

B
B
B
B
B
@

1

C
C
C
C
C
A

;

B ¼

σρvib
Λ 0 0 0

0 0 0 0

0 0 0 0

0 0 0
MσTi

μc

0

B
B
B
B
@

1

C
C
C
C
A

;

dWτ ¼

dW
ð1Þ
τ

dW
ð2Þ
τ

dW
ð3Þ
τ

dW
ð4Þ
τ

0

B
B
@

1

C
C
A ; ð7Þ

where dW ðiÞ
τ ; i ¼ 1; . . . ; 4 are independent Brownian 

motion increments. For later use, to allow general for
mulation, we denote X ¼ ðX1;X2;X3;X4Þ

T (that is, P̂r ¼

X1; Ĉr ¼ X2; T̂f ¼ X3; and T̂c ¼ X4). Also, we denote the 
entries of A and B as ðai;jÞ

4
i;j¼1 and ðbi;jÞ

4
i;j¼1, respectively.

IV. STATISTICAL PROPERTIES OF THE REACTOR POWER 
AND NEUTRON COUNT DISTRIBUTION

IV.A. The Autocorrelation Function

Our first objective is to compute the autocorrelation 
function of the neutron population process, defined as 
ϕ1ðs; tÞ ¼ E n̂ðsÞn̂ðtÞ½ �. This will allow us to achieve two 
goals: the computation of the autocorrelation power spec
tral density and the computation of the first two moments 
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of the neutron detection count, resulting in the Feynman- 
Y type of formula.

To this end, for 1 � j � 4, we can write

X1ðtÞXjðsÞ ¼ X1ðtÞXjðtÞ þX1ðtÞXjðsÞ

� X1ðtÞXjðtÞ

¼ X1ðtÞXjðtÞ

þX1ðtÞ XjðsÞ � XjðtÞ
� �

¼ X1ðtÞXjðtÞ

þX1ðtÞ

ðs

t

dXjðτÞ

¼ X1ðtÞXjðtÞ

þX1ðtÞ

ðs

t

X4

i¼1

ai;jXjðτÞdτ

þX1ðtÞ

ðs

t

X4

i¼1

bi;jðτÞdW ðiÞ
τ :

ð8Þ

Denote ϕiðs; tÞ ¼ E XiðsÞX1ðtÞ½ �. Taking expectation,

ϕiðs; tÞ ¼ ϕiðt; tÞ þ
ðs

t

X4

j¼1

ai;jϕjðτ; tÞdτ

þ E X1ðtÞ

ðs

t

X4

i¼1

bi;jðτÞdW ðiÞ
τ

" #

:

Since for τ � t and u � 0, X1ðtÞ and W ðiÞ
τþu � W ðiÞ

τ are 
independent and E½W ðiÞ

τþu � W ðiÞ
τ � ¼ 0, the last term 

vanishes, and thus for s > t, ϕisatisfies the equation

dϕiðs; tÞ
ds

¼
X4

j¼1

ai;jϕjðs; tÞ ;

with the initial condition

ϕjðt; tÞ ¼ E X1ðtÞXjðtÞ
� �

:

The autocorrelation vector Φðs; tÞ ¼ ½ϕ1ðs; tÞ; ϕ2ðs; tÞ;
ϕ2ðs; tÞ; ϕ4ðs; tÞ�

T then satisfies the linear equation

dΦðs; tÞ
ds

¼ AΦðs; tÞ ;

where A is exactly the same state matrix as in Eq. (7) and 
the initial condition is given at s ¼ t by

Φðt; tÞ ¼

E X1ðtÞX1ðtÞ½ �

E X1ðtÞX2ðtÞ½ �

E X1ðtÞX3ðtÞ½ �

E X1ðtÞX4ðtÞ½ �

0

B
B
@

1

C
C
A :

The solution, for s � t, is given by

Φðs; tÞ ¼ eðs� tÞAΦðt; tÞ : ð9Þ

To obtain an explicit solution, our next order of business 
is to compute Φðt; tÞ. Since we are interested in the 
steady-state distribution, we compute in Sec. IV.B the 
limit Φ1 ¼ limt!1Φðt; tÞ.

IV.B. The Covariance Matrix of X

The covariance matrix of X is defined by 
S ¼ E XX T½ �. Under the assumption that W ð1Þ and W ð4Þ

are independent, SðtÞsatisfies the Lyapunov equation24

dS

dt
¼ SATAþ ATAS þ BTB : ð10Þ

If the matrix A is stable (which is always the case if the 
thermal feedback is negative), then S converges to 
a steady-state solution S1, satisfying the algebraic 
Lyapunov equation

S1A
TAþ ATAS1 þ B

TB ¼ 0 : ð11Þ

For Eq. (11), it is well known that under the assump
tion that A is stable, it has a unique solution given 
by24

S1 ¼

ð1

0

eA
TAtBTBeA

TAtdt : ð12Þ

Equation (12) is considered a classical explicit solution, 
but in practice, numeric solutions are often more 
efficient.

Note that the first column of S1 is exact when 
defining limt!1Φðt; tÞ ¼ Φ1. Since the stability of A 
is a necessary condition for the existence of 
a limiting solution to Eq. (10), Eq. (12) is a full 
description of the initial condition to the correlation 
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function, as defined in Eq. (9). If we denote the first 
column of the matrix with S1

1 (9), then for s � t, the 
autocorrelation function is given by

Φðs; tÞ ¼ eðs� tÞAS1
1 :

Focusing only on ϕ1ðs; tÞ, we may write in a more explicit 
form

ϕ1ðs; tÞ ¼
X4

j¼1

cje
μjðs� tÞ ; ð13Þ

where fμjg
4
j¼1 is the eigenvalue of A and fcjg is con

stant. We shall neglect the possibility that A has an 
eigenvalue with multiplicity higher than 1. This is 
justified by the fact that the condition for an eigenva
lue with multiplicity higher than 1 is nonstable and 
is lost under small perturbations in the numeric 
parameters.

V. INTEGRAL REPRESENTATION OF THE NEUTRON COUNT

In Sec. IV we have computed the correlation 
function of the power (or, equivalently, the neutron 
population size), which is the basic physical property 
we are studying. While this function is an often used 
tool, it has two shortcomings. First, it is often statis
tically very hard to sample, and the sampling is done 
through the Fourier transform of the signal, which 
leads to additional uncertainties.25 Second, in prac
tice, the power is not truly measurable. Instead, to 
directly estimate the power (not through the tempera
ture of the outlet coolant), we measure neutron detec
tions that are never defined in a time epoch but 
always over finite intervals. Therefore, our next 
objective is to analyze the count distribution in 
a time interval of duration T . We assume that the 
system is in a steady state; hence, the count distribu
tion is only a function of T and not the actual start/ 
end point detection interval.

In deterministic models, it is usually assumed that 
the number of detections is a linear function of the 
population size. In stochastic modeling the relation 
between the two is more delicate. The power stochastic 
process, and in addition the detection process, is related 
to the power via further stochasticity. Assuming a point 
model, the probability for detection of each neutron is 
fixed, and we denote the detection probability (per time 
unit per power unit) by λd. When modeling internal 

noises, the detection process affects the population size 
since a detected neutron is absorbed. For external 
noise, since the system is not at zero power, the detec
tor is more likely to be out of the core (otherwise, it 
will be saturated), and the detected neutrons are 
already on the peripheral regions. As a result, absorp
tion of the neutron has a very small, if any, influence 
on the dynamics of the core (see remarks below for 
further details).

The goal of this section is to obtain formulas for 
the first two moments of the count distribution in an 
interval of duration T , in terms of the autocorrelation 
function Φðs; tÞ, assuming steady state. The detection 
interval is ½0;T �. Denote by DðTÞ the number of detec
tions in ½0; T �.

Our approximation is based on considering infinite
simal values of dt and assuming that conditioned on PðtÞ, 
the number of detections in the interval ½t; t þ dt�, denoted 
D½t;tþdt�, is a Bernoulli random variable with parameter 
PðtÞλddt [notice that PðtÞ is a random variable]. As 
a result we may write E D½t;tþdt�jPðtÞ

� �
¼ PðtÞ λddt þ

Oðdt2Þand Var D½t;tþdt�jPðtÞ
� �

¼ PðtÞλddtð1 � λddtÞ
þOðdt2Þ ¼ PðtÞλddt þ Oðdt2Þ:.

Now, we partition the interval ½0;T � into N consecu
tive intervals of duration dt, with N ¼ T

dt ; set tn ¼ ndt for 
n ¼ 0; :::;N ; and let Dn denote the number of detections 
in the interval ½tn� 1; tn� (hence, Dn ¼ D½tn;tnþdt�). Clearly, 
we may writeDðTÞ ¼

PN
n¼1 Dn.

For the first moment we have

E DðT Þ½ � ¼ E
XN

n¼1

Dn

" #

¼
XN

n¼1

E E DnjP ðtnÞ½ �½ �

¼
XN

n¼1

P0λddtþOðdt2Þ ; ð14Þ

and as N !1; we have

E DðT Þ½ � ¼

ðT

0

λdP0dt ¼ λdP0T : ð15Þ

For the second moment, using the complete variance 
formula, we have
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Var DðT Þ½ � ¼ Var
XN

n¼1

Dn

" #

¼ E Var
XN

n¼1

DnjP ðtnÞ

" #" #

þ Var E
XN

n¼1

DnjP ðtnÞ

" #" #

:

For the second term above, using the same argument used 
for the mean, as N !1; we have

lim
N!1

Var E
XN

n¼1

DnjP ðtnÞ

" #" #

¼ λ2
dVar

ðT

0

P̂ ðtÞdt

" #

:

For the first term, since for fixed values of PðtnÞ and 
PðtmÞ, Dn and Dm are independent (n�m), we have that 
Var

PN
n¼1 DnjPðtnÞ

h i
¼
PN

n¼1 Var DnjPðtnÞ½ � ¼
PN

n¼1 P  

ðtnÞλddt þ Oðdt2Þ; hence;

lim
N!1

E Var
XN

n¼1

DnjP ðtnÞ

" #" #

¼

ðT

0

λdP0dt

¼ λdP0T

and

Var DðT Þ½ � ¼ λ2
dVar

ðT

0

P̂ ðtÞdt

" #

þ λdP0T : ð16Þ

To analyze the first term above,

Var
ðT

0

P̂ ðtÞdt

" #

¼ E

ðT

0

P̂ ðtÞdt

 !2
2

4

3

5

¼ P 2
0E

ðT

0

P̂ rðtÞdt

 !2
2

4

3

5:

Next,

E

ðT

0

P̂ rðtÞdt

 !2
2

4

3

5

¼ E

ðT

0

P̂ rðtÞdt

 ! ðT

0

P̂ rðsÞds

 !" #

¼ E

ðT

0

ðT

0

P̂ rðtÞP̂ rðsÞdtds

" #

¼

ðT

0

ðT

0

E P̂rðtÞP̂ rðsÞ
� �

dtds

¼

ðT

0

ðT

0

ϕ1ðs; tÞdtds

¼ 2

ðT

0

ðT

s

ϕ1ðs; tÞdtds : ð17Þ

Substituting the expression for the autocorrelation from 
Eq. (13) in Eq. (17), Eq. (16) reads

Var½DðT Þ� ¼ P 2
0 λ2

d2
X4

j¼1

cj

ðT

0

ðT

s

eμjðt� sÞdtds

þ λdP0T

¼ P 2
0 λ2

d2
X4

j¼1

cj

ðT

0

e� μjs
ðT

s

eμjtdtdsþ λdP0T

¼ P 2
0 λ2

d2
X4

j¼1

cj

μj

ðT

0

eμjðT � sÞ � 1
h i

dsþ λdP0T

¼ P 2
0 λ2

d2
X4

j¼1

cjT

� μj
1 �

1 � eμjT

� μjT

 !

þ λdP0T ; ð18Þ

which is the main result of this section.
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We can further compute the variance-to-mean ratio 
(or the Feynman-Y function), defined by

Y ðT Þ ¼
Var DðT Þ½ �

E DðT Þ½ �
� 1 :

The expression obtained is as follows:

Y ðT Þ ¼ 2P0λd
X4

j¼1

cj

� μj
1 �

1 � eμjT

� μjT

 !

:

ð19Þ

It is interesting to note that this expression is very similar 
to the classical Feynman-Y formula in a subcritical set
ting (with a single delayed neutron group) but with two 
more modes, associated with the system feedback. From 
a theoretical viewpoint, Eq. (19) sets the ground for noise 
experiments in a critical setting, as described in Sec. VI.

VI. EXAMPLES AND APPLICATIONS

The above development focuses on theoretical aspects 
of the problem, from modeling to analytic expressions. In 
what follows we consider the practical aspects of the model 
introduced, addressing the question of what one learns 
about the system by sampling the first two moments of the 
count distribution. We will suggest an analogy to the classic 
Feynman-α experiment, with two goals: measuring the 
delayed neutron fraction, and noise diagnostics.

VI.A. Some Practical Considerations

A very interesting feature of Eqs. (18) and (19) is the 
fact that the exponential modes do not depend on the noise 
amplitude. The exponential modes are simply the eigenva
lues of A, which is independent of σT and σvib. Of course, 
this is not to say that the variance does not depend on the 
noise amplitude: The coefficients have a strong depen
dence on both σT and σvib. We study the matrix A care
fully, assuming that the feedback term is sufficiently small 
(with respect to β) to be considered as a perturbation. In 
this case the unperturbed system is extremely simple: It 
has exactly two eigenvalues: � β

Λþ λ
� �

is an eigenvalue 
of multiplicity 1, and 0 is an eigenvalue of multiplicity 3. 
As a result, we expect that out of the four eigenvalues 
fμig

4
i¼1, one (which we may assume is μ1) would be 

a perturbation of � β
Λþ λ
� �

; and the other three would 
be perturbations of 0 (and since the feedback is negative, 
all eigenvalues would have a negative real part). If �

β
Λþ λ
� �

is sufficiently larger than 0, this means that both 
the autocorrelation function and the Feynman-Y function 
have a distinctive behavior in different timescales. That is, 
if 0 < t < 1=μ1; then we may assume that eμk t; k ¼ 2; 3; 4 
are constants, and we have a single exponential mode 
(with a possible direct-current offset), and if 1=μ1 �

t < minð1=μk; k ¼ 2; 3; 4Þ ! , the first exponent will 
vanish. Moreover, since the first eigenvalue μ1 is not 
associated with the thermal feedback, we expect that the 
coefficient c1 will be more dominant as σvib is dominant 
while c2; c3; and c4 will have a stronger effect as σT 
grows.

As for the Feynman-Y function, we may write

Y ðT Þ ¼
X4

j¼1

Y1;j 1 �
1 � eμjT

� μjT

 !

;

where the first mode Y1;1 1 � 1� eμ1T

� μ1T

� �
is associated with 

the rod vibration and corresponds to timescales of 1=μ1 

and the last three modes 
P4

j¼2 Y1;j 1 � 1� eμjT

� μjT

� �
are asso

ciated with the temperature vibrations and correspond to 
timescales of 1=μk; k ¼ 2; 3; 4.

VI.B. Numerical Results

VI.B.1. Simulation Parameters

To validate our results and understand the possible diag
nostic tools at hand, two numerical simulations were con
ducted differing in σT and σvib. Both simulations used kinetic 
parameters typical for a Three Mile Island (TMI)–type PWR 
power reactor, taken from Ref. 21. These parameters are 
typical for the middle of the burnout cycle. The complete 
numerical parameters are given in Table I.

For the first simulation, we have taken σvib ¼ 2 
(pcm) and σT ¼ 0:5 (°C), and for the second simulation, 
we have taken σvib ¼ 0:5 (pcm) and σT ¼ 4 (°C). The 
working power was set at 2500 MW, and the mean inlet 
temperature was set at 150°C.

The numerical simulation was done using the Euler- 
Maruyama method,26 but since the power and tempera
ture gradient have very different timescales, the equation 
is stiff, and the drift was estimated using a fourth-order 
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Runge-Kutta approximation. The time increment used in 
the simulation was taken to be equal to the generation 
time, Δt ¼ 2� 10� 5(s). A total of 107 steps was consid
ered, simulating a 200-s measurement.

The power simulation series resulted in fPðtiÞg
107

i¼1, 
indicating the power at time ti (with resolution of 2�
10� 5 s). To simulate the detector response, one must also 
sample in each step the number of detections. Let us assume 
that the value of λd is 40½1=ðsMWÞ�, which is equivalent to 
104 counts/s. Ideally, the number of detections in each 
interval ½ti; tiþ1� would be sampled by using a binomial 
distribution with parameters PðtiÞ and λddt. However, this 
is not practical from a computational point of view. With 
such a large value of PðtiÞ (on the order of 2500), a normal 
approximation for the binomial is accurate. Therefore, in 
each interval, the number of detections was sampled using 
a normal distribution with an average value PðtiÞλdt, and 
standard deviation 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðtiÞð1 � PðtiÞλddtÞλddt

p
. The detec

tor response simulation resulted with a series fDðtiÞg107

i¼1, 
indicating the number of detections in the interval ½ti; tiþ1�.

VI.B.2. Simulation Results

The simulation results, in terms of P̂r, are shown in 
Figs. 1 and 2. The standard deviation of the simulated values 
is given in Table II.

In Table II we see that the standard deviation of the power 
is very close in both simulations. However, in Figs. 1 and 2, 
a very different behavior can be seen: In the first simulation, 

where the rod vibrations are more significant, we observe 
very fast fluctuations, while in the second simulation, where 
the temperature has a more significant effect, we see a second 
timescale in the vibration, which is much slower. In terms of 
the autocorrelation function, this means that the last three 
eigenvalues are much more dominant in the second 
simulation.

The eigenvalues of the matrix A are given by

μ1 ¼ � 300:53;

μ2 ¼ � 1:2794;

μ3 ¼ � 0:9235;

and
μ4 ¼ � 0:1303:

TABLE I 

Kinetic Parameters for Simulation 

β                        
0:006019         

Λ 
0:00002 

(s)
αf 

� 0:0000324 ð ρ̂
�CÞ

μf  
26.3 (MW=

�C)
Ω 

6:6 (MW)

λ                      
0:15(L/s)       

αc 

� 0:000213 ð ρ̂
�CÞ

μc 
71:8 ðMWs�CÞ

M 
102 ðMW=

�CÞ
f 

0.92

Fig. 2. Simulation 2: Relative power fluctuations δPr (as 
a function of time) induced by rod vibration σvib ¼ 0:5 
(pcm) equivalence and σT ¼ 4 (°C). 

Fig. 1. Simulation 1: Relative power fluctuations δPr (as 
a function of time) induced by rod vibration σvib ¼ 2 
(pcm) equivalence and σT ¼ 0:5 (°C). 
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As expected, it is seen that the first eigenvalue is a small 
perturbation of � β

Λþ λ
� �

¼ � 301:1 and that the last 
three eigenvalues are two and three orders of magnitude 
smaller than the first. Tables III and IV give the coeffi
cients of the calculated autocorrelation and Feynman-Y 
function.

Figures 3 and 4 show the Feynman-Y curves, both 
simulation and analytic estimations, for the two 
experiments.

The simulated Feynman-Y curve was obtained in 
a straightforward manner. A total of 100 values of T were 
taken in a logarithmic scale in the interval 10� 3 � T � 1. 

For each gate width T , the detection signal was divided into 
NT consecutive gates, starting at ftjgNT

j¼1g, and the number of 
detections in the interval ½tj; tj þ T � is given by 
Pk� 1

,¼0 Dðtjþ,Þ; where fDðtiÞg107

1¼1 is the detector response 
simulation and k ¼ T=dt. From here, the mean and the 
variance were estimated in a standard manner. The analytic 
prediction for FðYÞ is exactly as described in Eqs. (13) and 
(19). The eigenvalues fμig

4
i¼1 of A were calculated numeri

cally. To compute the coefficients fcig
4
i¼1, we make use of 

the fact that if fμig
4
i¼1 are the eigenvalues of A, and D is the 

matrix whose columns are the corresponding eigenvectors, 
then

eAt ¼ D

eμ1t 0 0 0

0 eμ2t 0 0

0 0 eμ3t 0

0 0 0 eμ3t

0

B
B
@

1

C
C
AD

� 1:

TABLE II 

Simulated Standard Deviations 

σP̂r 

(%)
σĈr 

(%)
σT̂ l 

(°C)
σT̂ f 

(°C)

Simulation 1 [σvib ¼ 2(pcm); σT ¼ 0:5(°C)] 4.36 0.14 0.75 0.39
Simulation 2 [σvib ¼ 0:5(pcm); σT ¼ 4(°C)] 4.9 0.67 3.19 1.4

TABLE III 

Coefficient of the Autocorrelation Function 

c1 c2 c3 c4

Simulation 1 [σvib ¼ 2(pcm); σT ¼ 0:5(°C)] 16� 10� 4 4:9� 10� 4 3:9� 10� 4 6:7� 10� 7

Simulation 2 [σvib ¼ 0:5(pcm); σT ¼ 4(°C)] 8� 10� 5 7:8� 10� 3 5:3� 10� 3 1� 10� 5

Fig. 3. Feynman-Y plot (simulation and analytic predic
tion) for simulation 1. For relative short gates 
(T < 10� 2), the functional behavior is dominated by the 
first exponential mode, associated with the rod vibration, 
and in relative long gates (T > 10� 1), the functional 
behavior is dominated by the last three exponential 
modes, associated with the temperature vibration. 

Fig. 4. Feynman-Y plot (simulation and analytic predic
tion) for simulation 2. The functional behavior is domi
nated by the last three exponential modes, associated 
with the temperature vibration. 
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The coefficients fcig
4
i¼1 were computed after the solution 

to the Lyapunov Eq. (11), and the eigenvector matrix D 
and its inverse were computed numerically.

We emphasize that the numerical simulations did not 
assume any linear approximation. Figures 3 and 4 also 
show the first mode of the calculated Feynman-Y func
tion, and the last three modes (together) as well.

The most important result is that there is very good 
agreement between the analytic prediction and the simula
tion results. Another point to notice is that there is a very 
distinctive qualitative difference between the two simula
tions. In the second experiment, the Feynman-Y curve is 
completely dominated by the last three modes (this is also 
noticeable in Table IV). In the first experiment, there is 
a small range near the origin (roughly 10� 3 � T � 10� 2, 
where the Feynman-Y curve is dominated by the first mode 
alone. Then, as the gate width T increases, the influence of 
the last three modes grows.

These results agree with intuition. Indeed, mechanical 
vibrations of a control rod have an immediate effect on the 
power, which translates into very high-frequency noises on 
the power. However, temperature vibrations of the second 
circle take time to propagate to the core, where the time
scales are now dictated by the heat transfer rate between the 
fuel and the coolant and the flow rate of the coolant, 
a process that takes much longer than the generation time.

Most importantly, our results indicate that when 
external noise is dominant, sampling the noise-to-source 
ratio in a full-power reactor can serve as a diagnostic tool 
toward identifying the origin of the noise term. The fact 
that the two types of external noises examined propagate 
in very different timescales and that this difference can be 
quantified through the stochastic point-kinetics equation 
suggests an approach to noise diagnostics in critical cores 
via techniques similar to those used in ZPRs. Potentially, 
it may even lead to quantification of the delayed neutron 
fraction and the feedback coefficients.

VII. CONCLUDING REMARKS

The goal of this study was to suggest a new model 
based on SDE to address external noise in full-power 

reactors. The use of SDE driven by Brownian motion 
was justified by the diffusive nature of both heat trans
fer and neutron transport. The model assumes point 
reactor kinetics and considers two types of noises: 
temperature fluctuations on the inlet temperature and 
mechanical vibrations of the control rods. One of the 
contributions that to the best of our knowledge was 
never addressed earlier in the context of stochastic 
transport is the incorporation of the thermal feedback 
into the dynamics. As we showed, adding the thermal 
feedback had two benefits: The model is closer to the 
actual physical phenomenon, and this feedback serves 
to stabilize the state, resulting in finite variance for the 
power fluctuations.

The results indicate that the autocorrelation function, 
as well as the variance-to-mean ratio, is governed by four 
experiential modes: the first mode, which is associated 
with the rod vibration, is characterized by very short 
timescales, and the other three modes, associated with 
the temperature fluctuations, are characterized by long 
timescales. The analytic results were compared with 
numerical simulations, using kinetic parameters of 
a TMI-type reactor, showing high correspondence. 
Moreover, the results indicate that the different timescales 
in the model, which were fully quantified by the analytic 
predictions, may serve to discriminate between contribu
tions of rod vibrations to the noise and contributions of 
temperature fluctuations.

The use of noise experiments in power reactors, 
aimed at noise diagnostics and experimental measure
ments of kinetic parameters, is an appealing idea. 
However, before the theory introduced in this work can 
be implemented, there are crucial questions that must be 
addressed, such as the following:

1. Limitations of the point model: In measuring inter
nal noises, it is well established that the point model gives 
a good description of the detector response. In external 
noises, since the noises are often local, the point model 
must be further validated. Future works should include 
spatial generalization, or coupling of the proposed equation 
with a steady-state Boltzmann equation, to compensate for 
spatial effects.

TABLE IV 

Coefficients of the Feynman-Y Function 

Y1;1 Y1;2 Y1;3 Y1;4

Simulation 1 [σvib ¼ 2(pcm); σT ¼ 0:5(°C)] 1:1 77:3 � 74:3 1:03
Simulation 2 [σvib ¼ 0:5(pcm); σT ¼ 4(°C)] 0:057 1:22� 103 � 1:15� 103 16:2
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2. Control rod motion: One element that we did not 
cover in our model and is always a part of the reactor is 
the regulation system. The regulation system is designed 
to compensate any power drift and operates on very 
different—in fact much longer—timescales than stochas
tic rod vibrations.

The above issues need further planning in the future. 

NOMENCLATURE

αc = coolant temperature reactivity coefficient ðΔk=k
�C Þ

β = delayed neutron fraction

αf = fuel temperature reactivity coefficient ðΔk=k
�C Þ

f = fraction of reactor power deposited in the fuel

Ω = fuel-to-coolant heat transfer coefficient (MW=
�C)

μf = heat capacity of the fuel ðMWs
�C Þ

μc = heat capacity of the coolant ðMWs
�C Þ

M = mass flow rate times heat capacity of the cool
ant (MW=

�C)

λ = neutron generation time (s)

P0 = reactor power (MW)
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