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Abstract

This paper analyzes fluid scale asymptotics of two models of generalized Jackson networks employing
the earliest deadline first (EDF) policy. One applies the ‘soft’ EDF policy, where deadlines are used
to determine priority but jobs do not renege, and the other implements ‘hard’ EDF, where jobs renege
when deadlines expire, and deadlines are postponed with each migration to a new station. The arrival
rates, deadline distribution and service capacity are allowed to fluctuate over time at the fluid scale.
Earlier work on EDF network fluid limits, used as a tool to obtain stability of these networks, addressed
only the soft version of the policy, and moreover did not contain a full fluid limit result. In this paper,
tools that extend the notion of the measure-valued Skorokhod map are developed and used to establish
for the first time fluid limits for both the soft and hard EDF network models.
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1 Introduction

This work continues a line of research initiated in [4] and expanded in [3], in which a Skorokhod map (SM)
is used in conjunction with stochastic evolution equations in measure space, to characterize scaling limits of
queueing systems. Specifically, the measure-valued Skorokhod map (MVSM) of [4], an infinite-dimensional
analogue of various well-known SMs in the finite-dimensional orthant, is a tool for analyzing policies that
prioritize according to a continuous parameter. This notion has yielded new results on fluid or law of
large numbers (LLN) scaling limits of queueing systems implementing the policies earliest deadline first
(EDF), shortest job first (SJF) and shortest remaining processing time (SRPT) [4], as well as EDF in a
many-server scaling [3]. In the case of EDF, the state of the system is given by a measure ξ on R, where
ξ(B) expresses the queue length associated with all jobs in the buffer that have deadlines in the set B,
for B ⊂ R a Borel set. The aforementioned continuous parameter corresponds to a job’s deadline, and
the MVSM encodes priority by enforcing the rule that, for every x ∈ R, work with deadline > x can be
transferred from the buffer to the server only at times when ξ((−∞, x]) = 0, that is, when there is no work
in the buffer associated with deadline ≤ x. Thus the MVSM of [4] is useful for the analysis of a single
node. The goal of this paper is to address EDF in network setting. To this end two multidimensional
counterparts of the MVSM are developed involving multiple measure-valued processes, one consisting of a
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map that combines properties of the MVSM and of the SM with oblique reflection in the orthant (SMOR),
and another is where the MVSM serves as a building block in a system of equations.

EDF is a rational choice of service policy for systems in which job urgency is quantifiable. Its practical
significance stems from its use in real time applications such as telecommunication networks [1], real time
operating systems [9], and emergency department operations [18]. The policy has two main versions:

• soft EDF: all jobs are served whether their deadline expires or not; deadlines serve only to determine
the priority of a job,

• hard EDF: deadlines determine priority and jobs whose deadlines expire renege the system.

The soft and hard versions of this policy are also known in the literature as EDF without and with
reneging, respectively, and EDF is also referred to as earliest due date first served. A further subdivision
is according to whether service is preemptive or non-preemptive; in this paper we restrict our attention
to the non-preemptive disciplines. Although fluid limits of soft EDF queueing networks have been studied
before in relation to the question of their stability in [8], [19], these papers have established only partial
results as far as convergence was concerned (most significantly, for stability analysis only convergence along
subsequences is required, and indeed only such convergence was proved; see more details below). In this
paper, the two aforementioned counterparts of the MVSM yield for the first time fluid limits for both the
soft and the hard versions of EDF networks.

There has been great interest in this policy in theoretical studies. It has been argued to possess
optimality properties, and much effort has been devoted to studying its scaling limits [24], [14], [13], [21],
[20], [22], [2], [6], mostly in the single node case. The hard EDF policy was shown to be optimal with
respect to expected number of reneging jobs [27], for the M/G/1 +G and G/D/1 +G queues. It was also
showed that if there exists an optimal policy for the G/G/1 +G queue then EDF is optimal. Optimality
properties of EDF were further studied with respect to cumulative reneged work [22] as well as steady
state probability of loss [26]. Fluid models of multi-class soft EDF Jackson networks were studied in [20],
focusing on invariant states of the dynamical system and characterizing its invariant manifold.

As for scaling limits, most effort has been devoted to the heavy traffic regime. The paper [24] studied
diffusion limits of soft EDF queues under heavy traffic assumptions as Markov processes in Banach spaces.
An expression for the lead time profile given the queue length was obtained. An important line of research
started from [14], a paper that pioneered (along with [15]) the use of measure-valued processes for scaling
limits of queueing-related models. In this paper the diffusion limit of soft EDF queues was characterized.
Further significant development was in [22], that used SM techniques to show convergence of a hard EDF
queue to a diffusion limit. Specifically, the total workload process was shown to converge to a doubly
reflected Brownian motion, and the limit of the underlying state process, that is again a measure-valued
process, is given in terms of this reflected Brownian motion. The fact that the total workload in the
system is sufficient to recover the complete state of the system is due to a certain state space collapse
(SSC) phenomenon, which remarkably generalizes the well known SSC for priority queues. SSC, as a
phenomenon and as a tool for proving convergence, is unique to the heavy traffic diffusion regime, and
thus cannot be of help in the fluid limit regime that is of interest in this paper.

Hard EDF fluid limits were established in [13] and [2]. These papers considered the M/M/1 +G and,
respectively, G/G/1 +G models. The paper [4] introduced the MVSM and used it to establish fluid limits
for several models, including soft and hard EDF. The paper [3] employed this approach to analyze EDF
in a many-server fluid limit regime.

Scaling limits of EDF in network setting were studied in [25] and [23] (in heavy traffic) and in [8] and
[19] (at fluid scale). The paper [25] extended [24] to a network setting. Given the queue lengths at the
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nodes, the Fourier transform of the lead time distribution was represented as the solution of a fixed point
equation. The paper [23] extended [14] to multi-class acyclic networks.

Much closer to the subject of this paper are the results on fluid scale limits established in [8] and
[19]. It is well known that fluid models are useful in proving stability of queueing networks, by reducing
the problem of stability of the stochastic dynamical system representing the queueing network into the
stability of all solutions to a deterministic dynamical system, usually represented in terms of deterministic
evolution equations, comprising the fluid model. This approach, that was first formulated in general terms
in [12], was taken in [8] to establish the stability of soft EDF networks, in fact in the broader, multi-class
setting, provided that they are sub-critically loaded. The approach is based on showing stability properties
of any solution to the fluid model equations, and does not require that uniqueness holds for these solutions
(for a given initial condition). As a consequence, uniqueness of solutions to the fluid model equations is
not required, nor is it established in [8]. A related issue is that when using this method it suffices to
establish convergence of the rescaled processes along subsequences. Indeed, fluid limits are proved only
along subsequences, and so the full convergence to a fluid limit is not established there.

It is also important to point out that the scaling in [8] is such that the gap between time of arrival
and deadline vanishes in the limit. Consequently, the asymptotics are indistinguishable from that under a
policy that prioritizes by order of arrival, namely first in system first out (FISFO). In contrast, under our
scaling the gaps alluded to above remain of order one, and are therefore captured by the limiting dynamics.
In this we follow the treatment in [4] and [3]. This aspect is also similar to the nature of the limit dynamics
in most of the aforementioned papers on EDF in heavy traffic, where the limiting system’s state is given
by a nondegenerate measure that accounts for a variety of deadlines.

The stability problem was also studied via the fluid limit approach in [19] in the more complicated case
of preemptive multiclass EDF networks, under the assumption that customers have fixed routes through
the system. In [19] too it was not claimed, nor is it obvious, that the fluid model equations uniquely
characterize the fluid model solutions for a given initial condition, and limits were only established along
subsequences. The same paper also studied the stability of hard EDF networks (as well as several other
network models with reneging), though not via fluid models, hence it did not address the problem of fluid
limits of hard EDF networks.

Our first main result is the fluid limit for soft EDF Jackson networks. The approach is based on a
tool that we develop, that combines properties of the aforementioned MVSM, which encodes the priority
structure, and SMOR, which encodes the structure of the flow within the network. It is well known since
[29] that the heavy traffic asymptotics of Jackson networks is given by a reflected Brownian motion in the
orthant with oblique reflection vector field, a process that can be represented in terms of a corresponding
SMOR. The same SMOR has been used since then to study Jackson networks in other asymptotic regimes,
namely fluid limits [11, Ch. 7], and large deviations [5]. The way we use it in this paper is as follows. We
represent the state of the system in terms of a vector measure (an Rd valued set function) ξ on R, where
for a Borel set B ⊂ R, ξ(B) = (ξi(B)) expresses the workload associated with jobs having deadlines in
B in the various buffers i. The resulting extended version of the MVSM, that we call the vector measure
valued SM (VMVSM) is a transformation on the space of trajectories with values in the space of vector
measures on R. It has the property that for each deadline level x ∈ R+, the trajectory t 7→ ξt([0, x]) is
given as the image of the data of the problem (a suitable version of the so called netput process) under a
SMOR. This provides a generalization of the concept from [4]. The convergence result is valid under very
mild probabilistic assumptions. Note that fluid limits of soft EDF networks immediately imply fluid limits
of FISFO networks, if the deadlines are set to be the arrival times.

Our second contribution is the treatment of hard EDF networks. The model is considerably more
difficult as far as scaling limits are concerned, a fact reflected by the very small number of papers on the
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subject. In particular, the method of [4] to handle hard EDF for a single node does not extend to networks
(in [4] uniqueness for the fluid model solutions is obtained via pathwise minimality, a property that does
not generalize to networks – counterexamples can be constructed). In our treatment we make two model
assumptions that differ from the soft EDF model besides the obvious difference between the two policies.

First, the deadlines of a job are not fixed but increase whenever it migrates to a new service station.
The problem appears to be considerably harder with fixed deadlines, having to do with regularity of the
arrivals processes into each station. That is, in a model with fixed deadlines, when one of the nodes becomes
supercritical, jobs begin to renege at some point, causing a potentially large number of jobs to arrive at
other stations very close to their deadline. Consequently, small (asymptotically negligible) perturbations
in deadlines may result in large (fluid scale) differences in the system’s state. We leave open the important
question of establishing fluid limits with fixed deadlines. Under the dynamic deadline assumption we are
able to harness the single node results from [4] to the network setting. An important part of the proof is
devoted to establishing regularity properties of arrival processes into each station, composed of exogenous
and endogenous arrival processes (due to routing within the system), affected by the reneging in a nontrivial
way. The aforementioned assumption allows us to use an argument by induction over squares in the time-
deadline plane, where at each step the size of the square side is increased. This is used in treating both
the fluid model equations and the convergence result.

Second, the service time distributions are assumed to have bounded support. This eases the notation
for a certain technical reason related to the possibility that, while a job is in service, the (extended) deadline
expires in the station it may be routed to. This assumption is not difficult to remove but we keep it because
it does simplify the form of the model equations.

Finally we note that the techniques developed in this paper are likely to be useful for networks imple-
menting other related disciplines, such as SJF.

The organization of this paper is as follows. At the end of this section we introduce notation used
throughout. In §2 we describe the VMVSM and the soft EDF queueing network, and then state and
prove the convergence result. In §3 we first describe the fluid model equations and prove uniqueness of
solutions to these equations, then we formulate the queueing network model under hard EDF, state the
main convergence result and provide its proof.

Notation

In what follows, R+ = [0,∞). For a Polish space S, CS and DS denote the space of continuous and,
respectively, cádlág functions from R+ into S; if S = R we simply write C and D. Denote by D+,
respectively D↑, the subset of D of non-negative functions, respectively of non-decreasing and non-negative
functions, and apply a similar notation to C. We also define

DK0 =
{
f ∈ DK : f i (0) ≥ 0 for all 1 ≤ i ≤ K

}
.

M denotes the space of finite Borel measures on R+, endowed with the topology of weak convergence. Its
subset of atomless measures is denoted byM∼. It is well known that the topology of weak convergence is
metrized by the Levy-Prohorov metric, denoted dL. Define the subset of DM of non-decreasing elements as
D↑M = {ζ ∈ DM: t 7→

∫
R+
f(x)ζt(dx) is non-decreasing for any continuous, bounded, non-negative function

f}. With a slight abuse of notation we denote D↑K =
(
D↑
)K

and D↑KM =
(
D↑M

)K
. The support of a

measure ζ ∈ M is denoted by supp [ζ]. For ζ ∈ M we write ζ[a, b] for ζ([a, b]), and similarly for [a, b),
etc. We use the convention that for a > b, [a, b] = ∅. D and DM are equipped with the corresponding J1

Skorokhod topologies, and DK and DKM are equipped with the product topologies. For x ∈ RK , xi denotes
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the i-th component, and ‖x‖ = max1≤i≤K
∣∣xi∣∣. For x ∈ DK denote ‖x‖T = supt∈[0,T ] ‖x (t)‖. The modulus

of continuity of a function f : R+ → R is denoted by

wT (f, ε) = sup{|f (s)− f (t)| : s, t ∈ [0, T ] , |s− t| ≤ ε}.

2 Soft EDF networks

In this section we develop the VMVSM, which combines elements of the MVSM and the SMOR. We then
use it to represent and establish the fluid limit of soft EDF networks. We begin by introducing, in §2.1.1,
the MVSM, and then a Skorokhod problem whose well posedness is stated and proved. This gives rise
to the VMVSM. Then, in §2.1.2, the queueing model and its rescaling are introduced. We then state the
main result. Its proof appears in §2.2.

2.1 Model and main results

2.1.1 A Skorohod problem in measure space

The measure valued Skorokhod problem (MVSP) introduced in [4] is as follows.

Definition 1 (MVSP). Let (α, µ) ∈ D↑M×D↑. Then (ξ, β, ι) ∈ DM×D↑M×D↑ is said to solve the MVSP
for the data (α, µ) if, for each x ∈ R+,

1. ξ [0, x] = α [0, x]− µ+ β (x,∞) + ι,

2.
∫

[0,∞) ξs [0, x] dβs (x,∞) = 0,

3.
∫

[0,∞) ξs [0, x] dι (s) = 0,

4. β [0,∞) + ι = µ,

where in 2. and 3. the integration variable is s.

It was shown that there exists a unique solution to the MVSP ([4, Proposition 2.8]), and thus, the
MVSP defines a map (α, µ) 7→ (ξ, β, ι). Moreover, this map has certain continuity properties that were key
in establishing scaling limits for both soft and hard EDF [4, Theorem 5.4]. The approach that we take here
builds on these ideas but replaces ξ and β by vector measures. We motivate our definitions by describing
a fluid model for an EDF network.

An informal description is followed by a precise mathematical formulation. Consider a queueing network
with K nodes; each node consists of a server and a queue, that accommodates fluid. Let P ∈ RK×K be a
given substochastic matrix. Exogenous arrivals form an input to the system. They consist of fluid entering
the various queues. Each unit of arriving mass has an associated distribution of deadlines. The servers
prioritize the mass with the smallest deadline. After service, the mass splits between the nodes according
to P . That is, the stream leaving server i splits so that a fraction Pij routes to queue j. These streams form

the endogenous arrival processes. The remaining fraction, 1 −
∑K

j=1 Pij , exits the system. The deadlines
do not vary during the entire sojourn in the system.
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Define for the i-th queue, respectively, the exogenous arrival process, cumulative potential effort, queue
content, and departure process, as follows:

αi ∈ D↑M : αit [0, x] is the mass to have exogenously entered the i-th queue by time t (1)

with deadlines in [0, x],

µi ∈ D↑ : µi (t) is the total mass the i-th server can serve by time t, if it is never idle,

ξi ∈ DM : ξit [0, x] is the mass in the i-th queue at time t with deadlines in [0, x],

βi ∈ D↑M : βit [0, x] is the mass to have left the i-th queue by time t with deadlines in [0, x].

The initial condition of the buffer content is already contained in α, namely it is given by α0. Let the
idleness (or lost effort) process be defined by ιi = µi − βi [0,∞). The following balance equation holds:

ξit [0, x] = αit [0, x] +
K∑
j=1

Pjiβ
j
t [0, x]− βit [0, x] . (2)

The work conservation property and the priority structure of EDF are expressed through∫
ξit [0, x] dιi (t) = 0, 1 ≤ i ≤ K,∫
ξit [0, x] dβit (x,∞) = 0, 1 ≤ i ≤ K. (3)

One can recognize similarities to the MVSP, although the objects in our equations are vector-valued
parallelrs of those from the MVSP, and moreover, the equations are coupled. This motivates us to define
a multi-dimensional version of the MVSP.

Definition 2 (VMVSP). Let P ∈ RK×K be a substochastic matrix and let R = I − P T . Let (α, µ) ∈
D↑KM × D↑K . Then (ξ, β, ι) ∈ DKM × D↑KM × D↑K is said to solve the VMVSP associated with the matrix P
for the data (α, µ) if, for each x ∈ R+,

1. ξ [0, x] = α [0, x]−Rβ [0, x],

2.
∫

[0,∞) ξ
i
s [0, x] dβis (x,∞) = 0 for i ∈ {1, ...,K},

3.
∫

[0,∞) ξ
i
s [0, x] dιi (s) = 0 for i ∈ {1, ...,K},

4. β [0,∞) + ι = µ.

Note that the motivating fluid model indeed requires that ξt be a nonnegative vector measure for each
t, and that t 7→ βt (x,∞) + ι (t) be non-decreasing and non-negative. These properties are assured by the
above notion on VMVSM.

A square matrix is called an M -matrix if it has positive diagonal elements, non-positive off-diagonal
elements, and a non-negative inverse. By [11, Lemma 7.1], for a non-negative matrix G whose spectral
radius is strictly less than 1, also called convergent, I −G is an M -matrix.

Theorem 1. Let P ∈ RK×K be a convergent substochastic matrix, and (α, µ) ∈ D↑KM × D↑K be such that
µ (0) = 0. Then the VMVSP associated with the matrix P and the data (α, µ) has a unique solution.
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Proof. The uniqueness argument is based on SM theory for oblique reflection in the orthant. As for
existence, our strategy is to construct a candidate and show that it is a solution, relying in a crucial way
on a monotonicity result due to Ramasubramanian.

We first present the existence argument. To construct a candidate, first rewrite the first condition of
the VMVSP as

ξt [0, x] = αt [0, x]−Rµ (t) +R (βt (x,∞) + ι (t)) . (4)

The oblique reflection mapping theorem (ORMT), [16], [11, Theorem 7.2] states that for an M-matrix R,
for every u ∈ DK0 there exists a unique pair (z, y) ∈ DK+ × D↑K satisfying

z = u+Ry (5)∫
[0,∞)

zi (s) dyi (s) = 0, 1 ≤ i ≤ K. (6)

The solution map, denoted Γ : DK0 → DK+ ×D↑K , is thus uniquely defined by the relation: (z, y) = Γ (u) =

(Γ1 (u) ,Γ2 (u)) iff (5)–(6) hold. It is well known that the maps Γ1 and Γ2 are Lipschitz from DK0 to D↑K+
and DK+ in the sense that for any T > 0

‖Γi (u1)− Γi (u2)‖T ≤ L ‖u1 − u2‖T , i = 1, 2, (7)

where the constant L depends only on R.

The matrix P T is non-negative and convergent by assumption, hence R is an M -matrix. Moreover,
α0 [0, x] − Rµ (0) = α0 [0, x] ≥ 0. Also ,if (ξ, β, ι) is a solution, then (ξ [0, x] , β (x,∞) + ι) ∈ DK+ × D↑K .
Finally, Equation (4) has the form of (5), and conditions 2 and 3 of the VMVSP correspond to (6).
Therefore, the conditions of the ORMT are satisfied, so we can construct a candidate as follows. Define

ξ̊ (x) = Γ1 (α [0, x]−Rµ) ∈ DK+ , β̊ (x) + ι = Γ2 (α [0, x]−Rµ) ∈ D↑K . (8)

The path ι can be recovered by taking x to infinity, yielding ι = Γ2 (α [0,∞)−Rµ). One can then find
β̊t (x) by β̊ (x) = Γ2 (α [0, x]−Rµ)− ι = Γ2 (α [0, x]−R (µ− ι)).

It is now argued that these functions define vector measure valued paths via the relations (ξ̊t (x) , β̊t (x)) =
(ξt [0, x] , βt (x,∞)). We must show that ξ̊t (x) is right-continuous and non-decreasing in x, β̊ (x) − β (y)
is in D↑K for x < y and that β̊ (x) right-continuous in x. The right-continuity follows by the Lipschitz
property (7) and Lemma 2.4 in [4]. Next, Theorem 4.1 of [28] states that the map Γ is monotone in
the following sense. Let u1, u2 ∈ DK0 such that u2 − u1 ∈ D↑K , and let (zi, yi) = Γ (ui) , i = 1, 2. Then
z2 − z1 ∈ DK+ and y1 − y2 ∈ D↑K . Using this theorem in the setting of the VMVSP, let x < y and denote

u1 = α [0, x] − Rµ, and u2 = α [0, y] − Rµ. Then u2 − u1 = α (x, y] ∈ D↑K . Therefore ξ̊ (y) − ξ̊ (x) ∈ DK+
and β̊ (x)− β̊ (y) ∈ D↑K . Thus

ξ [0, x] = ξ̊ (x) = Γ1 (α [0, x]−Rµ) , β (x,∞) = β̊ (x) = Γ2 (α [0, x]−Rµ)− ι, (9)

define two vector measure valued paths in DKM and D↑KM respectively. This demonstrates existence.

As for uniqueness, it follows from the ORMT that any solution to the VMVSP must satisfy

(ξ [0, x] , β(x,∞) + ι) = Γ (α [0, x]−Rµ) ,

a relation that defines uniquely ξ, β and ι.

Theorem 1 defines a map from D↑KM × D↑K → DKM × D↑KM × D↑K , namely the solution map of the
VMVSM. We denote it by Θ. The dependence on P is not indicated explicitly. This notion is an extension
of the MVSM from [4].
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2.1.2 Queueing model and scaling

The queueing model is defined analogously to the fluid model. It is indexed by N ∈ N, and defined on
a probability space (Ω,F ,P). It consists of K ≥ 1 service stations, each containing a buffer with infinite
room and a server. The servers prioritize according to the EDF policy, and according to arrival times
in case of a tie. Throughout this paper, for any parameter, random variable or process associated with
the N -th system, say aN , we use the notation āN = N−1aN for normalization. A substochastic matrix
P ∈ RK×K , referred to as the routing matrix, is given, where the entry Pij represents the probability that
a job that completes service at the i-th server is routed to the j-th queue. Denote R = I − P T . For each
N , processes denoted by αN = (αi,N ), µN = (µi,N ), ξN = (ξi,N ), and βN = (βi,N ) are associated with the
N -th system, which represent discrete versions of their fluid model counterparts. Specifically, for a Borel
set B ⊂ R+, αi,Nt (B) denotes the number of external arrivals into queue i up to time t with deadline in

B, ξi,Nt (B) denotes the number of jobs in queue i at time t with deadline in B, and βi,Nt (B) denotes the
number of jobs with deadline in B transferred by time t from the i-th queue to the corresponding server.
Indeed, in the queueing model, the job being served is not counted in the queue, and therefore there is a
distinction between the number of jobs transferred from queue i and the number of jobs transferred from
server i. Thus in addition to βi,N we introduce a process γN . Namely, γij,Nt (B) denotes the number of jobs
with deadline in B that were transferred from server i to queue j by time t, where j = 0 corresponds to
jobs leaving the system. For each i, γi,Nt (B) :=

∑K
j=0 γ

ij,N
t (B) gives the total number of jobs with deadline

in B that departed server i by time t. The process µi,N (t) represents the cumulative service capacity of
server i by time t. Let the busyness at time t, Bi,N

t (B), be defined as the indicator of the event that at this

time, a job with deadline in B occupies the i-th server, and let Bi,N
0− (B) be its initial condition. Denote

the total number of departures from server i by Di,N (t) := γi,Nt [0,∞). Denote by ξi,N0− (B) the number of
jobs present in the i-th queue just prior to time t = 0 with deadlines in B.

Next, define the cumulative effort and cumulative lost effort processes, respectively, as

T i,N (t) =

∫
[0,t]

Bi,N
s [0,∞) dµi,N (s) , (10)

ιi,N (t) = µi,N (t)− T i,N (t) . (11)

To model the stochasticity of the service times a counting process Si (t) associated with each server i is
introduced, assumed to be a renewal process for which the interarrival times have unit mean, with the
convention Si (0) = 1. Then the departure process is given by

Di,N (t) = γi,Nt [0,∞) = Si
(
T i,N (t)

)
− 1. (12)

The various relations between these processes are described in what follows. The relation between γN ,
βN and BN is given by

Bi,N
0− [0, x] + βi,Nt [0, x] = γi,Nt [0, x] +Bi,N

t [0, x] . (13)

The balance equation for the queue content is

ξi,Nt [0, x] = αi,Nt [0, x] +

K∑
j=1

γji,Nt [0, x]− βi,Nt [0, x] . (14)
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In addition, the work conservation condition and EDF policy are expressed through∫
[0,∞)

ξi,Nt [0, x] dιi,N (t) = 0, 1 ≤ i ≤ K, (15)∫
[0,∞)

ξi,Nt [0, x] dβi,Nt (x,∞) = 0, 1 ≤ i ≤ K. (16)

For the routing process of server i, consider i.i.d. {0, 1, . . . ,K}-valued random variables πi,N (n) with
distribution given by

P
(
πi,N (n) = j

)
=

{
1−

∑K
k=1 Pik if j = 0,

Pij if j ∈ {1, ...,K}.

The stochastic primitives {πi,N (n)}, {S} and {αN} are assumed to be mutually independent. Moreover,
πi,N (n) are assumed to be mutually independent across i, and so are Si and αi,N .

Define for j ∈ {1, ...,K} : θij,N (n) = 1{πi,N (n)=j}. The n-th job to depart server i is routed to server

πi,N (n), or, if this random variable is zero, leaves the system. Thus, the n-th job is routed to server j if
and only if θij,N (n) = 1. Let the jump times of Di,N be denoted by

τ i,Nn = inf{t ≥ 0 : Di,N (t) ≥ n}, (17)

and let

θ̂ij,N (t) =
∞∑
n=1

1[τ i,Nn ,τ i,Nn+1)
(t) θij,N (n) . (18)

Then γij,N can be obtained from γi,N by

γij,Nt [0, x] =

∫
[0,t]

θ̂ij,N (s) dγi,Ns [0, x] . (19)

This completes the definition of the model.

Our main result concerning soft EDF networks is the following.

Theorem 2. Assume that the routing matrix P is a convergent substochastic matrix, and let (α, µ) ∈ C↑KM ×
C↑K be such that µ (0) = 0. Assume, moreover, that αt ∈M∼ for all t, and that there exists a constant C

such that E
[∑K

i=1 α
i,N
t [0,∞)

]
≤ CNt. Finally, assume (ᾱN , µ̄N )⇒ (α, µ). Then

(
ξ̄N , β̄N , ῑN

)
⇒ (ξ, β, ι),

where (ξ, β, ι) is the unique solution of the VMVSP with primitives (α, µ).

The proof is given in the next section.

2.2 Proof

Recall the ORMT. To use this theorem, we wish to bring equations (14), (15) and (16) to a form compatible
with the conditions (5) and (6). To this end, first define the error processes

ei,N (t) = βi,Nt [0,∞) + ιi,N (t)− µi,N (t) , 1 ≤ i ≤ K,

Eij,N (t, x) = γij,Nt [0, x]− Pijγi,Nt [0, x] , 1 ≤ i, j ≤ K,x ∈ R+. (20)
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Using (14) and normalizing,

ξ̄i,Nt [0, x] = ᾱij,Nt [0, x] +

K∑
j=1

Ēji,N (t, x) +

K∑
j=1

Pji
(
µ̄j,N (t) + ēj,N (t)

)
− µ̄i,N (t)− ēi,N (t)

−
K∑
j=1

Pji

(
B̄j,N
t [0, x]− B̄j,N

0− [0, x]
)

+ β̄i,Nt (x,∞) + ῑi,N (t)−
K∑
j=1

Pji

(
β̄j,Nt (x,∞) + ῑj,N (t)

)
.

In vector notation, with 1 = (1, . . . , 1)T ∈ RK ,

ξ̄Nt [0, x] =ᾱNt [0, x] + ĒN,T (t, x) 1−R
(
µ̄N (t) + ēN (t)

)
(21)

− P T
(
B̄N
t [0, x]− B̄N

0− [0, x]
)

+R
(
β̄Nt (x,∞) + ῑN (t)

)
.

The matrix R is an M-matrix as already argued, ξ̄N is non-negative, and β̄Nt (x,∞) + ῑN is non-decreasing
and non-negative. We can now invoke the ORMT, yielding for every x,

ξ̄N [0, x] = Γ1

(
ᾱN [0, x] + ĒN,T (·, x) 1−R

(
µ̄N + ēN

)
− P T B̄N [0, x] + P T B̄N

0− [0, x]
)
,

β̄N (x,∞) + ῑN = Γ2

(
ᾱN [0, x] + ĒN,T (·, x) 1−R

(
µ̄N + ēN

)
− P T B̄N [0, x] + P T B̄N

0− [0, x]
)
. (22)

Lemma 1. Let Eij,N (t, x) and Di,N (t) be as in (20) and (12). Then, for all i, j,N, t, x,

E
[
Eij,N (t, x)2

]
≤ 41E

[
Di,N (t)

]
.

Proof. We have

Eij,N (t, x) = γij,Nt [0, x]− Pijγi,Nt [0, x]

=

∫
[0,t]

(
θ̂ij,N (s)− Pij

)
dγi,Ns [0, x]

=

Di,N (t)∑
n=1

(
θij,N (n)− Pij

)(
γi,N
τ i,Nn

[0, x]− γi,N
τ i,Nn−1

[0, x]

)
.

To simplify notation in this proof, we omit in what follows the dependence on i, j and N . Denote

Mk (x) =

k∑
n=1

(θ (n)− P )
(
γτn [0, x]− γτn−1 [0, x]

)
.

We show that Mk(x) is a martingale on the filtration

Fk = σ (θ (n) : 1 ≤ n ≤ k, γτn [0, y] : 1 ≤ n ≤ k + 1, y ≥ 0, τn : 1 ≤ n ≤ k + 1) .

We first argue that θ (k + 1) is independent of Fk. By assumption, θ (k + 1) is independent of

Gk := (θ (n) , S (t) , αt [0, y] , t, y ≥ 0, 1 ≤ n ≤ k) .

By construction, Gk ⊃ Fk. Therefore, θ (k + 1) is independent of Fk. The process Mk (x) is adapted to
{Fk}k≥1, it satisfies E [|Mk (x)|] ≤ k <∞, and

E

[
k+1∑
n=1

(θ (n)− P )
(
γτn [0, x]− γτn−1 [0, x]

)∣∣∣∣∣Fk
]

= Mk (x) +
(
γτk+1

[0, x]− γτk [0, x]
)
E [θ (k + 1)− P |Fk]

= Mk (x) .
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Consequently it is a martingale.

Next, D (t) is a stopping time with respect to {Fk}k≥1, because {D (t) ≤ k} = {τk+1 > t} and τk+1 is
Fk-measurable. Therefore, Mk∧D(t) is also a martingale, and by Fatou’s lemma and Burkholder’s inequality
(see [17], Theorem 2.10)

E
[
E2 (t, x)

]
= E

[
M2
D(t) (x)

]
≤ lim inf

k→∞
E
[
M2
k∧D(t) (x)

]
≤ 41 lim inf

k→∞
E

k∧D(t)∑
n=1

(θ (n)− P )2 (γτn [0, x]− γτn−1 [0, x]
)2

≤ 41E [D (t)] .

Proof of Theorem 2. We write c for a generic positive constant whose value may change from line to line.

We first show that ξ̄N → ξ in probability. If α1, α2 ∈ M then dL(α1, α2) ≤ supx |α1[0, x] − α2[0, x]|.
Consequently it suffices to show for every T

sup
x

∥∥ξ̄N [0, x]− ξ [0, x]
∥∥
T
→ 0 in probability. (23)

By (7), (9) and (22),

sup
x

∥∥ξ̄N [0, x]− ξ [0, x]
∥∥
T

≤ L sup
x

∥∥ᾱN [0, x]− α [0, x]
∥∥
T

+ L sup
x

∥∥ĒN,T (·, x) 1
∥∥
T

+ L sup
x

∥∥P T B̄N [0, x] + P T B̄N
0− [0, x]

∥∥
T

+ L
∥∥R (µ− µ̄N)∥∥

T
+ L

∥∥RēN∥∥
T
.

We now show that each of the terms converges in probability to 0.
• It follows directly from the definition of the Lévy metric that for a1, a2 ∈M,

sup
x∈R+

|a1 [0, x]− a2 [0, x]| ≤ dL (a1, a2) + w (a2 [0, ·] , 2dL (a1, a2)) . (24)

The fact that αi ∈ D↑M implies that for any t ≤ T , w (αt [0, ·] , δ) ≤ w (αT [0, ·] , δ). Since αT ∈M does not
have atoms by assumption, we have w (αT [0, ·] , ε)→ 0 as ε→ 0. Denote

dL,T (ζ1, ζ2) = sup
t∈[0,T ]

max
1≤i≤K

dL
(
ζi1,t, ζ

i
2,t

)
,

for ζ1, ζ2 ∈ DKM. By the convergence αN ⇒ α and the continuity of t 7→ αt, it follows that dL,T
(
αN , α

)
→ 0

in probability. Hence by (24),

sup
x

∥∥ᾱN [0, x]− α [0, x]
∥∥
T
→ 0 in probability.

• For the second term, it suffices to show

sup
x

sup
t∈[0,T ]

max
1≤i,j≤K

∣∣Ēji,N (t, x)
∣∣→ 0 in probability.

11



To this end note that Lemma 1 implies

E
[∣∣Ēij,N (t, x)

∣∣2] ≤ 41N−2E
[
Di,N (t)

]
≤ 41N−2E

[
K∑
i=1

αi,NT [0,∞)

]
≤ 41N−1CT → 0.

• The third term on the RHS is bounded by 2LK/N → 0.
• Next,

∥∥R (µ− µ̄N)∥∥
T
≤ c

∥∥µ− µ̄N∥∥
T
→ 0 in probability by the assumed convergence of µ̄N to µ and

continuity of µ.
• Finally, by the definition of ēN ,

ēi,N (t) = β̄i,Nt [0,∞) + ῑi,N (t)− µ̄i,N (t)

= − 1

N
+
Bi,N [0,∞)

N
+
Si
(
NT̄ i,N (t)

)
−NT̄ i,N (t)

N
.

Now, by the law of large numbers for renewal processes, for any constant c, supt∈[0,c]

∣∣∣Si(Nt)−NtN

∣∣∣ → 0 in

probability. Moreover, for fixed T , T̄ i,N (T ) are tight. It follows that

sup
t∈[0,T ]

∣∣∣Si (NT̄ i,N (t)
)
−NT̄ i,N (t)

N

∣∣∣→ 0

in probability. Consequently, ‖ēN‖T → 0 in probability. This completes the proof of (23). We conclude
that ξ̄N → ξ.

The convergence of ῑN and β̄N to ι and β is shown similarly, by virtue of the Lipschitz property of Γ2.
We omit the details. This shows (ξ̄N , β̄n, ῑN )→ (ξ, β, ι) in probability, and completes the proof.

3 Hard EDF networks

In §3.1 the fluid model equations and the queueing model are presented, as well as the main results,
asserting uniqueness and convergence. In §3.2 auxiliary lemmas are established. The proofs of the main
results are presented in §3.3.

3.1 Model and main results

3.1.1 Fluid model

The hard version of the policy differs from the soft version in that, when the deadline expires, fluid in the
queue reneges. Therefore, we distinguish between the reneging process and the departure process:

βis ∈ D↑M : βist [0, x] is the mass with deadlines in [0, x] that has left the i-th queue

by time t due to service,

βir ∈ D↑M : βirt [0, x] is the mass with deadlines in [0, x] that has left the i-th queue

by time t due to reneging.

The deadline is not fixed but is postponed by a constant ε > 0 whenever mass migrates to a new service
station. We introduce γ =

(
γi
)

defined by

γit [0, x] = βi,st [0, x− ε] , (25)
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(recalling the convention [a, b] = ∅ if a > b), which expresses the mass that has left server i by time t with
its updated deadline in [0, x]. The processes α, µ, ξ, ι are defined as before.

We now describe the equations governing the fluid model. The fluid that is served and the fluid that
reneges from the system sum up to the total fluid that leaves the queue, and the idle effort is the difference
between the potential effort and the processed mass, as described by

βit [0, x] = βi,st [0, x] + βi,rt [0, x] , (26)

ιi (t) = µi (t)− βi,st [0,∞) . (27)

Reneging does not occur prior to deadline, as expressed by

βrt (t,∞) = 0. (28)

The content of the i-th queue is given by

ξit [0, x] = αit [0, x] +
K∑
j=1

Pjiγ
j,s
t [0, x]− βit [0, x] . (29)

The work conservation and EDF conditions are expressed through∫
ξit [0, x] dιi (t) = 0, 1 ≤ i ≤ K, (30)∫
ξit [0, x] dβit (x,∞) = 0, 1 ≤ i ≤ K. (31)

To complete the description we define the processes

ρi (t) = βi,rt [0, t] = βi,rt [0,∞) , (32)

σi (t) = inf supp
[
ξit
]
. (33)

Note that βirt [0, x] = ρi (t ∧ x). The quantity ρi(t) expresses the cumulative reneging from buffer i. The
significance of σi(t), the left edge of the support of ξi, is that reneging from buffer i occurs only at times t
when σi(t) = t. Thus

ξit [0, t) = 0, 1 ≤ i ≤ K, (34)∫
1{σi(t)>t}dρ

i (t) = 0, 1 ≤ i ≤ K. (35)

We refer to (25)–(35) as the fluid model equations. A solution to these equations for data (α, µ) is a tuple
(ξ, β, βs, βr, ρ, ι) for which these equations hold. Note that it is possible to recover β and ρ from βs and
βr, and vice versa. Therefore, we sometimes refer to a tuple (ξ, β, ρ, ι) or (ξ, βs, βr, ι) as a solution.

Assumption 1. 1. α takes the form αt(B) = ξ0−(B)+α̂t(B), where ξ0− ∈MK
∼ , and α̂ ∈ C↑KM∼ satisfies

for every 1 ≤ i ≤ K

α̂it(B) =

∫ t

0
ais(B)ds, t ≥ 0, B ∈ B(R+),

where for each t and i, ait is a finite measure on [t,∞), and t 7→ ait(B) is measurable. Moreover,
limδ↓0 sups∈[0,t] a

i
s[s, s+ δ] = 0.
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2. µ takes the form

µ (t) =

∫ t

0
m (s) ds, t ≥ 0,

for a Borel measurable function m : [0,∞)→ RK+ satisfying mini infs∈[0,t]m
i (s) > 0 for every t.

Theorem 3. Suppose (α, µ) satisfies Assumption 1. Then there exists a unique solution (ξ, β, βs, βr, ρ, ι)

in DKM × (DK↑M )3 × (DK↑+ )2 to the fluid model. Moreover, βs satisfies Assumption 1.1.

We prove this result in §3.3.

3.1.2 Queueing model, scaling

There are many ingredients of the model that are the same as in §2, which we will not repeat. The processes
αi,Nt , µi,N (t), ξi,Nt , ιi,N (t) have the same meaning as in the soft EDF model. βi,s,Nt [0, x] is the number of

jobs that have left the i-th queue by time t with deadlines in [0, x] to get served, βi,r,Nt [0, x] is the number
of jobs that have reneged from the i-th queue by time t with deadlines in [0, x] when their deadlines had
expired. Also, the cumulative reneging count is denoted by ρi,N (t) and satisfies ρi,N (t) = βi,r,Nt [0,∞).

As already mentioned, the deadline of a job is postponed by ε every time it migrates from one station
to another. It is possible that the deadline of a job at a station expires while it is in service at that station.
In this case, it is assumed that the job does not renege (in agreement with the model from [4]). A more
complicated scenario is when the work associated with this job is sufficiently large that it is not complete
even ε units of time after this deadline expires. At this time the deadline at the next station also expires.
We prefer not to deal with this possibility because it complicates the notation. Because ε is fixed whereas
the service times are downscaled, an event like that becomes less and less probable as N increases. Our
assumption, that will allow us to avoid this scenario altogether, is that the service time distributions have
bounded supports. This assures that for N large enough this scenario does not occur. The description of
the model equations is given for sufficiently large N .

Next, the processes Si(t), Di,N (t), γij,Nt , Bi,N
t and T i,N (t) as well as the relations between them are as

in the soft EDF model. Note that the assumption regarding service time distribution supports is really an
assumption about the processes Si.

We turn to mathematically describe the relations between the processes. We have

T i,N (t) =

∫ t

0
Bi,N
s [0,∞) dµi,N (s) ,

ιi,N (t) = µi,N (t)− T i,N (t) .

βi,Nt [0, x] = βis,Nt [0, x] + βir,Nt [0, x] , (36)

Di,N (t) = γi,Nt [0,∞) = Si
(
T i,N (t)

)
− 1, (37)

γi,Nt [0, x] = βi,s,Nt [0, x− ε]−Bi,N
t [0, x− ε] +Bi,N

0− [0, x− ε] . (38)

ξi,Nt [0, x] = αi,Nt [0, x] +

K∑
j=1

γji,Nt [0, x]− βi,Nt [0, x] . (39)
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The work conservation condition, the EDF policy, the hard EDF condition and the latest reneging condition
are expressed through ∫

ξi,Nt [0, x] dιi,N (t) = 0, 1 ≤ i ≤ K (40)∫
ξi,Nt [0, x] dβi,Nt (x,∞) = 0, 1 ≤ i ≤ K, (41)

ξi,Nt [0, t] = 0, 1 ≤ i ≤ K, (42)∫
1{σi,N (t)>t}dρ

i,N (t) = 0, 1 ≤ i ≤ K, (43)

where σi,N (t) = inf supp ξi,Nt . Finally, the assumptions on πi,N (n), the definition of θij,N (n), τ i,Nn , θ̂ij,N (t)
and the relations between these processes are as in the soft EDF model.

Let us define the error processes as

ei,N (t) = βi,s,Nt [0,∞) + ιi,N (t)− µi,N (t) , 1 ≤ i ≤ K,

Eij,N (t, x) = γij,Nt [0, x]− Pijγi,Nt [0, x] , 1 ≤ i, j ≤ K,x ∈ R+. (44)

Theorem 4. Assume (ᾱN , µ̄N )⇒ (α, µ), where (α, µ) satisfies Assumption 1. Then(
ξ̄N , β̄N , β̄s,N , β̄r,N , ῑN , ρ̄N , ēN , ĒN

)
⇒ (ξ, β, βs, βr, ι, ρ, 0, 0) , (45)

where (ξ, β, βs, βr, ι, ρ) is the unique solution of the fluid model equations corresponding to (α, µ).

3.2 Auxiliary lemmas

When setting K = 1 and P = 0, the model coincides with the single server model as described in [4], for
which uniqueness of the solution of the fluid model equation and convergence have been established in [4].

Lemma 2. Let K = 1 and P = 0. Suppose (α, µ) satisfies Assumption 1. Then there exists a unique

solution (ξ, β, ι, ρ) to the fluid model equations, and the solution lies in CM∼ ×C↑M∼ ×C↑ ×C↑. Assume,

moreover, that (ᾱN , µ̄N )⇒ (α, µ). Then
(
ξ̄N , β̄N , ῑN , ρ̄N

)
⇒ (ξ, β, ι, ρ).

Proof. This is the content of Theorems 4.10 and 5.4 in [4].

Lemma 3. Suppose (α, µ) satisfies Assumption 1 and fix τ > 0. Let α◦ ∈ D↑M be defined by α◦t (A) =
αt (A ∩ [0, τ ]) for all A ∈ B(R+) and t ∈ R+. Let (ξ◦, β◦, ι◦, ρ◦) and (ξ, β, ι, ρ) be the unique solutions
of the fluid model equations (for K = 1) corresponding to (α◦, µ) and (α, µ), respectively. Then for all
x ∈ [0, τ ], t ∈ [0, τ ] one has ρ (t) = ρ◦ (t), βrt [0, x] = β◦,rt [0, x], βst [0, x] = β◦,st [0, x], and ξt [0, x] = ξ◦t [0, x].

Proof. Recall from the proof of Theorem 1 the notation Γ = (Γ1,Γ2) for the SM in the finite dimensional

orthant. We denote by Γ(1) = (Γ
(1)
1 ,Γ

(1)
2 ) the special case where the dimension is 1. That is, Γ(1) is merely

the SM on the half line. The proof uses crucially the non-anticipation property of this SM [11, p.165],
stating that if ϕi = Γ(1)(ψi) for i = 1, 2, and for some T > 0, ψ1 = ψ2 on [0, T ], then also ϕ1 = ϕ2 on [0, T ].

Next, recall the notation Θ for the VMVSM. Once again, in the special case K = 1 we denote this map
by Θ(1). In this proof, t is always assumed to be in [0, τ ]. From Lemma 2, using equations (26)-(33) to
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reach conditions 1-4 in Definition 1 with the data (α, µ+ ρ), it follows that (ξ◦, β◦, ι◦, ρ◦) and (ξ, β, ι, ρ)
are respectively the unique solutions of the following two problems (P0) and (P1):

(i) (ξ◦, β◦, ι◦) = Θ(1) (α◦, µ+ ρ◦) ,

(ii) ξ◦t [0, t) = 0,

(iii)
∫
1{σ◦(t)>t}dρ

◦ (t) = 0, σ◦ (t) = inf supp [ξ◦t ] .

(P0)


(i) (ξ, β, ι) = Θ(1) (α, µ+ ρ) ,

(ii) ξt [0, t) = 0,

(iii)
∫
1{σ(t)>t}dρ (t) = 0, σ (t) = inf supp [ξt] .

(P1)

Consider now the data (α, µ+ ρ◦) ∈ D↑M × D↑, and denote the associated unique solution
(
ξ̂, β̂, ι̂

)
=

Θ(1) (α, µ+ ρ◦), and σ̂ (t) = inf supp
[
ξ̂t

]
. We will show that the tuple

(
ξ̂, β̂, ι̂, ρ◦

)
satisfies (i) − (iii) in

(P1). Uniqueness implies then (ξ, β, ι, ρ) =
(
ξ̂, β̂, ι̂, ρ◦

)
.(

ξ̂, β̂, ι̂, ρ◦
)

satisfies condition (P1.i) by the definition of
(
ξ̂, β̂, ι̂

)
.

To show that
(
ξ̂, β̂, ι̂, ρ◦

)
satisfies (P1.ii), use [4, Lemma 2.7] for x ≤ τ :

ξ̂ [0, x] = Γ
(1)
1 (α [0, x]− µ− ρ◦) = Γ

(1)
1 (α◦ [0, x]− µ− ρ◦) = ξ◦ [0, x] .

This implies immediately ξ̂t [0, t) = ξ◦t [0, t) = 0 by (P0.ii).

We need to show now that
∫
I{σ̂(t)>t}dρ

◦ (t) = 0. This will follow from (P0.iii) once we show that

{t ≤ τ : σ◦ (t) = t} = {t ≤ τ : σ̂ (t) = t}.

We already showed that for x and t in [0, τ ]: ξ̂t [0, x] = ξ◦t [0, x]. Consider any t′ ∈ {t ≤ τ : σ◦ (t) = t}.
Then t′ = inf supp

[
ξ◦t′
]

= inf supp
[
ξ̂t′
]
. So t′ is in {t ≤ τ : σ̂ (t) = t} and therefore

{t ≤ τ : σ◦ (t) = t} ⊆ {t ≤ τ : σ̂ (t) = t}.

The other direction is proved similarly.

To conclude, when we consider only times in the interval [0, τ ], the tuple
(
ξ̂, β̂, ι̂, ρ◦

)
satisfies all the

conditions in (P1). So, by uniqueness, ρ (t) = ρ◦ (t) for t ≤ τ .

This implies all the other equalities: βrt [0, x] = ρ (t ∧ x) = ρ◦ (t ∧ x) = β◦t [0, x] for x, t ∈ [0, τ ].

Also, for x, t ∈ [0, τ ], by the non-anticipation property,

ξt [0, x] = Γ
(1)
1 (α [0, x]− µ− ρ) (t) = Γ

(1)
1 (α◦ [0, x]− µ− ρ◦) (t) = ξ◦t [0, x] .

Finally, for x, t ∈ [0, τ ]: βt [0, x] = αt [0, x] − ξt [0, x] = α◦t [0, x] − ξ◦t [0, x] = β◦t [0, x], and βst [0, x] =
βt [0, x]− βrt [0, x] = β◦t [0, x]− β◦,rt [0, x] = β◦,st [0, x].

The next lemma states that the fluid model equations for K = 1 ‘preserve’ Assumption 1.
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Lemma 4. Let K = 1 and P = 0 and suppose (α, µ) satisfies Assumption 1. Let (ξ, β, ι, ρ) be the unique
solution of the fluid model equations. Let γt be defined via the relation γt [0, x] = βst [0, x− ε]. Then γ also

satisfies Assumption 1.1 with zero initial condition, i.e. γ ∈ C↑M∼

γt(B) =

∫ t

0
gs(B)ds, t ≥ 0, B ∈ B(R+), (46)

where for each t, gt is a finite measure on R+ with gt[0, t) = 0, and the mapping t 7→ gt(B) is measurable.
Moreover, limδ↓0 sups∈[0,t] gs[s, s+ δ] = 0.

Proof. The proof is based mainly on the following two facts

βst (B) ≤ αt(B), B ∈ B(R), (47)

βst (R+)− βsτ (R+) ≤
∫ t

τ
m(s)ds, 0 ≤ τ < t, (48)

and uses disintegration.

By the fluid model equations for K = 1, using (29) (recalling P = 0) and (26), for a Borel set B we have
αt (B) = ξt (B) + βt (B) as well as βt(B) = βst (B) + βrt (B), proving (47). Next, by (27), the monotonicity
of ι and Assumption 1.2, (48) holds.

We first show that γ belongs to C↑M∼ . From the axioms of our model βs ∈ D↑M. By (47) and the
assumption αt ∈ M∼ it follows that βst ∈ M∼ for every t. The continuity t 7→ βst follows from (48). This

shows that βs, and in turn, γ, belongs to C↑M∼ .

Consider now the space R2
+ with its Borel σ-algebra. Let λ be the measure on this space determined

by γ via the relation
λ ([x, y]× [s, t]) = γt [x, y]− γs [x, y] , x < y, s < t.

By (48), the measure λ(R+×dt) is dominated by the measure m(t)dt. Let T :
(
R2

+,B(R2
+)
)
→ (R+,B (R+))

be defined by T(x, t) = t. We use the disintegration theorem [10, Theorem 1], with T as the measurable
map. According to this theorem there exists a family of finite measures g̃t on R+ such that t 7→ g̃t(B) is
measurable for every B ∈ B(R+), and for each nonnegative measurable f ,∫

f(x, t)λ(dx, dt) =

∫
f(x, t)g̃t(dx)m(t)dt. (49)

Denote ĝt(B) = g̃t(B)m(t). It will be shown that

ĝt[0, t+ ε) = 0 for a.e. t. (50)

Once the above is established, we can set gt(B) = ĝt(B ∩ [t + ε,∞)), B ∈ B(R+), by which we achieve
for a.e. t, gt(B) = ĝt(B). Hence in view of (49) one has (46). As for the two final assertions made in the
lemma, we certainly have gt[0, t) ≤ gt[0, t+ ε) = 0, and for all small δ, sups gs[s, s+ δ] = 0, by which these
assertions are true.

We thus turn to showing (50). Fix x ≤ t ≤ t0. From the hard EDF equations and the assumption that
jobs arrive before their deadlines:

0 = ξt [0, x] = αt [0, x]− βt [0, x] ,

αt0 [0, x]− αt [0, x] = 0,

βrt0 [0, x]− βrt [0, x] = ρ (x ∧ t0)− ρ (x ∧ t) = ρ (x)− ρ (x) = 0, (51)
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⇒ βst0 [0, x]− βst [0, x] = αt0 [0, x]− αt [0, x]− βrt0 [0, x] + βrt [0, x] = 0.

This, together with (25) that expresses the fact that deadlines are postponed by ε after service, implies
that every rectangular subset [0, t+ ε]× [t, t0] of the set {(x, t) ∈ R2

+ : x < t+ ε} satisfies:

λ ([0, t+ ε]× [t, t0]) = γt0 [0, t+ ε]− γt [0, t+ ε] (52)

= βst0 [0, t]− βst [0, t]

= 0.

And, since {(x, t) ∈ R2
+ : x < t+ ε} is contained in a countable union of rectangles of this form,

0 = λ
(
{(x, t) ∈ R2

+ : x < t+ ε}
)

=

∫ ∞
0

ĝs [0, s+ ε) ds,

and (50) follows.

Remark. Note that for any finite collection {γi}Ki=1 and a set of positive coefficients {Pi}Ki=1, if each element
of the collection satisfies Assumption 1, then does also

∑K
i=1 Piγ

i. Lemma 4 considers a single server, but
we will use the conclusion on the sum when we will show that the total arrival process, the sum of exogenous
and the endogenous arrival processes, satisfies the assumptions.

3.3 Proof of main results

This section opens with the proof of Theorem 3 regarding existence and uniqueness of solutions to the fluid
model equations.

Proof of Theorem 3. Denote

Ξ = (ξ, β, βs, βr, γ, ι, ρ) ,

X = DKM × D↑KM × D↑KM × D↑KM × D↑KM × D↑K × D↑K ,

X = {Ξ ∈ X : The components of Ξ satisfy (25)-(28),(30)-(35)} .

Recall that the fluid model equations are (25)-(35). Equation (29), the only one excluded from the definition
of X , is the equation that couples between the different servers. Indeed, the remaining equations are fluid
model equations for K separate single server systems. This exclusion makes it convenient to use the single
server results in our proof. The existence proof, provided first, will be complete once we construct a tuple
Ξ ∈ X that satisfies (29). It is then shown that this tuple is unique. Both existence and uniqueness are
proved by induction.

First consider, for each i, the fluid model solution of a single server with primitives
(
αi (· ∩ [0, ε)) , µi

)
,

denoted
(
ξi,(1), βi,(1), ιi,(1), ρi,(1)

)
. Denote also γ

i,(1)
t [0, x] = β

is,(1)
t [0, x− ε]. Then, for n > 1, denote the

fluid model solution of a single server with primitives
(
αi (· ∩ [0, nε)) +

∑K
j=1 Pjiγ

j,(n−1) (· ∩ [0, nε)) , µi
)

by
(
ξi,(n), βi,(n), ιi,(n), ρi,(n)

)
and γ

i,(n)
t [0, x] = β

i,(n)
t [0, x− ε]. This inductively defines the tuples Ξ(n).

Note that these tuples belong to X as solutions to the fluid model of hard EDF servers. Note also
that all βis,(n) satisfy Assumption 1. We now show that these tuples are consistent with each other
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in that for (x, t) ∈ [0, nε)2 and m > n, we have β
is,(n)
t [0, x] = β

is,(m)
t [0, x], ρi,(n) (t) = ρi,(m) (t) and

ξ
i,(n)
t [0, x] = ξ

i,(m)
t [0, x].

It is proved by induction over n that these identities hold for all m > n. If (x, t) ∈ [0, ε)2, then

γ
j,(m)
t ([0, x] ∩ [0,mε)) = γ

j,(m)
t [0, x] = 0 and αit ([0, x] ∩ [0,mε)) = αit ([0, x] ∩ [0, ε)), so the data generating

ρ(1), ρ(m), ξ(1), ξ(m), βs,(1) and βs,(m) coincide on [0, ε)2 and Lemma 3 yields the desired conclusion for
n = 1. Assuming the claim is true for n, consider m ≥ n+ 1 and (x, t) ∈ [0, (n+ 1) ε)2. Then

αit ([0, x] ∩ [0, (n+ 1) ε)) = αit ([0, x] ∩ [0,mε)) = αit [0, x] .

If t < nε, then the induction assumption implies

γ
j,(n)
t ([0, x] ∩ [0, (n+ 1) ε)) = β

js,(n)
t [0, x− ε] = β

js,(m)
t [0, x− ε] = γ

j,(m)
t ([0, x] ∩ [0, (m+ 1) ε)) .

If t ∈ [nε, (n+ 1) ε), by (51), we have that whenever t > x: βi,st [0, x] = βi,sx [0, x]. It follows that if
t ∈ [nε, (n+ 1) ε),

γ
j,(n)
t ([0, x] ∩ [0, (n+ 1) ε)) = β

js,(n)
t [0, x− ε] = β

js,(n)

[x−ε]+ [0, x− ε]

= β
js,(m)

[x−ε]+ [0, x− ε] = γ
j,(m)
t [0, x] = γ

j,(m)
t ([0, x] ∩ [0, (m+ 1) ε)) .

So, the data generating ρ(n), ρ(m), ξ(n), ξ(m), βs,(n) and βs,(m) coincide on [0, (n+ 1) ε)2 and Lemma 3
yields the desired conclusion for n+ 1.

The above shows that, for example, β
i,(n)
t [0, x] becomes constant as n increases. Hence we may extract

from the sequence a tuple in the following way. Given x and t, let n > (x ∨ t) /ε and let βit [0, x] =

β
i,(n)
t [0, x], and ξit [0, x] = ξ

i,(n)
t [0, x]. For every fixed t, this uniquely defines measures by determining their

values on all sets [0, x], a collection generating the σ-algebra B(R+). Similarly, for each t, ρ
(n)
t becomes

constant as n gets large, hence we let ρ = limn ρ
(n). We also define βi,rt [0, x] = ρi (x ∧ t), βi,s = βi − βi,r,

σi (t) = inf supp
[
ξit
]
, ιi = µi − βi,s [0,∞) and γit [0, x] = βi,st [0, x− ε].

The tuple (ξ, β, ι, ρ) thus constructed is our candidate, and we now show that it is indeed a solution to
the fluid model equations.

First, by construction, Ξ satisfies (29). (25), (26), (27), (32) and (33) hold by definition, and (34) is
immediate by construction. (28) is also immediate by βi,rt (t,∞) = ρi (t) − ρi (t ∧ t) = 0. Equations (30)

and (31) are satisfied because, as will soon be shown, ψ
i,(n)
x := βis,(n) (x,∞) + ιi,(n) − βis (x,∞)− ιi ∈ D↑

and ξ
i,(n)
t [0, x] = ξit [0, x] for large enough n. Recall also that Ξ(n) ∈ X and (40) and (41) . Therefore,∫
ξis [0, x] dβi,ss (x,∞) +

∫
ξis [0, x] dιi (s)

= lim
n→∞

∣∣∣∣∫ ξi,(n)
s [0, x] dβis,(n)

s (x,∞) +

∫
ξi,(n)
s [0, x] dιi,(n) (s)−

∫
ξis [0, x] dβiss (x,∞)−

∫
ξis [0, x] dιi (s)

∣∣∣∣
= lim

n→∞

∣∣∣∣∫ ξis [0, x] dψi,(n)
x (s)

∣∣∣∣
≤
∥∥ξi [0, x]

∥∥
T

lim
n→∞

(
β
is,(n)
T (x,∞) + ιi,(n) (T )− βisT (x,∞)− ιi (T )

)
= 0. (53)

For the equality in (53), note that βi,sT [0,∞) = limm limn β
is,(n)
T [0,m] while β

is,(n)
T [0,m] is monotone in

both n and m, hence interchanging the limits is justified. Thus we have β
is,(n)
T [0,∞) → βi,sT [0,∞) and

ιi,(n) (T )→ ιi (T ) and (53).
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Lemma 2.2 in [4] implies ψ
i,(n)
x ∈ D↑ and the monotonicity in n of β

is,(n)
t [0, x], provided one shows that

for all n

αi [x ∧ nε, x ∧ (n+ 1) ε) +

K∑
j=1

Pji

(
γj,(n) [0, x ∧ (n+ 1) ε)− γj,(n−1) [0, x ∧ nε)

)
∈ D↑.

The first term is in D↑ by assumption, and the second term is now shown to belong to D↑ by induction,
where each step invokes Lemma 2.2 from [4]. Indeed, the lemma yields

βis,(2) [0, x ∧ 2ε)− βis,(1) [0, x ∧ ε) = µi − ιi,(2) − βis,(2) [x ∧ 2ε,∞)− µi + ιi,(1) + βis,(1) [x ∧ ε,∞) ∈ D↑

because αi [x ∧ ε, x ∧ 2ε) +
∑K

j=1 Pjiγ
j,(1) [0, x ∧ 2ε) ∈ D↑. Also,

βis,(n) [0, x ∧ nε)− βis,(n−1) [0, x ∧ (n− 1) ε)

= µi − ιi,(n) − βis,(n) [x ∧ nε,∞)− µi + ιi,(n−1) + βis,(n−1) [x ∧ (n− 1) ε,∞) ∈ D↑

if αi [x ∧ (n− 1) ε, x ∧ nε) +
∑K

j=1 Pji
(
γj,(n−1) [0, x ∧ nε)− γj,(n−2) [0, x ∧ (n− 1) ε)

)
∈ D↑.

For (35), note that

{t : σi (t) > t} ⊂
⋃
n≥m
{t : σi,(n) > t} ∀m.

This is due to the fact that if ξit [0, x] > 0 then also ξ
i,(n)
t [0, x] > 0 for all n > (x ∨ t) /ε. Consider t ∈ [0, T ]

for T fixed. Recall that ρit = ρ
i,(n)
t for all t ∈ [0, T ], n > T/ε. Using the above display and the union

bound, we obtain for all large n,∫
[0,T ]

1{σi(s)>s}dρ
i (s) ≤

∑
n>T/ε

∫
1{σi,(n)(s)>s}dρ

i (s) =
∑
n>T/ε

∫
1{σi,(n)(s)>s}dρ

i,(n) (s) = 0.

This shows Ξ ∈ X and completes the existence proof.

The argument for uniqueness is as follows. We show that for every x, t ∈ R+, the quantities ξt [0, x],

βt [0, x] , ρ (t) and ι (t) are uniquely determined by the primitives (α, µ) ∈ D↑KM × D↑K . This we do by

arguing that the claim holds for every (x, t) ∈ [0, nε)2, by induction in n.

First, directly from (29), for x ∈ [0, ε), for the i-th server:

ξit [0, x] = αit [0, x]− βit [0, x] .

In addition,
(
ξi, βi, ιi, ρi

)
∈ X . By Lemma 3, ξit [0, x], βist [0, x] and ρi (t) coincide with the unique solution

to the fluid model equations of a single server with primitives (α (· ∩ [0, ε)) , µ) on [0, ε)2. In particular, for
t, x ∈ [0, ε), βist [0, x] can be written as required in Assumption 1.1.

Next, assume that the uniqueness statement holds for (x, t) ∈ [0, nε)2. Let
(
ξi, βi, ιi, ρi

)
denote the

unique tuple satisfying for all 1 ≤ i ≤ K and (x, t) ∈ [0, nε)2,

ξit [0, x] = αit [0, x] +
K∑
j=1

Pjiβ
j,s
t [0, x− ε]− βit [0, x] ,

(
ξi, βi, ιi, ρi

)
∈ X .
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Assume in addition that for those x and t, βist [0, x] can be written as required in Assumption 1.1.

Consider now (x, t) ∈ [0, (n+ 1) ε)2. First, directly from Equation (29), for the i-th server:

ξit [0, x] = αit [0, x] +
K∑
j=1

Pjiβ
j,s
t [0, x− ε]− βit [0, x] ,

(
ξi, βi, ιi, ρi

)
∈ X .

If x is in [0, (n+ 1) ε) then x − ε < nε. Therefore, βi,st [0, x− ε] is uniquely determined by (α, µ) for
t ∈ [0, nε) by our induction assumption. Now for t ∈ [nε, (n+ 1) ε), by (51), we have that whenever
t > x: βi,st [0, x] = βi,sx [0, x]. It follows that if t ∈ [nε, (n+ 1) ε) then for 1 ≤ j ≤ K: βj,st [0, x− ε] =
βj,s

[x−ε]+ [0, x− ε], which is uniquely determined, in view of the induction assumption.

By Lemma 3,
(
ξi, βi, ρi

)
coincides on [0, (n+ 1) ε)2 with the unique solution of the fluid model equations

for a single server with primitives
(
αi (· ∩ [0, (n+ 1) ε)) +

∑K
j=1 Pjiγ

j (· ∩ [0, (n+ 1) ε)) , µ
)

. In particular,

βist [0, x] can be written as required in Assumption 1.1 for x and t in [0, (n+ 1) ε) as well.

Finally, ι is uniquely determined for all t via ι = µ+ ρ− βs [0,∞).

Our final goal is to prove convergence to the fluid model equations. We first show that the sequence
{ρ̄N} is tight, and deduce from that tightness of the entire tuple appearing on the LHS of (45). Later we
complete the proof by showing that any subsequential limit satisfies the fluid model equations.

Lemma 5. The sequence {ρ̄N} is C-tight. Consequently, the tuple
(
ξ̄N , β̄s,N , β̄r,N , β̄N , γ̄N , ῑN

)
is C-tight.

Proof. The second statement follows from the first by a simple inductive argument over the squares [0, nε)2

based on the continuous mapping theorem and Remark 5.1 of [4]. We omit the details.

To prove the first claim, fix T . C-tightness is shown for {ρ̄N |[0,T ]}. Define Fᾱi,N (x) = ᾱi,NT [0, x]. To

show C-tightness, note first that ‖ρ̄N‖T is dominated by ‖ᾱN‖T , that is a tight sequence of RVs. Hence it
remains to show that for every δ > 0, wT (ρ̄N , δ)→ 0 in probability, as N →∞. To this end, we bound the

aforementioned modulus of continuity in terms of w∞

(
F
ᾱi,NT

, δ
)

using the following chain of inequalities.

The justification of each step in this chain is given below. For 0 ≤ t ≤ t+ δ ≤ T ,

ρ̄N (t+ δ)− ρ̄N (t) ≤ ᾱNt+δ [0, t+ δ]− ᾱNt [0, t] +
K∑
j=1

γ̄ji,Nt+δ [0, t+ δ]−
K∑
j=1

γ̄ji,Nt [0, t] (54)

≤ ᾱi,NT [t, t+ δ] +

K∑
j=1

γ̄j,Nt+δ [t, t+ δ] (55)

≤ ᾱi,NT [t, t+ δ] +
K∑
j=1

β̄js,Nt+δ [t− ε, t+ δ − ε] +N−1 (56)

≤ ᾱi,NT [t, t+ δ] +

b t+δε c∑
n=1

K∑
j=1

(
ᾱj,NT [t− nε, t+ δ − nε] +

1

N

)
+N−1 (57)

≤
(
KT

ε
+ 1

)(
max
i
w
(
F
ᾱi,NT

, δ
)

+
1

N

)
.
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t

xt t+ δ

0

Figure 1: Illustration for Inequality (55).

The convergence ᾱN ⇒ α and the continuity of the path t 7→ αt we have ᾱNT ⇒ αT . Since by Assumption
1, αT has no atoms, the continuous, monotone, bounded function x 7→ FαT (x) is uniformly continuous,
and we have limη↓0 lim supN P (w∞(F

ᾱi,NT
, δ) > η) = 0. This shows that {ρ̄N} are C-tight.

It remains to prove the chain of inequalities.

Inequality (54) follows from (39) with x = t, ξ̄i,Nt [0, t] = 0, and β̄is,Nt [0, t] ≤ β̄is,Nt+δ [0, t+ δ].

For inequality (55), first, ᾱi,Nt+δ[0, t] = ᾱi,Nt [0, t] because, by assumption, no job enters the system with
an overdue deadline (see Figure 1). Hence

ᾱNt+δ [0, t+ δ]− ᾱNt [0, t] = ᾱNt+δ [0, t+ δ]− ᾱNt+δ [0, t] + ᾱi,Nt+δ[0, t]− ᾱ
i,N
t [0, t]

≤ ᾱNt+δ [t, t+ δ]

≤ ᾱNT [t, t+ δ] .

Then, use a similar property for γ̄is,N : γ̄is,Nt+δ [0, t] = γ̄is,Nt [0, t]. This is due to the fact that no job is served
after its deadline has expired. To see this, fix any x ≤ t ≤ t0, and recall that by (19)

γ̄ji,Nt0
[0, x]− γ̄ji,Nt [0, x] =

∫
(t,t0]

θji,N (s) dγ̄i,Ns [0, x] = 0. (58)

It follows that γ̄ji,Nt+δ [0, t+ δ]− γ̄ji,Nt [0, t+ δ] ≤ γ̄j,Nt+δ [t, t+ δ].

Inequality (56) follows from Equation (38).

For (57), we prove by induction that

K∑
j=1

β̄js,NT [t, t+ δ] ≤
b t+δε c∑
n=0

K∑
j=1

(
ᾱj,NT [t− nε, t+ δ − nε] +

1

N

)
.

If t is such that t+ δ < ε, then the statement follows from Equation (39) and β̄jr,NT [t, t+ δ] ≥ 0.

Now, assume that the desired inequality holds for t such that
⌊
t+δ
ε

⌋
= m − 1. Then for t such that⌊

t+δ
ε

⌋
= m, we have

K∑
j=1

β̄js,NT [t− ε, t+ δ − ε] ≤
m∑
n=1

K∑
j=1

(
ᾱj,NT [t− nε, t+ δ − nε] +

1

N

)
.

For these values of t, from (39),

β̄is,NT [t, t+ δ] ≤ ᾱi,NT [t, t+ δ] +
K∑
j=1

γ̄ji,NT [t, t+ δ] .
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Summing over all j, using (38) and the assumption,

K∑
i=1

β̄is,NT [t, t+ δ] =
K∑
i=1

ᾱi,NT [t, t+ δ] +
K∑
j=1

γ̄j,NT [t, t+ δ]

≤
K∑
i=1

ᾱi,NT [t, t+ δ] +
K∑
j=1

β̄js,NT [t− ε, t+ δ − ε] +
K∑
j=1

1

N

≤
K∑
i=1

ᾱi,NT [t, t+ δ] +
m∑
n=1

K∑
j=1

(
ᾱj,NT [t− nε, t+ δ − nε] +

1

N

)
+

K∑
j=1

1

N

=
m∑
n=0

K∑
j=1

(
ᾱj,NT [t− nε, t+ δ − nε] +

1

N

)
.

This completes the proof of the chain of inequalities and the result follows.

This means that the tuple is also sequentially compact. We will use that fact soon to prove Theorem
4.

Proof of Theorem 4. First, the convergence
(
ēN , ĒN

)
⇒ (0, 0) follows by the same reasons as for the soft

version. Next, from Lemma 5 and Prohorov’s theorem, every subsequence of the tuple has a convergent
subsequence. We will show that any subsequential limit must be a solution to the fluid model; uniqueness
implies then convergence of the entire sequence.

Consider a convergent subsequence and denote by (ρ, α, µ, ξ, βs, βr, β, γ, ι) its limit. We appeal to
Skorokhod representation theorem ([7, Thm. 6.7]), and assume without loss of generality convergence a.s.
It is now argued that the tuple (ρ, α, µ, ξ, βs, βr, β, γ, ι) satisfies the fluid model equations.

Equation (27) follows by ēi,N ⇒ 0. Identities (25), (26), (29), and (32) will follow from the convergence
of the tuple once it is shown that for every t, the measures ξt, βt, etc., have no atoms. To show that these
measures have no atoms, consider relation (39) with x < ε, in which case the term involving γN is absent.

Using the assumption that α ∈ C↑KM∼ and Portmanteau theorem, for every 0 ≤ a < b < ε, a.s.,

βist (a, b) ≤ lim inf β̄is,Nt (a, b) ≤ lim inf ᾱi,Nt (a, b) = αit(a, b).

Hence the fact that αit has no atoms implies that the same is true for βist , on the interval [0, ε). Hence the
same holds for γit and a similar argument holds for ξit. An inductive argument over intervals [0, nε) used
in (39) shows that these measures are all atomless on all of R+. (The induction argument is omitted).

Moving now to show (30) and (31), note that by (38), (39), (40), (41), and (44),(
ξ̄i,N [0, x] , β̄is,N (x,∞) + ῑi,N

)
=

Γ(1)

(
ᾱi,N [0, x] +

K∑
j=1

Pji

(
B̄i,N [0, x− ε]− B̄i,N

0− [0, x− ε]
)

+
K∑
j=1

Pjiβ̄
js,N [0, x− ε]− ρ̄i,N (· ∧ x)− µ̄i,N − ēi,N +

K∑
j=1

Ēji,N (·, x)

)
.

Recalling that Γ(1) is continuous, using (24) and the fact that there are no atoms, one obtains (30) and
(31) by the definition of the Skorokhod map.
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It remains to show that the limit satisfies the condition
∫
1{σi(t)>t}dρ (t) = 0. The idea is similar to

the proof in Section 5.1.4 in [4]; however, there are many details that are different. By Fatou’s lemma, it
is enough to prove that the event

Ei0 =

{∫ T

0
1{σi(t)>t+δ}dρ

i (t) > 0

}
occurs with probability zero for all 1 ≤ i ≤ K. We refer to Lemma 5.9 in [4] and note that there exists a
[0, T ) ∪ {∞}-valued random variable τ such that P

(
Ei0
)

= P
(
Ei1 ∩ Ei2

)
where

Ei1 =
{
τ < T, σi (τ) > τ + δ

}
, Ei2 =

{
ρi (τ + δ) > ρi (τ) ,∀δ > 0

}
.

Define

Ei3 =
{
∃δ (ω) > 0 : ρi (τ + δ) = ρi (τ)

}
and note that P

(
Ei1 ∩ Ei2

)
= P

(
Ei1 ∩ Eic3

)
.

We wish to show that for any δ > 0, P
(
Ei0
)

= 0, which is equivalent to showing P
(
Ei1 ∩ Eic3

)
= 0 for all

i. Note that it is enough to show this for any ε > δ > 0. In fact, we shall take δ < ε∧ δ0, where δ0 ∈ (0, 1)
satisfies

ais [s, s+ 2δ0] < mi (s) for all s ∈ [0, T + 1] and i ∈ {1, ...,K}. (59)

The existence of such δ0 is guaranteed by Assumption 1.

By (39) and (42), for b > a,

ρ̄i,N (b)− ρ̄i,N (a) + β̄is,Nb (a, b]− β̄is,Na (a, b] = ᾱi,Nb (a, b]− ᾱi,Na (a, b] + ξ̄i,Na (a, b] +
K∑
j=1

(
γ̄ji,Nb (a, b]− γ̄ji,Na (a, b]

)
.

Partition (τ, τ + δ] into M ∈ N subintervals Im = (tm−1, tm], with δM = M−1δ and tm = τ + mδM ,
m = 1, ...,M , and bound the increment of ρ̄i,N by

ρ̄i,N (τ + δ)− ρ̄i,N (τ) =

M∑
m=1

(
ρ̄i,N (tm)− ρ̄i,N (tm−1)

)
≤ CiN,M +Di

N,M +GiN,M ,

where

CiN,M =
M∑
m=1

ξ̄i,Ntm−1
(Im) ,

Di
N,M =

M∑
m=1

(
ᾱi,Ntm (Im)− ᾱi,Ntm−1

(Im)
)
,

GiN,M =
M∑
m=1

K∑
j=1

(
γ̄ji,Ntm (Im)− γ̄ji,Ntm−1

(Im)
)
.

We first fix M and let N → ∞, and then let M → ∞ to obtain 1Ei1

(
CiN,M +Di

N,M +GiN,M

)
→ 0 a.s.,

which implies 1Ei1

(
ρi (τ + δ)− ρi (τ)

)
= 0 a.s. This completes the proof by concluding P

(
Ei1 ∩ Eic3

)
= 0

for all i.

24



By assumption, DN,M converges as N →∞ to

DM =

M∑
m=1

∫ tm

tm−1

ais (Im) ds ≤ (T + δ) sup
s∈[0,T ]

ais [s, s+ δM ] ,

and, as M →∞, sups∈[0,T ] a
i
s [s, s+ δM ]→ 0 as assumed in Assumption 1.

Next, note that CiN,M ≤M maxs∈[τ,τ+δ] ξ̄
i,N
s (τ, τ + δ], and recall that ξ̄i,N → ξi ∈ CM∼ a.s. Hence

sup
s∈[0,T ]

sup
x

∣∣ξ̄i,Ns [0, x]− ξis [0, x]
∣∣→ 0 a.s.

This, together with 1Ei1
ξτ [τ, τ + δ] = 0 and ξτ [0, τ) = 0, implies 1Ei1

ξ̄i,Nτ [τ, τ + δ] → 0 a.s. By virtue of

the shift property of the Skorokhod mapping, ξiτ+· [0, τ + δ] = Γ
(1)
1

(
ψi,τ,δ

)
, where:

ψi,τ,δ (t) =ξiτ [0, τ + δ] + αiτ+t [0, τ + δ]− αiτ [0, τ + δ]

+
K∑
j=1

Pji

(
βjsτ+t [0, τ + δ − ε]− βjsτ [0, τ + δ − ε]

)
− βirτ+t [0, τ + δ]− βirτ [0, τ + δ]− µi (τ + t) + µi (τ) .

Notice that if δ is smaller than ε then the sum over j is just 0, as in (52) . Moreover,

αiτ+t [0, τ + δ]− αiτ [0, τ + δ]− µi (τ + t) + µi (τ) =

∫ τ+t

τ
ais [0, τ + δ] ds−

∫ τ+t

τ
mi (s) ds

is non-increasing for t ∈ [0, δ0] by (59). Therefore, ξi,Nt [0, τ + δ] = 0 for all t ∈ [τ, τ + δ], resulting with
1Ei1

CN,M → 0 a.s.

As for GiN,M , we start with the bound

GiN,M ≤
M∑
m=1

K∑
j=1

(
γ̄j,Ntm (Im)− γ̄j,Ntm−1

(Im)
)
≤

M∑
m=1

K∑
j=1

(
β̄js,Ntm (Im)− β̄js,Ntm−1

(Im)
)

+
MK

N
.

To bound it further, we prove the following. Fix t2 > t1, then for any interval A = [t3, t4) ⊂ [0, T ] such
that t2 ≥ t4:

K∑
i=1

(
β̄is,Nt2

(A)− β̄is,Nt1
(A)
)
≤
bt4/εc∑
n=0

(
K∑
i=1

(
ᾱi,Nt2 (A− nε)− ᾱi,Nt1 (A− nε)

)
+

K∑
i=1

ξ̄i,Nt1 (A− nε) +
K

N

)

This will be shown by induction over t4 < nε. From (39) and the monotonicity of t 7→ β̄ir,Nt (A), and

ξ̄i,Nt2 [0, t4) = 0:

β̄is,Nt2
(A)− β̄is,Nt1

(A) ≤ ᾱi,Nt2 (A)− ᾱi,Nt1 (A) +

K∑
j=1

(
γ̄ji,Nt2

(A)− γ̄ji,Nt1
(A)
)

+ ξ̄i,Nt1 (A) ,
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and by summing over all servers

K∑
i=1

(
β̄is,Nt2

(A)− β̄is,Nt1
(A)
)
≤

K∑
i=1

(
ᾱi,Nt2 (A)− ᾱi,Nt1 (A) + ξ̄i,Nt1 (A)

)
+

K∑
j=1

(
β̄js,Nt2

(A− ε)− β̄js,Nt1
(A− ε)

)
+
K

N
.

If t4 < ε then

β̄is,Nt2
(A)− β̄is,Nt1

(A) ≤ ᾱi,Nt2 (A)− ᾱi,Nt1 (A) + ξ̄i,Nt1 (A) ,

and the statement is true by summing over all servers. Assume that the statement is true for t4 ≤ nε. If
we take some t4 ≤ (n+ 1) ε and use our induction assumption we get:

K∑
i=1

(
β̄is,Nt2

(A)− β̄is,Nt1
(A)
)
≤

K∑
i=1

(
ᾱi,Nt2 (A)− ᾱi,Nt1 (A) + ξ̄i,Nt1 (A)

)

+

bt4/εc∑
n=1

K∑
i=1

(
ᾱi,Nt2 (A− nε)− ᾱi,Nt1 (A− nε) + ξ̄i,Nt1 (A− nε) +

1

N

)
+
K

N

=

bt4/εc∑
n=0

K∑
i=1

(
ᾱi,Nt2 (A− nε)− ᾱi,Nt1 (A− nε) + ξ̄i,Nt1 (A− nε) +

1

N

)
We need this result for t1 = t3 = tm−1 and t2 = t4 = tm; if M is big enough then ξ̄i,Ntm−1

(A− nε) = 0 for
n ≥ 1, and then:

K∑
i=1

(
β̄is,Nt2

(A)− β̄is,Nt1
(A)
)
≤
bt4/εc∑
n=0

K∑
i=1

(
ᾱi,Nt2 (A− nε)− ᾱi,Nt1 (A− nε) +

1

N

)
+

K∑
i=1

ξ̄i,Nt1 (A) .

It follows that

GiN,M ≤
M∑
m=1

KT

ε
max
i,n

(
ᾱi,Ntm (Im − nε)− ᾱi,Ntm−1

(Im − nε)
)

+K
M∑
m=1

ξ̄i,Ntm−1
(Im) +

(
T

ε
+ 1

)
MK

N
.

The terms on the RHS vanish as CiN,M and Di
N,M above.
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