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Abstract. The large-time behavior of a nonlinearly coupled pair of measure-valued transport
equations with discontinuous boundary conditions, parameterized by a positive real-valued parameter
\lambda , is considered. These equations describe the hydrodynamic or fluid limit of many-server queues with
reneging (with traffic intensity \lambda ), which model phenomena in diverse disciplines, including biology
and operations research. For a broad class of reneging distributions with finite mean, and service
distributions with finite mean and hazard rate function that is either nonincreasing or bounded away
from zero and infinity, it is shown that if the fluid equations have a unique invariant state, then
the Dirac measure at this invariant state is the unique invariant distribution of the fluid equations.
In particular, this implies that the stationary distributions of scaled N -server systems converge to
the unique invariant state of the corresponding fluid equations. Moreover, when the mean arrival
rate is not equal to the mean service rate, that is, when \lambda \not = 1, it is shown that the solution to
the fluid equation starting from any initial condition converges to this unique invariant state in the
large-time limit. The proof techniques are different under the two sets of assumptions on the service
distribution, as well as under the two regimes \lambda < 1 and \lambda \geq 1. When the hazard rate function is
nonincreasing, a reformulation of the dynamics in terms of a certain renewal equation is used, in
conjunction with recursive asymptotic estimates. When the hazard rate function is bounded away
from zero and infinity, the proof uses an extended relative entropy functional as a Lyapunov function.
Analogous large-time convergence results are also established for a system of coupled measure-valued
equations modeling a multiclass queue.
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1. Introduction.

1.1. Background, motivation, and results. The focus of this work is the
analysis of the large-time behavior of a nonlinearly coupled pair of measure-valued
transport equations with discontinuous boundary conditions that describe the hy-
drodynamic or fluid limit of a many-server queue with reneging. Such queues arise
in a range of applications, including as models of computer networks, telephone call
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7190 R. ATAR, W. KANG, H. KASPI, AND K. RAMANAN

centers or (more general) customer contact centers [18, 31, 42], and enzymatic process-
ing networks in biology, where reneging seeks to model the phenomenon of dilution
(see, e.g., [32]). A basic model, also referred to as the GI/G/N+G queue, consists of a
system with N identical servers, to which jobs arrive with independent and identically
distributed (i.i.d.) service requirements that are drawn from a general distribution,
with each job also being equipped with an i.i.d. patience time drawn from another
general distribution. Depending on the application, the servers represent processors,
call center agents, or enzymes, and the jobs represent packets, customers with tasks,
or proteins. Arriving jobs enter service immediately if there is an idle server available,
else they join the back of the queue. As servers become available, jobs from the queue
start service in the order of arrival. Once a job completes service, it departs the sys-
tem. In addition, jobs renege from (equivalently, abandon) the queue at the moment
when the amount of time they have been waiting in queue equals their patience time,
unless they have already entered service by that time. Important system performance
measures of interest include the stationary waiting time and queue distributions. In
the special case when arrivals are Poisson and the service distribution is exponential,
but the reneging or abandonment distribution is general, explicit formulas for the
scaled steady-state distributions were obtained in [11], and their asymptotics as N ,
the number of servers, goes to infinity, were studied in [45]. However, the case of gen-
eral service distributions, which is relevant for many applications, is more challenging.
It appears not feasible to obtain exact analytical expressions for these quantities for
general service and abandonment distributions. Instead, one often resorts to obtain-
ing asymptotic approximations that are exact in the limit as the number of servers
goes to infinity.

In [26] the state of an N -server queue at time t is represented in terms of two
coupled measures, the queue measure and the server measure. The queue measure
encodes jobs currently in the queue and has a unit Dirac delta mass at the amount of
time elapsed since that job entered the system, whereas the server measure \nu N keeps
track of jobs currently in service and has a unit Dirac delta mass at the age of each
such job, where the age is the amount of time elapsed since the job entered service.
Since the number of servers is N , it follows that the total mass \nu N [0,\infty ) of \nu N , which
represents the number of busy servers, is less than or equal to N . For analytical
purposes, it turns out that the queue measure itself is more conveniently represented
in terms of the pair (\eta N ,XN ), where \eta N is a potential queue measure, which keeps
track of the times elapsed since entry into the system, not only of jobs currently in the
queue, but of all jobs that have entered the system and for which this elapsed time
is strictly less than their respective patience time (regardless of whether or not they
entered service or departed the system by that time), and XN is the total number of
jobs in the system. The work [26] considered a general class of service and patience
distributions, namely those whose cumulative distribution functions, denoted Gs and
Gr, respectively, have finite means, have densities, denoted by gs and gr, respectively,
and whose associated hazard rate functions hs = gs/(1 - Gs) and hr = gr/(1 - Gr)
satisfy mild additional regularity conditions (see Assumption 2.1). For this class, it
was shown in [26] that when the traffic intensity, that is, the ratio of arrival rate
to number of servers, converges to a limit \lambda \geq 0 as the number of servers tends to
infinity, the rescaled state descriptor ( \=XN , \=\nu N , \=\eta N ) :=N - 1(XN , \nu N , \eta N ) converges to
a deterministic limit (X,\nu , \eta ), where for each t \geq 0, X(t) is a nonnegative number
representing the limiting scaled number of jobs in queue, \nu t is a subprobability measure
on [0,\infty ) (i.e., with mass no greater than 1) representing the scaled limit distribution
of ages of jobs in service, and \eta t is a finite nonnegative Borel measure on [0,\infty )
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ASYMPTOTICS OF COUPLED MEASURE-VALUED EQUATIONS 7191

representing the scaled limit distribution of times since entry into the system of jobs
whose times in the system are strictly less than their patience times. Moreover, this
deterministic limit (X,\nu , \eta ) was characterized as the unique solution to a system of
coupled equations that we refer to as the fluid equations (see Definition 2.3) which, in
particular, characterize \nu and \eta as the unique weak solution to a nonlinearly coupled
system of deterministic measure-valued transport equations, subject to discontinuous
boundary conditions that are modulated by the state of X.

In this work we study the large-time behavior of the solution (X,\nu , \eta ) to the
measure-valued fluid equations obtained in [26] under the additional assumption that
the fluid equations admit a unique invariant state (sometimes also referred to as
a fixed point). Although a fully rigorous definition of these equations is somewhat
involved and hence deferred to section 2.2 (specifically, see Definition 2.3), to relate our
model to the literature on age-structured population dynamics, as well as to illustrate
some of the challenges, we briefly describe a simplified version of the dynamics of
the measure-valued component \nu under additional smoothness assumptions. Suppose
that for each t\geq 0, the server age measure \nu t also has a continuous density, denoted
by f(\cdot , t). A purely formal derivation using the fluid equations in Definition 2.3
shows that the server age measure density f satisfies the following transport partial
differential equation (PDE) (see section 4.2.2):

\partial tf(x, t) + \partial xf(x, t) + hs(x)f(x, t) = 0, x > 0, t > 0,(1.1)

subject to the boundary condition

f(0, t) =

\left\{       
\lambda if

\int \infty 

0

f(x, t)dx< 1,\int \infty 

0

hs(x)f(x, t)dx if

\int \infty 

0

f(x, t)dx= 1,

(1.2)

and initial condition

f(x,0) = f0(x), x > 0,(1.3)

for some given function f0 :\BbbR + \rightarrow \BbbR + with
\int \infty 
0
f0(x)\leq 1. Recall that

\int \infty 
0
f(x, t)dx is

the limiting fraction of busy servers, and note that the discontinuity in the boundary
condition (1.2) reflects the difference in the rates of entry of jobs into service when
all servers are busy and when there is a positive fraction of idle servers. As a word
of caution we mention that uniqueness is not in general guaranteed for (1.1)--(1.3)
when they are considered alone. However, as already remarked above, in the full
formulation, \nu is coupled to the other components, and uniqueness as well as the
large-time behavior rely on this coupling. Nevertheless, a discussion of just this PDE
will still provide insight into some of the challenges that arise in the study of the
large-time behavior of the full system of fluid equations.

The PDE (1.1) is reminiscent of age-structured equations (sometimes also re-
ferred to as renewal equations in the PDE literature) that model population dy-
namics in biology. For example, if (1.1) is accompanied by the boundary condition
f(0, t) =

\int \infty 
0
b(x)f(x, t)dx in place of (1.2), it provides a model for the evolution of a

population where birth and death rates are age-dependent. In this model, individuals
of age x give birth at rate b(x) and die at rate hs(x), and f describes the population
density with respect to age. This is a fully linear equation about which much is known.
In particular, the decay or growth rates as well as the large-time profile are given in
terms of an eigenvalue problem (e.g., see [39, Chapter 2]). There is a large body of
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7192 R. ATAR, W. KANG, H. KASPI, AND K. RAMANAN

literature on various generalizations of the PDE (1.1), for example, with additional
linear or nonlinear terms on the right-hand side, and their use in biological model-
ing. We only mention a small sample of works that are somewhat related to ours,
and refer the interested reader to monographs for further information and references
[16, 39, 40, 41]. For example, the work [33] studies the long-time behavior of sev-
eral linear structured population models using a combination of eigenvalue problems
and generalized relative entropy techniques, whereas the work [21] is concerned with
measure-valued solutions and shows that a variant of the Monge--Kantorovich trans-
port distance is nonexpanding for these equations. The nonlinear theory is far more
involved because different nonlinearities, and sometimes even different data, lead to
different behaviors, including chaotic, periodic, and convergence to a steady state at
the large-time limit. The work [13] considers a class of nonlinear selection-mutation
and structured population models and is also concerned with measure-valued solu-
tions, motivated by the fact that some of the invariant distributions do not have
densities with respect to Lebesgue measure. However, the latter work focuses on well-
posedness rather than large-time behavior. The paper [34] studies several variants
of linear and nonlinear population models that in addition to being age-structured
allow for the rate of maturation (or aging) to vary across the population. The rate
of exponential growth and limiting profile, and conditions for existence of nonlinearly
stable states as well as oscillatory behavior are provided. All these works consider
linear boundary conditions, unlike that in (1.2). The work on age-structured mod-
els where birth processes are described via nonlinear boundary conditions is much
less extensive, but we mention [36], which studies a model with spatial diffusion and
proves well-posedness, and [19], which addresses a specific type of nonlinearity aimed
at modeling competition between young and old parts of the population and estab-
lishes large-time convergence results in the presence of singularly perturbed dynamics.
The type of discontinuous nonlinearity we are concerned with is not covered by any
of these papers.

In a broad sense, (1.1)--(1.3) can be seen as belonging to the same family of evo-
lution equations describing age-dependent population dynamics. However, there are
significant differences. First, to further illustrate the difference in the boundary con-
ditions, consider a simplified, linear version of (1.2) where f(0, t) =

\int \infty 
0
hs(x)f(x, t)dx

holds for all t \geq 0. Then one recovers, for example, the age-structured model (3)
in [33] with \nu \equiv 0 and b = d = hs. In this case it follows from [34, 33] that f(x, t)
converges to the eigenfunction f\ast (x) := 1  - Gs(x) of the stationary version of the
PDE (1.1) (corresponding to the eigenvalue 0) when hs is strictly positive, bounded,
and integrable on (0,\infty ). However, this result is not applicable in the setting of the
present paper where hs represents a hazard rate function, because the hazard rate
function of any distribution is never integrable on (0,\infty ); note that this also implies
that the dual problem of the age-structured model in equation (8) of [33] is not well
defined. More significantly, in the current setting a key additional challenge, especially
in the critical and supercritical regimes where \lambda \geq 1, is to deal with the discontinuous
boundary condition (1.2), which requires controlling the oscillations of

\int \infty 
0
f(x, t)dx

around 1. Furthermore, a rigorous proof cannot in any case rely on just the analysis
of the PDE because for general initial conditions \nu 0, the measures \nu t, t\geq 0, need not
have densities and even when they do, their densitites will have discontinuities in both
variables (as is apparent from the analysis in section 4.2.3). Finally, as already men-
tioned, in addition to the measure-valued analogue of (1.1)--(1.3), we need to consider
the dynamics of the additional components \eta and X of the full state of the system.
Thus, we develop alternative methods to analyze these fluid equations.
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ASYMPTOTICS OF COUPLED MEASURE-VALUED EQUATIONS 7193

In this paper, we study the subcritical, critical, and supercritical regimes, char-
acterized by the regions where \lambda < 1, \lambda = 1, and \lambda > 1, respectively, additionally
assuming in the critical and supercritical regimes that the hazard rate function of
the service time distribution is either nonincreasing or bounded away from zero and
infinity. Our main results are summarized in Theorem 3.2. Specifically, when \lambda \not = 1,
we show that from any initial condition, the solution to the fluid equations converges
to the unique invariant state in the large-time limit, and when \lambda = 1 and the hazard
rate function is nonincreasing, we show that the total mass of \nu (which represents the
mass of busy servers in the fluid system) converges to 1. In all the cases above, we
show that the Dirac delta mass at the (unique) invariant state is the unique invari-
ant distribution of the fluid equations (i.e., the unique probability distribution that
is invariant under the flow defined by the fluid equations; see Definition 2.10). This
crucially implies that the stationary distributions of the rescaled N -server dynamics
converge to the invariant state of the fluid dynamics, the proof of which was one of the
motivations of this work. In particular, as elaborated in Remark 3.4, it is the unique-
ness of the invariant distribution for the fluid equations, rather than just uniqueness
of the invariant state, that is relevant for the convergence of the rescaled stationary
distributions of the N -server dynamics. In the absence of reneging, such large-time
convergence results were established for a single-class system in Proposition 6.1 of
[28] for the subcritical regime and in Theorem 3.9 of [28] for the critical regime, with
the latter requiring an additional finite second moment assumption. In the presence
of reneging, although the system is in a sense more stable (e.g., the system is also
stable in the supercritical regime, making it of particular interest), certain mono-
tonicity properties are lost and the fluid equation dynamics are considerably more
complicated, making the analysis significantly more challenging.

Finally, we also analyze the large-time behavior of fluid equations for a multiclass
model under a nonpreemptive priority policy, which was formulated in [10] and used
therein to establish asymptotic optimality of the policy when the reneging distribu-
tion is exponential (see Definition 5.1). In the case that the service time distribution
is class-independent and satisfies the same conditions as above, reneging times are
exponential, but possibly class-dependent, and the fluid equations have a unique in-
variant state, we establish (in Theorem 5.2) uniqueness of the invariant distribution
and analogous large-time convergence results in the supercritical regime.

While [28] is one of the earliest works to establish large-time limits of measure-
valued fluid equations in the queueing context, an early work that used a Lyapunov
functional approach to establish large-time behavior of measure-valued fluid equations
is [38], and the use of relative entropy as a Lyapunov functional seems to have first
appeared in [43], with subsequent generalizations considered in [22, 35]. Another work
that addresses large-time behavior for measure-valued fluid equations, although using
a different (non-Lyapunov) method, is [29]. However, with the exception of [28], all of
these works focus on the dynamics of residual times (specifically, for jobs in processor
sharing, bandwidth sharing, and GI/G/N+Gmodels), which have a different structure
from the equations studied in this paper.

1.2. Discussion of the proof methodology. For the single-class setting, the
proof of convergence in the subcritical regime is obtained via a direct analysis of the
fluid equations (see section 4.1). The proofs in the critical and supercritical cases are
considerably more subtle and rely on rather different arguments under two different
types of assumptions on the service distribution (see Asssumption 3.1). When the haz-
ard rate function of the service distribution is nonincreasing, we use a reformulation

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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7194 R. ATAR, W. KANG, H. KASPI, AND K. RAMANAN

in terms of renewal equations in the probabilistic sense, in conjunction with certain
recursive estimates, and the convergence of the measure-valued state processes is with
respect to the weak topology (see section 4.3). These arguments are inspired by those
used in the aforementioned work [29], which studies the long-time behavior of fluid
equations for the GI/G/N+G model under the assumption that the service time dis-
tribution has a concave or convex renewal function (which is implied by nonincreasing
hazard rate functions). However, as already mentioned above, the fluid equations of
[29] are based on a different measure-valued state representation, involving residual
service times of customers rather than ages, and furthermore, convergence is estab-
lished in [29] only for the queue process, not the measure-valued process. Thus the
results of [29] do not directly apply. Moreover, we also need to establish additional
estimates to prove convergence of the measure-valued process \nu in the supercritical
case, which is not addressed in [29].

The arguments used when the hazard rate function hs of the service distribution
is bounded away from zero and infinity are of a completely different nature. These
results address a class of distributions not covered by [29]. They are based on the
analysis of weak solutions to PDEs and entail showing that an extended relative
entropy functional (that takes as arguments subprobability measures) serves as a
Lyapunov functional for the dynamics. As a result, the convergence of the measure-
valued state processes is with respect to the stronger total variation topology. Thus,
these methods are closer in spirit to the methods developed to study age-structured
population models alluded to above, but with important differences to address the
additional complications. To further elaborate on the additional subtleties that arise
in this context we refer back to the formal PDE for the density f given in (1.1)--
(1.3), and the function f\ast = 1 - Gs, and assuming (again without justification) that
limx\rightarrow \infty f(x, t) log(f(x, t)/f\ast (x)) = 0 for all t \geq 0, consider the extended relative
entropy functional

\^\Delta (t) :=

\int \infty 

0

f(x, t) log
f(x, t)

f\ast (x)
dx, t\geq 0.

Note that unlike usual relative entropy, \^\Delta (t) may be negative since x \mapsto \rightarrow f(x, t) need
not be a probability density. Then using (1.1)--(1.3), combined with several other
estimates and manipulations (see section 4.2.2 for full details), it is possible to show
that

d

dt
\^\Delta (t)\leq 

\Biggl\{ 
 - \varepsilon s \^\Delta +(t) + \lambda log\lambda  - z(t) log z(t) if

\int \infty 
0
f(x, t)dx< 1,

 - \varepsilon s \^\Delta (t) if
\int \infty 
0
f(x, t)dx= 1,

(1.4)

where a+ := max(a,0) and z(t) :=
\int t

0
hs(x)f(x, t)dx and \varepsilon s := ess infx\geq 0 h

s(x). Given

\varepsilon s > 0, this suggests that \^\Delta (t) may serve as a sort of Lyapunov function for the
dynamics if there exists a finite time T < \infty such that

\int \infty 
0
f(x, t)dx = 1 for all

t \geq T . However, translating this intuition into a proof is not at all straightforward.
For one, showing that such a time T has been reached cannot be based on (1.4)
alone, because the dynamics could oscillate between times when

\int \infty 
0
f(t, x)dx = 1,

whence \^\Delta (t) \geq 0, and time intervals when
\int \infty 
0
f(t, x)dx < 1, whence \^\Delta (t) could

be negative. As a consequence, it is not possible to deduce from \^\Delta (t) \leq 0 that
t\geq T . Using the coupling with dynamics of the other state components is necessary.
Second, the calculation (1.4) was carried out under the unjustified assumption that
limx\rightarrow \infty f(x, t)(log f(x, t)/f\ast (x)) = 0 for all t\geq 0. Third, as already mentioned above,
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ASYMPTOTICS OF COUPLED MEASURE-VALUED EQUATIONS 7195

due to lack of sufficient smoothness one cannot analyze just the PDE but one must
consider the full measure-valued equation. Nevertheless, in the supercritical regime
\lambda > 1, under the assumption that both \varepsilon s > 0 and cs := ess supx>0 h

s(x) < \infty ,
stated as Assumption 3.1(1), below, we first show convergence of \nu t to the measure
\nu \ast (dx) = f\ast (x)dx as t\rightarrow \infty via a more involved rigorous argument. The latter first
derives a version of (1.4) for the measure-valued counterpart \nu t, which contains some
extra error terms, then uses that to deduce the existence of a finite time T such that
the total mass of \nu t is 1 for t\geq T , and then finally deduces the convergence of the full
state (Xt, \nu t, \eta t) to the unique invariant state; see section 4.2.3 for full details.

1.3. Ramifications of our results for stationary distributions of \bfitN -
server queues. The results of this paper also give insight into the (law-of-large-
numbers) scaled limit of stationary distributions of N -server queues for a much
broader class of service distributions. More precisely, it follows from Theorems 3.2 and
7.1 of [27] that the measure-valued state dynamics (XN , \eta N , \nu N ) for eachN -server sys-
tem describe an ergodic Feller process with a unique stationary distribution, whereas
Theorem 3.3 of [27] shows that the sequence of stationary distributions \{ \=\pi N\} N\in \BbbN of
the normalized states ( \=XN , \=\eta N , \=\nu N ) =N - 1(XN , \eta N , \nu N ), N \in \BbbN , is tight. Moreover,
the latter theorem also states that any subsequential limit of \{ \=\pi N\} N\in \BbbN must coincide
with the Dirac delta mass at the (deterministic) invariant state of the fluid equations,
whenever the latter is unique. However, there is a gap in the proof of this statement
in [27]. One only knows that any subsequential limit of the scaled stationary distri-
butions of N -server queues with reneging \{ \=\pi N\} N\in \BbbN is an invariant distribution of the
fluid equations (see Definition 2.10), and a priori one does not know that this distri-
bution is concentrated on the unique invariant state of the fluid equations. However,
as shown in Proposition 4.16 of the present paper, when from any initial condition
there is convergence, as time tends to infinity, of the fluid equations' solution to the
unique invariant state (or, when \lambda = 1, just convergence of \eta t and the fraction of busy
servers to one as t \rightarrow \infty ), it follows that the set of invariant distributions has just
one element, equal to the Dirac delta measure at the unique (deterministic) invariant
state of the fluid equations, thus closing the gap in the proof of Theorem 3.3 of [27]
under additional assumptions.

Our work in the multiclass setting also closes an exactly analogous gap in the
proof of Theorem 4.4 of [10] under additional assumptions. Indeed, one of the auxil-
iary goals of this work is to (partially) fix the gaps in these proofs, under the additional
assumptions on the service distribution imposed herein (see Remark 3.4 for further
elaboration of this point). In the case of [10], the gap also affects the validity of Theo-
rem 5.1 therein, regarding the asymptotic optimality of an index policy, referred to as
the c\mu /\theta rule, which was introduced in [8]. The results obtained in this paper validate
the asymptotic optimality result in Theorem 5.1 of [10] under the additional assump-
tion that the service time distributions do not depend on the class. (Note, however,
that there is no problem with the validity of the asymptotic optimality results of the
c\mu /\theta rule stated in [8] and [9], which deal with the case of exponential service time
distributions; recent developments on this policy under various additional settings can
also be found in [30].) Finally, we note that limits of stationary distributions of many-
server systems in the (so-called Halfin--Whitt) diffusive regime have been considered
in [23, 3, 4] in the absence of reneging and in [25, 17, 24] in the presence of reneging.

1.4. Open problems. This work leads to several interesting open problems.
One problem worthy of future investigation would be to determine precisely the full
class of service distributions for which such large-time convergence holds, and also
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7196 R. ATAR, W. KANG, H. KASPI, AND K. RAMANAN

whether there is a unified proof for all cases, at least in the supercritical regime.
In addition, in the critical regime, a more complete study of the convergence of the
state process even under the conditions imposed here would be of interest. Moreover,
the techniques developed here may be potentially used to establish such convergence
results for more general many-server systems, including load-balancing systems with
general service distributions, where the fluid limits are described in terms of a system
of coupled measure-valued equations [2] or PDEs [5], and uniqueness of the invariant
state holds under general conditions [1]. For the multiclass model, it is of interest
to investigate broader conditions, such as class-dependent service distributions and
less restrictive assumptions on the hazard rate, under which convergence holds. This
would also allow one to treat asymptotic optimality of the aforementioned index rule in
broader settings. It would also be interesting to see if the methodology developed here
can be used to analyze certain classes of age-structured or size-structured population
models. It is worth mentioning that this model has a loose connection to the model
treated in [34], which allows for different maturation rates for different parts of the
population (namely, customer classes).

1.5. Organization of the rest of the paper. In section 2.2 we introduce the
fluid equations in the single-class setting, and in section 2.3 define invariant states of
the fluid equations. In section 3 we state our assumptions and the main results, and
provide the proofs in section 4. Finally, in section 5 we introduce the multiclass fluid
equations and establish our convergence results in that setting. First, in section 1.6,
we introduce common notation that is used throughout the paper.

1.6. Common notation and terminology. The following notation will be
used throughout the paper. \BbbZ is the set of integers, \BbbN is the set of strictly positive
integers, \BbbR is set of real numbers, and \BbbR + is the set of nonnegative real numbers. For
a, b \in \BbbR , a \vee b denotes the maximum of a and b, a \wedge b the minimum of a and b and
the shorthand a+ is used for a\vee 0. Also, given a set A, we will use 1A to denote the
indicator function, which is 1 on A and zero otherwise.

Given any metric space E, \scrC b(E) and \scrC c(E) are, respectively, the space of bounded,
continuous functions and the space of continuous real-valued functions with compact
support defined on E, while \scrC 1(E) is the space of real-valued, once continuously
differentiable functions on E, and \scrC 1

c (E) is the subspace of functions in \scrC 1(E) that
have compact support. The subspace of functions in \scrC 1(E) that, together with their
first derivatives, are bounded will be denoted by \scrC 1

b (E). For H \leq \infty , let \scrL 1[0,H)
and \scrL 1

loc[0,H), respectively, represent the spaces of integrable and locally integrable
functions on [0,H), where a locally integrable function f on [0,H) is a measurable
function on [0,H) that satisfies

\int 
[0,a]

f(x)dx < \infty for all a < H. Given any c\`adl\`ag,

real-valued function f defined on [0,\infty ), we define \| f\| T := sups\in [0,T ] | f(s)| for every
T <\infty , and let \| f\| \infty := supx\in [0,\infty ) | f(x)| , which could possibly take the value \infty . In
addition, the support of a function f is denoted by supp(f). Given a nondecreasing
function f on [0,\infty ), f - 1 denotes the inverse function of f , defined precisely as

f - 1(y) = inf\{ x\geq 0 : f(x)\geq y\} .(1.5)

For each differentiable function f defined on \BbbR , f \prime denotes the first derivative of f .
For each function f(t, x) defined on \BbbR \times \BbbR n, we will use both fx and \partial xf to denote
the partial derivatives of f with respect to x and, likewise, both ft and \partial tf to denote
the partial derivatives of f with respect to t. We use 1 to denote the function that is
identically equal to 1. We will mostly be interested in the case when E = [0,H) and
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ASYMPTOTICS OF COUPLED MEASURE-VALUED EQUATIONS 7197

E = [0,H)\times \BbbR + for some H \in (0,\infty ]. To distinguish these cases, we will usually use \psi 
to denote generic functions on [0,H) and \varphi to denote generic functions on [0,H)\times \BbbR +.
By some abuse of notation, given \psi on [0,H), we will sometimes also treat it as a
function on [0,H)\times \BbbR + that is constant in the second variable.

We use \scrM (E) to denote the space of Radon measures on a metric space E,
endowed with the Borel \sigma -algebra, and let \scrM F (E) denote the subspace of finite
measures in \scrM (E), and \scrM c

F (E) the subspace of continuous measures (i.e., measures
that do not charge points) in \scrM F (E). The symbol \delta x will be used to denote the
measure with unit mass at the point x and, with some abuse of notation, we will
use 0 to denote the identically zero Radon measure on E. When E is an interval,
say, [0,H), for notational conciseness, we will often write \scrM F [0,H) or \scrM c

F [0,H)
instead of\scrM F ([0,H)) or\scrM c

F ([0,H)), respectively. For any Borel measurable function
\psi : [0,H) \rightarrow \BbbR that is integrable with respect to \xi \in \scrM [0,H), we often use the
shorthand notation

\langle \psi , \xi \rangle :=
\int 
[0,H)

\psi (x) \xi (dx),

and likewise, for any Borel measurable function \varphi : [0,H)\times [0,\infty )\rightarrow \BbbR and t > 0 such
that x \mapsto \rightarrow \varphi (\cdot , t) is integrable with respect to \xi \in \scrM [0,H), we often use the shorthand
notation

\langle \varphi (\cdot , t), \xi \rangle :=
\int 
[0,H)

\varphi (\cdot , t)d\xi =
\int 
[0,H)

\varphi (x, t) \xi (dx).

We also let \scrP (E) denote the space of probability measures on E, equipped with the
Borel \sigma -algebra.

For any measure \mu \in \scrM F [0,H), we define

F\mu (x) := \mu [0, x], x\in [0,H),(1.6)

and we define (F\mu ) - 1 to be its left-continuous inverse as defined in (1.5), that is,

(F\mu ) - 1(y) = inf\{ x> 0 : F\mu (x)\geq y\} .(1.7)

Also, given \mu ,\mu t, t \in [0,\infty ), in \scrM F [0,H), we will use the notation \mu t \Rightarrow \mu to denote
weak convergence as t\rightarrow \infty :

lim
t\rightarrow \infty 

\langle \psi ,\mu t\rangle = \langle \psi ,\mu \rangle for all \psi \in \scrC b[0,H).

We will also on occasion use the total variation distance on \scrM F [0,H), denoted by
dTV(\mu ,\nu ) := 2 supA\in \scrF | \mu (A) - \nu (A)| , where \scrF is the Borel \sigma -algebra on [0,H).

Given a Polish space \scrH , let \scrD \scrH [0,\infty ) denote the space of \scrH -valued, c\`adl\`ag
functions on [0,\infty ) and let \scrI \BbbR + [0,\infty ) denote the subset of nondecreasing functions
f \in \scrD \BbbR + [0,\infty ) with f(0) = 0. Let \scrD +

\BbbR J (\BbbR +) denote the subset of functions in \scrD \BbbR J (\BbbR +)
that are nonnegative and nondecreasing componentwise.

2. The \bfitN -server model, fluid equations, and invariant distributions.

2.1. Description of the \bfitN -system. We start by briefly describing the
N -server model dynamics, as introduced in [27]. Let Gs and Gr denote the cu-
mulative distribution functions of the service time and patience time distributions,
respectively. Throughout, we make the following standing assumptions on Gs and
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7198 R. ATAR, W. KANG, H. KASPI, AND K. RAMANAN

Gr and let \=Gs = 1 - Gs and \=Gr = 1 - Gr denote the corresponding complementary
cumulative distribution functions. We abbreviate lower semicontinuous as lsc.

Assumption 2.1. The cumulative distribution functions Gr and Gs satisfy
Gr(0+) =Gs(0+) = 0 and are both absolutely continuous on [0,\infty ) with densities gr

and gs that satisfy the following properties:
(1) The mean patience and service times are finite, in particular,

\theta r :=

\int 
[0,Hr)

xgr(x)dx=

\int 
[0,Hr)

\=Gr(x)dx<\infty ,(2.1)

and we normalize units so that the mean service time is 1, namely,\int 
[0,Hs)

xgs(x)dx=

\int 
[0,Hs)

\=Gs(x)dx= 1,(2.2)

where

Hs := sup\{ x\in [0,\infty ) :Gs(x)< 1\} ,(2.3)

Hr := sup\{ x\in [0,\infty ) :Gr(x)< 1\} ,(2.4)

denote the right end of the supports of the measures corresponding to Gs and
Gr, respectively.

(2) There exists \=Hs < Hs such that hs := gs/ \=Gs is either bounded or lsc on
( \=Hs,Hs), and likewise, there exists \=Hr <Hr such that hr := gr/ \=Gr is either
bounded or lsc on ( \=Hr,Hr).

Remark 2.2. The mild, but somewhat technical, condition in part (2) of the
assumption is required in order to use various results from [26, 28], where it has
been assumed. Note that, strictly speaking, gs and gr (and thus hs and hr) are
determined only almost everywhere (a.e.). The convention implicitly adopted in the
above statement is that hs (respectively, hr) is a.e. equal to a function from \BbbR + to
itself that is bounded or lsc.

For each N \in \BbbN , we consider a system in which jobs with i.i.d. patience times
(rj)j\in \BbbZ and i.i.d. service times (vj)j\in \BbbZ , both mutually independent of each other,
arrive to a system of N servers and are served in the order of arrival. Jobs that arrive
when there is an idle server present immediately enter service (at a server chosen at
random from among the idle servers), while jobs that arrive when all servers are busy
wait in queue in the order of their arrival. Jobs renege from the queue at the moment
when their time in queue equals their patience time, and jobs that reach the head of
the queue and do not renege before a server becomes available enter service at the
moment when this server becomes available. To describe the dynamics, let EN (t)
denote the cumulative number of jobs that arrived into the N -system in the interval
[0, t] and let \scrI N (t) represent the set of indices of jobs that entered the N -system by
time t (which includes the positive indices j = 1, . . . ,EN (t) of jobs that arrived after
time 0 as well as certain nonpositive indices representing jobs present in the system
at time 0). For each job j \in \scrI N (t), let wN

j (t) represent its potential waiting time, or
the amount of time prior to t since it entered the system. Then, for t \geq 0, let \eta Nt
represent the potential queue measure at time t, which has a Dirac delta mass at the
potential waiting times of jobs that entered the system but did not renege from the
system by time t:

\eta Nt =
\sum 

j\in \scrI N (t)

\delta wN
j (t)1\{ wN

j (t)<rj\} ,
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ASYMPTOTICS OF COUPLED MEASURE-VALUED EQUATIONS 7199

where the indicator functions ensure that only jobs whose patience is strictly less than
their waiting time at time t are retained in the sum. Note that each \eta Nt is a random
element taking values in the space of nonnegative measures on [0,Hr). Similarly, for
each job j \in \scrI N (t), let aNj (t) denote its age at time t, which is equal to zero if it has
not entered service by time t, or equal to the amount of time elapsed since the job j
entered service if it is still in service at time t, or equal to its service time vj if it has
departed from the system by time t. Then the server age measure \nu Nt , which has a
Dirac delta mass at the age of each job that is in service at time t, can be written as

\nu Nt =
\sum 

j\in \scrI N (t)

\delta aN
j (t)1

\{ 
daN

j
dt (t+)>0\} 

,

where the indicator functions in the sum serve only to select indices of those jobs j that

are in service at time t, which can be characterized by the condition
daN

j

dt (t+) > 0.
Note that each \nu Nt is a random element taking values in the space of nonnegative
measures on [0,Hr) whose total mass \langle 1, \nu Nt \rangle is no greater than N . Next, let XN (t)
be the nonnegative real-valued random variable that represents the number of jobs
in the system at time t. Then, since the N -system is assumed to be nonidling in the
sense that one can never have an idle server when there is a job in queue, this implies
that whenever the total number of jobs in system is greater than N , there are no idle
servers, that is,

N  - \langle 1, \nu Nt \rangle = [N  - XN (t)]+.(2.5)

Moreover, clearly QN (t) =XN (t) - \langle 1, \nu Nt \rangle represents the number of jobs waiting in
queue at time t.

If EN is a Poisson process, then it is not hard to see that (XN , \nu N , \eta N ) is a
Markov process taking values in \BbbR \times \scrM F [0,H

s)\times \scrM F [0,H
r) that describes the state

of the system. The full characterization of the dynamics of the N -system given in [26]
also involved the auxiliary processes KN (t), DN (t), RN (t), and SN (t) that denote
the total number of jobs that, respectively, entered service, departed from the system
(on completing service), and reneged from the queue, and whose time since entry into
service exceeded their patience time during the interval [0, t]. SN (t) is referred to
as the potential cumulative reneging process since it also counts jobs that may have
entered service or departed the system at the time their patience time became equal
to the time since entry into the system. As shown in [26, Theorem 2.1], \eta N and \nu N

satisfy certain measure-valued transport equations driven by the processes EN and
KN , respectively. For each N \in \BbbN and HN =EN ,DN ,KN ,RN , SN ,QN ,XN , \eta N , \nu N ,
define \=HN := HN/N . Assume that for each N \in \BbbN , EN is a Poisson process with
rate \lambda N , and \lambda N/N \rightarrow \lambda \in (0,\infty ) as N \rightarrow \infty . It was shown in [26] that as N \rightarrow \infty ,
the random process ( \=XN , \=\nu N , \=\eta N ) converges weakly to a deterministic limit (X,\nu , \eta )
that is the unique solution to a coupled system of equations referred to as the fluid
equations with arrival rate \lambda , which are defined in the next section.

2.2. Fluid equations. We now introduce the fluid equation that describes the
limit of the scaled N -server state process ( \=XN , \=\nu N , \=\eta N ) introduced in the last section.
When referring to these limit objects we will not use the term jobs but rather mass,
which is more suitable for their continuous counterpart. However, with some abuse
of terminology, the terms fraction of servers that are busy, fraction of servers that
are idle, etc., will be used when referring to the fluid counterparts of these N -server
model processes.
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7200 R. ATAR, W. KANG, H. KASPI, AND K. RAMANAN

The fluid equations are concerned with a triplet (X,\nu , \eta ), where X(t) represents
the total mass in the system at time t, including mass in the queue and mass in
service, \nu t is the fluid age measure, which is a subprobability measure on [0,Hs) that
assigns to any interval [a, b) \subset [0,\infty ) the (limiting) fraction of servers for whom the
mass currently in service has been in service for a number of time units lying in [a, b),
and \eta t is the fluid potential queue measure, which is a finite measure on [0,Hr) that
to any interval [a, b)\subset [0,\infty ) assigns the mass that has arrived by time t and whose
potential waiting time at time t lies in [a, b) (irrespective of whether or not they have
entered service or departed the system by time t), as long as it has not reneged from
the queue by time t. Note that the total fraction of idle servers at time t is 1 - \langle 1, \nu t\rangle ,
which is zero if X(t)\geq 1 and 1 - X(t), otherwise. This is captured succinctly by the
relation 1 - \langle 1, \nu t\rangle = [1 - X(t)]+, which is the scaling limit analogue of (2.5).

The input data for the fluid equations includes the limiting arrival rate \lambda and the
initial conditions, consisting of the total initial mass in system, and the initial (fluid)
age and potential queue measures. Then the space of possible initial conditions for
the fluid equations is given by

S :=

\biggl\{ 
(\~x, \~\nu , \~\eta )\in \BbbR + \times \scrM F [0,H

s)\times \scrM F [0,H
r) :

1 - \langle 1, \~\nu \rangle = [1 - \~x]+

\biggr\} 
.(2.6)

We now give a precise formulation of the fluid equations introduced in [27] with
E(t) = E\lambda (t) := \lambda t for t \geq 0 therein, where \lambda t represents the total mass to arrive
by time t, and subsequently provide an intuitive explanation of the form it takes.
These equations will also involve the auxiliary processes mentioned earlier, namely
the queue mass process Q(\cdot ), and the nondecreasing processes D(\cdot ),K(\cdot ), S(\cdot ), and
R(\cdot ). Here, Q(t) represents the total mass in queue (awaiting service) at time t, and
D(t),K(t), S(t), and R(t) represent, respectively, the cumulative mass of departures
from the system on completion of service, mass of entries into service, mass of potential
abandonments from the system, and mass of actual abandonments from the system
in the interval [0, t].

Definition 2.3 (fluid equations). Given \lambda \geq 0 and hazard rate functions hr

and hs, the c\`adl\`ag function (X,\nu , \eta ) defined on [0,\infty ) and taking values in \BbbR + \times 
\scrM F [0,H

s) \times \scrM F [0,H
r) is said to solve the fluid equations with arrival rate \lambda \geq 0

and initial condition (X(0), \nu 0, \eta 0)\in S if for every t\in [0,\infty ), we have

S(t) :=

\int t

0

\langle hr, \eta u\rangle du<\infty , D(t) :=

\int t

0

\langle hs, \nu u\rangle du<\infty ,(2.7)

and the following relations are satisfied: for every \varphi \in \scrC 1
c ([0,H

s)\times \BbbR +),

\langle \varphi (\cdot , t), \nu t\rangle = \langle \varphi (\cdot ,0), \nu 0\rangle +
\int t

0

\langle \varphi u(\cdot , u) +\varphi x(\cdot , u), \nu u\rangle du(2.8)

 - 
\int t

0

\langle hs(\cdot )\varphi (\cdot , u), \nu u\rangle du+
\int t

0

\varphi (0, u)dK(u),

where

K(t) = \langle 1, \nu t\rangle  - \langle 1, \nu 0\rangle +D(t);(2.9)
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ASYMPTOTICS OF COUPLED MEASURE-VALUED EQUATIONS 7201

for every \varphi \in \scrC 1
c ([0,H

r)\times \BbbR +),

\langle \varphi (\cdot , t), \eta t\rangle = \langle \varphi (\cdot ,0), \eta 0\rangle +
\int t

0

\langle \varphi u(\cdot , u) +\varphi x(\cdot , u), \eta u\rangle du(2.10)

 - 
\int t

0

\langle hr(\cdot )\varphi (\cdot , u), \eta u\rangle du+ \lambda 

\int t

0

\varphi (0, u)du;

with the nonidling constraint

1 - \langle 1, \nu t\rangle = [1 - X(t)]+,(2.11)

where

X(t) =X(0) + \lambda t - D(t) - R(t),(2.12)

with

R(t) =

\int t

0

\Biggl( \int Q(u)

0

hr((F \eta u) - 1(y))dy

\Biggr) 
du,(2.13)

where recall F \eta t(x) := \eta t[0, x], and (F \eta t) - 1 denotes the left-continuous inverse defined
in (1.7), and

Q(t) =X(t) - \langle 1, \nu t\rangle ,(2.14)

with Q also satisfying the inequality constraint

Q(t)\leq \langle 1, \eta t\rangle .(2.15)

Remark 2.4. Note that if (X,\nu , \eta ) solves the fluid equations with arrival rate \lambda 
and initial condition (X(0), \nu 0, \eta 0) \in S, then we also have (X(t), \nu t, \eta t) \in S for every
t > 0. It is also true that if \eta 0 \in \scrM c

F [0,H
r), then we also have \eta t \in \scrM c

F [0,H
r) for

every t > 0 (this follows from the expression for \eta t in (2.19) below, from which it is
clear that if \eta 0 does not charge points, then neither does \eta t).

Next, note from (2.14) and (2.11) that for each t\in [0,\infty ),

Q(t) = [X(t) - 1]+.(2.16)

For future use, we also observe that (2.9), (2.14), and (2.12), when combined, show
that for every t\in [0,\infty ),

Q(0) + \lambda t=Q(t) +K(t) +R(t),(2.17)

which is simply a mass conservation equation upon recalling the interpretation of \lambda t,
Q(t),K(t), and R(t) above Definition 2.3. In addition, we will find it convenient to
define

B(t) := \langle 1, \nu t\rangle , t\geq 0,(2.18)

which represents the limiting fraction of busy servers.

Remark 2.5. Given a solution (X,\nu , \eta ), we will refer to (B,D,K,Q,R,S) as aux-
iliary processes. In addition to the term fluid equations we will also use the term fluid
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7202 R. ATAR, W. KANG, H. KASPI, AND K. RAMANAN

system to refer to a tuple (X,\nu , \eta ) along with the auxiliary processes (B,D,K,Q,R,S)
satisfying the fluid equations.

We now provide an informal, intuitive explanation for the form of the fluid equa-
tions, which also aligns with the description of the N -system given in section 2.1.
First, \nu u(dx) represents the fraction of servers that are processing mass whose age
lies in the range [x,x+dx) at time u, and hs(x) represents the conditional mean rate
at which mass with age in [x,x+ dx) completes service given that its age is at least
x. Hence, in (2.7), \langle hs, \nu u\rangle represents the departure rate of mass due to services at
time u, and D(t), its integral over [0, t], is the total departure due to service com-
pletion in the interval [0, t]. By an exactly analogous reasoning, the other quantity
S(t) =

\int t

0
\langle hr, \eta u\rangle du in (2.7) represents the cumulative potential reneging from the

system in the interval [0, t]. However, the actual reneging rate is restricted to aban-
donments of the mass in the queue. Since entry into service takes place in the order
of arrival, the age of the oldest (equivalently, head-of-the-line) mass in the queue is
\=au := (F \eta u) - 1(Q(u)), so that \eta u[0, \=au] = Q(u). Here, recall that F \eta u represents the
cumulative distribution function of the measure \eta u (which need not be a probability
measure). Thus, the actual reneging rate at any time u only counts the mass reneging
from the potential queue measure \eta u whose age lies in the restricted interval [0, \=au],
rather than the entire interval [0,\infty ). A standard change of variables then yields the
expression in (2.13). Next, recalling the interpretations of the quantities K, R, and
Q stated prior to Definition 2.3, note that (2.9), (2.14), and (2.12) are simply mass
conservation equations, and (2.11) represents a nonidling condition that ensures that
no server can idle when there is work in the queue. Moreover, the inequality (2.15)
expresses the constraint that at any time t, the mass in the queue is bounded by the
total mass of the potential queue measure, since the latter also includes mass that
may have already gone into service (and possibly also departed the system) by that
time, provided its patience time exceeds the total time elapsed since arrival. Finally,
(2.8) and (2.10) govern the evolution of the fluid age measure \nu and potential queue
measure \eta , respectively. In particular, the second term on the right-hand side of (2.8)
represents the change in \langle \varphi ,\nu \rangle over the interval [0, t] due to transport or shift of the
ages at unit rate to the right, the third term accounts for changes due to departure
of mass from the system due to service, and the last term captures changes due to
new entry into the system, which are driven by the function K, the cumulative entry
into service. Equation (2.10) is exactly analogous, but with hr and the cumulative
arrivals E\lambda into the system in place of hs and K, respectively, and the third term
on the right-hand side now representing departure of mass from the system due to
potential reneging.

We now state a result most of which has been proved in [26, 28]. Recall the
definition of the space S given in (2.6).

Theorem 2.6. Suppose Assumption 2.1 holds and fix \lambda \geq 0 and (X(0), \nu 0, \eta 0) \in 
S. Then there is at most one solution to the fluid equations with arrival rate \lambda 
and initial condition (X(0), \nu 0, \eta 0), and if \eta 0 \in \scrM c

F [0,H
r), then there also exists a

continuous solution (X,\nu , \eta ) = \{ (X(t), \nu t, \eta t), t \geq 0\} with arrival rate \lambda and initial
condition (X(0), \nu 0, \eta 0). Moreover, given any solution (X,\nu , \eta ) = \{ (X(t), \nu t, \eta t), t\geq 0\} 
to the fluid equations associated with \lambda and (X(0), \nu 0, \eta 0)\in S, the following properties
hold:

(i) for any bounded or nonnegative measurable function \psi on [0,\infty ) and for \psi =
hr, for every t\geq 0,
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ASYMPTOTICS OF COUPLED MEASURE-VALUED EQUATIONS 7203

\langle \psi ,\eta t\rangle =
\int 
[0,Hr)

\psi (x+ t)
\=Gr(x+ t)
\=Gr(x)

\eta 0(dx) +

\int t

0

\psi (u) \=Gr(u)\lambda du;(2.19)

(ii) for any bounded or nonnegative measurable function \psi on [0,\infty ) and for
\psi = hs, for every t\geq 0,

\langle \psi ,\nu t\rangle =
\int 
[0,Hs)

\psi (x+ t)
\=Gs(x+ t)
\=Gs(x)

\nu 0(dx) +

\int t

0

\psi (t - u) \=Gs(t - u)dK(u),(2.20)

with K equal to the auxiliary process defined in (2.9) of the fluid equations;
(iii) if Q and B are the associated auxiliary processes defined in (2.14) and (2.18),

respectively, then K is an absolutely continuous function and the derivative K \prime of K
satisfies for a.e. t\geq 0,

K \prime (t) = k(t) :=

\biggl\{ 
\lambda if B(t)< 1,

\langle hs, \nu t\rangle if B(t) = 1.
(2.21)

Proof. Uniqueness of the solution to the fluid equations follows from [26, Theorem
3.5] since (X(0), \nu 0, \eta 0) \in S implies (E\lambda ,X(0), \nu 0, \eta 0) lies in the space \scrS 0 therein,
where recall E\lambda (t) = \lambda t. Likewise, existence of a solution with arrival rate \lambda and
initial condition (X(0), \nu 0, \eta 0) \in S with \eta 0 \in \scrM c

F [0,H
r) can be deduced from [26,

Theorem 3.6], once we justify that the conditions of that theorem are satisfied in the
present setting. First, it is not hard to see that for the fixed \lambda \geq 0 and (X(0), \nu 0, \eta 0)\in 
S, with \eta 0 \in \scrM c

F [0,H
r), one can construct a sequence of N -server systems with

Poisson (N\lambda ) arrival process EN and initial condition (XN (0), \nu N0 , \eta 
N
0 ) such that [26,

Assumption 3.1] is satisfied. Second, note that since \eta 0 is a continuous measure, and
E\lambda is continuous, [26, Assumption 3.2] is also satisfied. Finally, [26, Assumption 3.3]
is a direct consequence of Assumption 2.1 of this paper, and thus the application of
[26, Theorem 3.6] is justified.

We now turn to estabishing the properties of any solution (X,\nu , \eta ) to the fluid
equations. First, note that the forms of both (2.10) and (2.8) are analogous to that
of (4.2) in [28], and therefore the integrability conditions in (2.7) imply that (4.1) of
[28] holds. Thus, (2.19) and (2.20) for \psi \in \scrC c[0,Hr) and \psi \in \scrC c[0,Hs), respectively,
follow from [28, Theorem 4.1]. By using a standard approximation argument, namely
representing indicators of finite open intervals in \BbbR + as monotone limits of continuous
functions with compact support and appealing to the monotone class theorem, it
follows that both equations in fact hold for any bounded measurable or nonnegative
measurable \psi . In particular, these equations also hold with \psi = hr in (2.19) and
\psi = hs in (2.20). The latter fact is used several times in this paper.

We now turn to the proof of property (iii), which is similar in spirit to formula
(3.12) of [28] and Corollary 3.7 of [26]. We supply the details for completeness. First,
note that D,S, and R are absolutely continuous by definition. Thus, (2.12) shows
that X is absolutely continuous. Thus, since B(t) = \langle 1, \nu t\rangle = min(X(t),1) for t \geq 0,
B is also absolutely continuous. In turn, by (2.9) and (2.14), this implies that K
is absolutely continuous. Further, (2.9), (2.17), (2.7), and (2.18) show that for a.e.
t > 0,

K \prime (t) = \lambda  - Q\prime (t) - 
\int Q(t)

0

hr((F \eta t) - 1(y))dy, and K \prime (t) =B\prime (t) + \langle hs, \nu t\rangle .

(2.22)

We now recall the fact that given c \in \BbbR and an absolutely continuous function f :
\BbbR \rightarrow \BbbR , denoting by f \prime its derivative, the set \{ x \in \BbbR : f(x) = c, f \prime (x) \not = 0\} has
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7204 R. ATAR, W. KANG, H. KASPI, AND K. RAMANAN

Lebesgue measure zero [20, Theorem A.6.3]. Thus, for almost every t in the set where
B(t) = 1, we have B\prime (t) = 0, and (2.22) implies K \prime (t) = \langle hs, \nu t\rangle . Next, by (2.11) and
(2.14), if B(t) < 1, then Q(t) = 0. For almost every t when Q(t) = 0, it follows that
Q\prime (t) = 0 and hence by (2.22) that K \prime (t) = \lambda . We have thus addressed both cases
of (2.21).

We now state a simple result on the action of time-shifts on solutions to the fluid
equations. To state the result, which was formulated as [27, Lemma 3.4], we will need
the following notation: for any t\in [0,\infty ), define

K [t] :=K(t+ \cdot ) - K(t), X [t] :=X(t+ \cdot ), \nu [t] := \nu t+\cdot ,

R[t] :=R(t+ \cdot ) - R(t), \eta [t] := \eta t+\cdot , Q[t] :=Q(t+ \cdot ).

Lemma 2.7 (Lemma 3.4 of [27]). Suppose \lambda \geq 0 and Assumption 2.1 holds. Sup-
pose (X,\nu , \eta ) = \{ (X(u), \nu u, \eta u), u\geq 0\} \in \scrD S[0,\infty ) solves the fluid equations with ar-
rival rate \lambda and initial condition (X(0), \nu 0, \eta 0)\in S; then for any t > 0, (X [t], \nu [t], \eta [t])
solves the fluid equations with arrival rate \lambda and initial condition (X(t), \nu t, \eta t) \in S,
but with K,R, and Q replaced with K [t],R[t], and Q[t], respectively.

As in [27], we leave the proof to the reader, since it can be verified by just rewriting
the fluid equations and invoking the uniqueness result stated in Theorem 2.6.

2.3. Invariant states and invariant distributions of the fluid equations.
Let \nu \ast and \eta \ast be Borel probability measures on [0,\infty ) defined as follows:

\nu \ast [0, x) :=

\int x

0

\=Gs(y)dy, x\in [0,Hs),(2.23)

\eta \ast [0, x) :=

\int x

0

\=Gr(y)dy, x\in [0,Hr).(2.24)

Note that \nu \ast and \eta \ast are well defined due to Assumption 2.1. Also, recall that in the
introduction, the density of the measure \nu \ast was denoted by f\ast and thus (2.23) shows
that f\ast = \=Gs. For \lambda \geq 1, define the set \scrX \lambda as

\scrX \lambda :=

\biggl\{ 
x\in [1,\infty ) :Gr

\Bigl( \bigl( 
F\lambda \eta \ast 

\bigr)  - 1 \bigl( 
(x - 1)+

\bigr) \Bigr) 
=
\lambda  - 1

\lambda 

\biggr\} 
,(2.25)

and let

x\lambda l := inf \{ x\in [1,\infty ) : x\in \scrX \lambda \} and x\lambda r := sup\{ x\in [1,\infty ) : x\in \scrX \lambda \} .

By (2.24), the map x\rightarrow \eta \ast [0, x) is continuous and strictly increasing on [0,Hr), and
therefore (F\lambda \eta \ast ) - 1 is continuous and strictly increasing on [0, \lambda /\theta r) for each \lambda > 0.
Since Gr is also continuous, we have \scrX \lambda = [x\lambda l , x

\lambda 
r ] is nonempty for each \lambda \geq 1. For

0\leq \lambda < 1, define \scrX \lambda := \{ \lambda \} . For \lambda \geq 0, let \scrI \lambda be the invariant manifold for the fluid
equations, defined to be the collection of invariant states of the fluid equations, and
given by

\scrI \lambda := \{ (x\ast , (\lambda \wedge 1)\nu \ast , \lambda \eta \ast )\in S : x\ast \in \scrX \lambda \} .(2.26)

Our study of the critical and supercritical regimes will be carried out under the
following additional assumption on the invariant manifold.

Assumption 2.8. Suppose \lambda \geq 0. The set \scrI \lambda has a single element, which we
express as z\lambda \ast = (x\lambda \ast , (\lambda \wedge 1)\nu \ast , \lambda \eta \ast ), where x

\lambda 
\ast = \lambda when \lambda < 1 and x\lambda \ast is the unique

element of \scrX \lambda when \lambda \geq 1.
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ASYMPTOTICS OF COUPLED MEASURE-VALUED EQUATIONS 7205

Note that Assumption 2.8 imposes a nontrivial restriction only when \lambda \geq 1. As
stated in Lemma 3.1 of [27], a sufficient condition for Assumption 2.8 to hold when
\lambda \geq 1 is for the equation Gr(x) = (\lambda  - 1)/\lambda to have a unique solution.

Whereas Assumption 2.8 guarantees a unique invariant state for the fluid equa-
tions, to understand the large-time limits of the fluid equations, it turns out to be
important to also understand the collection of invariant distributions, defined below.
We first introduce the notion of a solution to the fluid equations when the input data
is random.

Definition 2.9. Given \lambda \geq 0 and any S-valued random element (X(0), \nu 0, \eta 0)
defined on some probability space (\Omega ,\scrF ,\BbbP ), we say the c\`adl\`ag S-valued stochastic
process (X,\nu , \eta ) = \{ (X(t), \nu t, \eta t), t\geq 0\} is a solution to the fluid equations with arrival
rate \lambda and random initial condition (X(0), \nu 0, \eta 0) if for each \omega \in \Omega , the function
(X(\omega ), \nu (\omega ), \eta (\omega )) = \{ (X(t,\omega ), \nu t(\omega ), \eta t(\omega )), t \geq 0\} solves the fluid equations with
arrival rate \lambda and initial condition (X(0, \omega ), \nu 0(\omega ), \eta 0(\omega )).

Definition 2.10. For \lambda \geq 0, a probability measure \mu on S is said to be an
invariant distribution of the fluid equations with arrival rate \lambda (sometimes abbreviated
``invariant distribution for \lambda "") if given any S-valued random element ( \~X, \~\nu , \~\eta ) whose
law is \mu , there exists a solution (X,\nu , \eta ) to the fluid equations with arrival rate \lambda and
initial condition ( \~X, \~\nu , \~\eta ) such that for each t \geq 0, the law of (X(t), \nu t, \eta t) is equal
to \mu .

Remark 2.11. Fix \lambda \geq 0. Under our assumptions, an invariant distribution
always exists. Indeed, it follows from Theorem 5.5 of [27] that the set \scrI \lambda in (2.26)
describes the collection of invariant states of the fluid equations. Since for \lambda \geq 0, \scrX \lambda 

is always nonempty, an immediate consequence is that for any z \in \scrI \lambda , the measure
\delta z is an invariant distribution for \lambda . Moreover, under Assumption 2.8, \delta z\lambda 

\ast 
is the

only invariant distribution that is degenerate (i.e., which concentrates all its mass on
one point). A key question we address in this article is to determine conditions under
which this is in fact the only invariant distribution for \lambda . As shown in Proposition 4.16
below, a sufficient condition for this to hold is that any solution (X,\nu , \eta ) to the fluid
equations with arrival rate \lambda and initial condition (X(0), \nu 0, \eta 0) \in S and auxiliary
process B = \langle 1, \nu \rangle satisfies \eta t \Rightarrow \lambda \eta \ast and Bt \rightarrow \lambda \wedge 1, as t\rightarrow \infty .

3. Assumptions and main results. We now state our main results, which
require the following additional condition on the service distribution.

Assumption 3.1. The cumulative distribution function Gs of the service distri-
bution has a density gs and the hazard rate function hs = gs/ \=Gs satisfies one of the
following:

(1) \varepsilon s := ess infx\geq 0 h
s(x)> 0 and cs := ess supx\geq 0 h

s(x)<\infty .
(2) The function hs is nonincreasing.1

Among common probability distributions often used to model service time dura-
tion, we note that any phase type distribution satisfies Assumption 3.1(1). For the
Weibull distribution gs(x) = \gamma x\gamma  - 1e - x\gamma 

, the hazard rate is given by \gamma x\gamma  - 1. This func-
tion is decreasing for 0 < \gamma < 1, providing an example for Assumption 3.1(2). Note
that under both parts of the assumption, the hazard rate function hs has a finite
essential supremum. Since the hazard rate function of any distribution is only locally
integrable and never integrable on its support, both Assumptions 3.1(1) and 3.1(2)
imply Hs =\infty .

1Assumption 3.1(2) should be understood in the sense of Remark 2.2, namely hs is a.e. equal to
a nonincreasing function from [0,Hs) to \BbbR +.
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7206 R. ATAR, W. KANG, H. KASPI, AND K. RAMANAN

The two distinct conditions imposed on the service distribution in Assumption 3.1
are adapted to two distinct techniques under which the main result is proved in
this paper. Assumption 3.1(1) is required for the approach that builds on relative
entropy estimates. On the other hand, the approach based on renewal equations uses
Assumption 3.1(2). As mentioned in section 1.4, it would be interesting to identify a
technique that would allow for a unified treatment of both cases and possibly further
generalize the class of service distributions that can be handled. However, it is worth
noting that an \BbbL \infty -bound on the coefficients akin to that implied by Assumption 3.1
is also commonly imposed in the large-time convergence analysis of age-structured
equations discussed in the introduction (see, e.g., [39] or Theorem 2 of [41]).

Theorem 3.2. Suppose \lambda \geq 0, Assumption 2.1 holds, and \nu \ast and \eta \ast are as defined
in (2.23) and (2.24), respectively. Also, suppose (X,\nu , \eta ) solves the fluid equations
with arrival rate \lambda and initial condition (X(0), \nu 0, \eta 0) \in S, with auxiliary processes
(D,K,R,S,Q,B) as in Remark 2.5. Then the following statements are true:

(1) When 0 \leq \lambda < 1, it follows that (Xt, \nu t, \eta t) \rightarrow (\lambda ,\lambda \nu \ast , \lambda \eta \ast ) as t \rightarrow \infty . In
particular, \delta z\lambda 

\ast 
, with z\lambda \ast = (\lambda ,\lambda \nu \ast , \lambda \eta \ast ), is the unique invariant distribution of

the fluid equations with arrival rate \lambda .
(2) When \lambda > 1, \eta t \Rightarrow \lambda \eta \ast as t \rightarrow \infty and further, if Assumption 3.1 is also

satisfied, then
(a) there exists T <\infty such that

B(t) = \langle 1, \nu t\rangle = 1 for all t\geq T(3.1)

and

\nu t \Rightarrow \nu \ast and \langle hs, \nu t\rangle \rightarrow 1 as t\rightarrow \infty ,(3.2)

with the convergence in (3.2) also holding in total variation when
Assumption 3.1(1) holds;

(b) if, in addition, Assumption 2.8 is also satisfied (with z\lambda \ast as defined therein),
then

X(t)\rightarrow x\lambda \ast as t\rightarrow \infty ,(3.3)

and \delta z\lambda 
\ast 

is the unique invariant distribution of the fluid equations with
arrival rate \lambda .

(3) If \lambda = 1 and Assumption 3.1(2) is satisfied, then \eta t \Rightarrow \eta \ast and B(t) \rightarrow 1 as
t \rightarrow \infty . If, in addition, Assumption 2.8 holds (with z1\ast as defined therein),
then \delta z1

\ast 
is the unique invariant distribution of the fluid equations with arrival

rate 1.

Remark 3.3. Regarding part (3) of the above result, note that in the critical
regime \lambda = 1, Assumption 2.8 holds if and only if Gr(x) > 0 for all x > 0, that
is, reneging within time x of arrival has positive probability for all x > 0. This
precludes the existence of an invariant state with positive queue mass. Also, note
that in this regime only uniqueness of the invariant distribution and, as t \rightarrow \infty ,
only the convergence \langle 1, \nu t\rangle \rightarrow \langle 1, \nu \ast \rangle = 1 are established when hs is nonincreasing,
and not the convergence \nu t \Rightarrow \nu \ast . In the absence of reneging the latter convergence
was established when \lambda = 1 in Theorem 3.9(2) of [28] whenever the variance of the
service distribution is finite. However, in addition to renewal estimates, the proof of
this result relied on a comparison result (see Proposition 6.1(3) of [28]) that exploits
certain monotonicity properties of the dynamics. Since the latter fails in the presence
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ASYMPTOTICS OF COUPLED MEASURE-VALUED EQUATIONS 7207

of reneging, it remains an open problem to extend the results in the critical regime
to a broader class of service distributions. However, as elaborated below in Remark
3.4, the restricted convergence \langle 1, \nu t\rangle \rightarrow \langle 1, \nu \ast \rangle = 1 as t \rightarrow \infty suffices for the main
application of the theorem.

Remark 3.4. The main application of Theorem 3.2 is to characterize the limit
of the scaled stationary distributions of the sequence of N -server measure-valued
state processes and thereby completes (for a class of service distributions) the missing
justification in the proof of the convergence result stated in Theorem 3.3 of [27].

To explain this in greater detail, let \=ZN
\ast := ( \=XN

\ast , \=\nu 
N
\ast , \=\eta 

N
\ast ) have the law of the

stationary distribution of the scaled measure-valued N -system state process described
in section 2.1 (the existence of the stationary distribution follows from Theorem 7.1 of
[27]). Also, let \=ZN := ( \=XN , \=\nu N , \=\eta N ) represent the fluid-scaled state of the N -system
with initial condition \=ZN (0) = \=ZN

\ast . Then, under the assumption that \=EN converges
weakly to E\lambda for some \lambda \geq 0, tightness of the sequence \{ \=ZN

\ast \} N\in \BbbN was established in
Theorem 6.2 of [27]. Let \=Z\ast = ( \=X\ast , \=\nu \ast , \=\eta \ast ) denote any subsequential limit of \{ \=ZN

\ast \} N\in \BbbN .
We claim that then (the law of) \=Z\ast must be an invariant distribution of the fluid
equations with arrival rate \lambda . To see why the claim is true, we invoke the fluid
limit theorem established in Theorem 3.6 of [26] to conclude that for any t > 0, the
N -server fluid-scaled state process \=ZN (t) (initialized at the stationary distribution
\=ZN
\ast ) converges weakly (as N \rightarrow \infty ) to Z(t), where Z := (X,\nu , \eta ) solves the fluid

equations with arrival rate \lambda and initial condition \=Z\ast . However, for any t > 0, since
by stationarity \=ZN (t) has the same law as \=ZN

\ast , it follows that the laws of their
corresponding weak limits, Z(t) and \=Z\ast , must also coincide. By Definition 2.10, this
proves the claim that the law of \=Z\ast is an invariant distribution.

In the proof of Theorem 3.3 in section 6.2 of [27], it was assumed without jus-
tification that \=Z\ast is deterministic (i.e., almost surely \=Z\ast = \=z\ast for some \=z\ast \in S), and
that was used to conclude that \=Z\ast must belong to the invariant manifold \scrI \lambda (see Re-
mark 2.11). When combined with Assumption 2.8, this leads to the conclusion that
\=Z\ast = z\lambda \ast , thus showing that all subsequential limits coincide and hence that z\lambda \ast is the
weak limit of the original stationary sequence ( \=ZN

\ast )N\in \BbbN . However, one cannot assume
a priori that \=Z\ast is deterministic, and, as argued above, one only knows that the law
of any subsequential limit is an invariant distribution, not necessarily concentrated on
an invariant state. To make this argument complete, which was one of the important
motivations of this paper, one needs to show that there is precisely one invariant dis-
tribution, namely the one concentrated at the unique invariant state z\lambda \ast of the fluid
equations with arrival rate \lambda . Theorem 3.2 does precisely this, imposing the condition
that the class of service distributions satisfy Assumption 3.1 when \lambda \geq 1, thus closing
the gap in the proof of the convergence result in [27] (for service distributions in that
class). However, this still leaves open the question of whether this result remains
true for a larger class of service distributions, in particular the entire class considered
in [27].

Remark 3.5. Further, a related ancillary goal of this work is to determine whether
the N \rightarrow \infty and t\rightarrow \infty limits commute under general convergence conditions on the
initial states (essentially Assumption 3.1 of [26]), as illustrated in the diagram in
Figure 1. Referring to the same notation as used in Remark 3.4, the top horizontal
arrow in Figure 1 holds due to ergodicity of the N -server state dynamics, which was
established in Theorem 7.1 of [27] under some additional conditions on the service and
reneging distributions (see Assumption 7.1 therein). On the other hand, as already
mentioned in Remark 3.4, the left vertical arrow follows from the fluid limit theorem,
Theorem 3.6 of [26] (under suitable convergence assumptions on the initial data).
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7208 R. ATAR, W. KANG, H. KASPI, AND K. RAMANAN

\=ZN (t) = ( \=XN (t), \=\nu Nt , \=\eta Nt )
\mathrm{T}\mathrm{h}\mathrm{m} 7.1 \mathrm{o}\mathrm{f} [27]

=\Rightarrow \=ZN
\ast = ( \=XN

\ast , \=\nu N\ast , \=\eta N\ast )\bigm\| \bigm\| \bigm\| \bigm\| 
\mathrm{T}\mathrm{h}\mathrm{m} 3.6 \mathrm{o}\mathrm{f} [26] \mathrm{T}\mathrm{h}\mathrm{m} 6.2 \mathrm{o}\mathrm{f} [27] \mathrm{a}\mathrm{n}\mathrm{d} Thm 3.2 \Downarrow  \Downarrow 

Z(t) = (X(t), \nu t, \eta t)
Thm 3.2 - \rightarrow z\ast = (x\ast , (\lambda \wedge 1)\nu \ast , \lambda \eta \ast )

Fig. 1. Interchange of limits diagram.

Along with the tightness of ( \=ZN
\ast )N\in \BbbN established in [27], Theorem 3.2 of the pres-

ent article completes the diagram by establishing (for a class of service distributions)
the right vertical arrow (as explained in Remark 3.4) as well as the bottom horizontal
arrow, though the latter only when \lambda \not = 1 (i.e., in the subcritical and supercritical
regimes). It would be worthwhile in the future to investigate whether this result can
be extended further, in particular to establish convergence even in the critical regime
\lambda = 1, possibly under additional conditions such as a finite second moment condition,
like that imposed in Theorem 3.9 of [28] (to study large-time behavior of fluid limits
in the absence of reneging).

4. Proof of Theorem 3.2. We assume throughout this section that
Assumption 2.1 holds. We then have the following elementary lemma.

Lemma 4.1. Fix \lambda \geq 0 and, given any \eta 0 \in \scrM F [0,H
r), let \eta = (\eta t)t\geq 0 be the

solution to (2.10). Then \eta t \Rightarrow \lambda \eta \ast as t\rightarrow \infty .

Proof. Fix \psi \in \scrC b(\BbbR +). In view of (2.19), the boundedness of \psi , the finiteness
of the measure \eta 0, the dominated convergence theorem, and the fact that \=Gr(x+ t)/
\=Gr(x)\rightarrow 0 as t\rightarrow \infty , for every x \in [0,Hr), together imply that the first term on the
right-hand side of (2.19) vanishes. On the other hand, since the mean patience time\int \infty 
0

\=Gr(u)du is finite, the dominated convergence theorem shows that the last term
on the right-hand side of (2.19) converges to \langle \psi ,\lambda \eta \ast \rangle . This concludes the proof that
\eta t \Rightarrow \lambda \eta \ast as t\rightarrow \infty .

4.1. Proof of Theorem 3.2(1). In this section we prove part (1) of
Theorem 3.2. Fix \lambda \in [0,1) and (X(0), \nu 0, \eta 0) \in S. Suppose (X,\nu , \eta ) is a solu-
tion to the fluid equations for arrival rate \lambda and initial condition (X(0), \nu 0, \eta 0), and
let (D,K,R,S,Q,B) be the corresponding auxiliary processes.

The weak convergence of \eta t to \lambda \eta \ast as t\rightarrow \infty follows from Lemma 4.1. We now
analyze the remaining components of the solution. Using the definition of D from
(2.7), setting \psi = hs in (2.20), interchanging the order of integration, and using
integration by parts and the fact Gs(0+) = 0, we obtain for t\geq 0,

D(t) =

\int t

0

\langle hs, \nu w\rangle dw=

\int t

0

\Biggl( \int 
[0,Hs)

gs(x+w)
\=Gs(x)

\nu 0(dx) +

\int 
[0,w]

gs(w - u)dK(u)

\Biggr) 
dw

(4.1)

=

\int 
[0,Hs)

Gs(t+ x) - Gs(x)
\=Gs(x)

\nu 0(dx) +

\int 
[0,t]

Gs(t - u)dK(u)

=

\int 
[0,Hs)

Gs(t+ x) - Gs(x)
\=Gs(x)

\nu 0(dx) +

\int t

0

K(u)gs(t - u)du.
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ASYMPTOTICS OF COUPLED MEASURE-VALUED EQUATIONS 7209

Substituting this in (2.12), using (2.17) and (2.13), and performing repeated integra-
tion by parts, we obtain for t\geq 0,

X(t) =X(0) + \lambda t - 
\int 
[0,Hs)

Gs(t+ x) - Gs(x)
\=Gs(x)

\nu 0(dx) - 
\int t

0

K(u)gs(t - u)du - R(t)

(4.2)

=X(0) + \lambda t - 
\int 
[0,Hs)

Gs(t+ x) - Gs(x)
\=Gs(x)

\nu 0(dx)

 - 
\int t

0

(Q(0) + \lambda u - Q(u) - R(u))gs(t - u)du - R(t)

=X(0) - Q(0)Gs(t) - 
\int 
[0,Hs)

Gs(t+ x) - Gs(x)
\=Gs(x)

\nu 0(dx) +

\int t

0

Q(u)gs(t - u)du

+ \lambda 

\int t

0

\=Gs(t - u)du+

\int t

0

R(u)gs(t - u)du - R(t)

=X(0) - Q(0)Gs(t) - 
\int 
[0,Hs)

Gs(t+ x) - Gs(x)
\=Gs(x)

\nu 0(dx) +

\int t

0

Q(u)gs(t - u)du

+

\int t

0

\Biggl( 
\lambda  - 

\int Q(u)

0

hr((F \eta u) - 1(y))dy

\Biggr) 
\=Gs(t - u)du,

which implies that for each t\geq 0,

X(t)\leq X(0) - Q(0)Gs(t) - 
\int 
[0,Hs)

Gs(t+ x) - Gs(x)
\=Gs(x)

\nu 0(dx) +

\int t

0

Q(u)gs(t - u)du

+ \lambda 

\int t

0

\=Gs(u)du.(4.3)

We now make use of the following simple observation.

Lemma 4.2. limsupt\rightarrow \infty 
\int t

0
Q(u)gs(t - u)du\leq limsupt\rightarrow \infty Q(t).

Proof. Let q := limsupt\rightarrow \infty Q(t). Then for each \varepsilon > 0, there exists T\varepsilon <\infty such
that Q(t)\leq q+ \varepsilon for all t\geq T\varepsilon . So for each t > T\varepsilon , it follows that\int t

0

Q(u)gs(t - u)du=

\int T\varepsilon 

0

Q(u)gs(t - u)du+

\int t

T\varepsilon 

Q(u)gs(t - u)du

\leq 
\biggl( 

sup
0\leq u\leq T\varepsilon 

Q(u)

\biggr) 
(Gs(t) - Gs(t - T\varepsilon )) + (q+ \varepsilon )Gs(t - T\varepsilon ).

By taking the limit supremum as t\rightarrow \infty of both sides, we have limsupt\rightarrow \infty 
\int t

0
Q(u)gs

(t - u)du\leq q+ \varepsilon . The lemma follows on taking \varepsilon \rightarrow 0.

Continuing with the proof of Theorem 3.2(1), taking the limit supremum in (4.3),
and using Lemma 4.2, the identity

\int \infty 
0

\=Gs(u)du = 1 from Assumption 2.1, the fact
that limt\rightarrow \infty (Gs(t + x)  - Gs(x))/ \=Gs(x) \rightarrow 1 for every x, the bounded convergence
theorem, and the identity X(0) =Q(0) + \langle 1, \nu 0\rangle from (2.14), we obtain

limsup
t\rightarrow \infty 

X(t)\leq limsup
t\rightarrow \infty 

\int t

0

Q(u)gs(t - u)du+ \lambda \leq limsup
t\rightarrow \infty 

Q(t) + \lambda .(4.4)

We now claim that there exists T \prime < \infty such that \langle 1, \nu t\rangle < 1 for all t \geq T \prime .
We argue by contradiction to prove the claim. If the claim is false, note that for
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7210 R. ATAR, W. KANG, H. KASPI, AND K. RAMANAN

any T \prime < \infty , there would exist T > T \prime such that \langle 1, \nu T \rangle = 1. Then, due to (2.16),
we would have limsupt\rightarrow \infty X(t) = limsupt\rightarrow \infty Q(t) + 1, which contradicts (4.4) since
\lambda < 1. Thus, fix T \prime < \infty as in the claim. Then, by Lemma 2.7, (X [T \prime ], \nu [T

\prime ], \eta [T
\prime ])

solves the fluid equations with arrival rate \lambda and initial condition (X(T \prime ), \nu T \prime , \eta T \prime )
and hence, (2.20) holds with \nu and K replaced with \nu [T

\prime ] and K [T \prime ], respectively.
Since \nu T

\prime 
(t) = \nu T \prime +t and by (2.16), (2.13), and (2.17), Q(T \prime + \cdot )\equiv 0, R[T \prime ](\cdot )\equiv 0, and

KT \prime 
(t) =K(T \prime + t) - K(T \prime ) = \lambda t, t\geq 0, this implies that for every \psi \in \scrC b[0,Hs),\int 

[0,Hs)

\psi (x)\nu T \prime +t(dx) =

\int 
[0,Hs)

\psi (x+ t)
\=Gs(x+ t)
\=Gs(x)

\nu T \prime (dx) +

\int t

0

\psi (t - u) \=Gs(t - u)\lambda du.

Then, arguing as in the proof of Lemma 4.1, sending t\rightarrow \infty and invoking the bounded
convergence theorem, the first integral on the right-hand side vanishes, and the sec-
ond integral converges to \lambda 

\int 
[0,Hs)

\psi (x) \=Gs(x)dx (where, for the latter, recall that\int \infty 
0

\=Gs(u)du = 1 from Assumption 2.1). Recalling that \nu \ast (dx) = f\ast (x)dx = \=Gs(x)dx,
it follows that \nu t \Rightarrow \lambda \nu \ast . In turn, by the continuous mapping theorem this implies
\langle 1, \nu t\rangle \Rightarrow \lambda as t\rightarrow \infty . When combined with (2.11) and the fact that \lambda < 1, this implies
that as t\rightarrow \infty , the weak limits of X(t) and \langle 1, \nu t\rangle coincide and are equal to \lambda . This
concludes the proof of the first assertion of Theorem 3.2(1).

Now, if the initial condition (X(0), \eta 0, \nu 0) had the law \pi of an invariant distribu-
tion with arrival rate \lambda < 1, then the convergence just established would imply that
\BbbP (\eta 0 = \lambda \eta \ast ) = 1 and \BbbP (\nu 0 = \lambda \nu \ast ) = 1. By the continuous mapping theorem, the latter
implies that almost surely \langle 1, \nu 0\rangle = \langle 1, \lambda \nu \ast \rangle = \lambda . Since \lambda < 1, it then follows from
(2.11) that X(0) = \lambda almost surely, thus proving that \pi = \delta z\lambda 

\ast 
with z\lambda \ast = (\lambda ,\lambda \eta \ast , \lambda \nu \ast ).

This completes the proof of Theorem 3.2(1).

4.2. Proof of Theorem 3.2(2a) when the hazard rate function is bounded
away from zero and infinity. In this section we prove Theorem 3.2(2a) under As-
sumption 3.1(1). Suppose Assumption 2.1 is satisfied and Assumption 3.1(1) holds
(with associated constants \varepsilon s > 0 and 0 < cs <\infty ). Recall that f\ast (x) = \=Gs(x) is the
density of \nu \ast . Note that the lower bound on hs implies that gs, and thus f\ast = \=Gs, is
strictly positive on [0,\infty ).

Now, fix the initial condition (X(0), \nu 0, \eta 0) \in S, and suppose (X,\nu , \eta ) is the
associated solution to the fluid equations. We will establish convergence, as t\rightarrow \infty , of
the fluid age measure \nu t described in (2.8) by appealing to properties of an extended
relative entropy functional, which we now introduce.

Recall that \scrM F (E) and \scrP (E) denote the spaces of finite nonnegative Borel mea-
sures and Borel probability measures, respectively, on a measurable space E, and
define the functional R(\cdot \| \cdot ) :\scrM F (E)\times \scrP (E) \mapsto \rightarrow ( - \infty ,\infty ] by

R(P\| Q) :=

\left\{   
\int 
E

log
dP

dQ
(x)dP (x) if P \ll Q,

\infty otherwise,
(4.5)

where P \ll Q means P is absolutely continuous with respect to Q and we use the
convention 0 log 0 = 0.

We emphasize that we do not require P to be a probability measure, as we
will often have to deal with subprobability measures, but when both P and Q are
probability measures, this is simply the relative entropy functional.

Remark 4.3. If cP = P (E)> 0 denotes the total mass of P , then writing the above
integral as

\int 
E

dP
dQ log dP

dQdQ and using the convexity of x \mapsto \rightarrow x logx on (0,\infty ) gives the
lower bound
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ASYMPTOTICS OF COUPLED MEASURE-VALUED EQUATIONS 7211

R(P\| Q)\geq cP log cP ,(4.6)

which is attained by P that is a constant multiple of the probability measure Q. In
particular, R(P\| Q) may assume negative values. However, when P is a probability
measure, R(P\| Q) is always nonnegative and R(P\| Q) = 0 holds if and only if P =Q.

As alluded to in the introduction, the idea of proving Theorem 3.2(2)(a) is to
use the generalized relative entropy function R(\cdot \| \nu \ast ) in a manner reminiscent of a
Lyapunov function. In section 4.2.1 we state some estimates related to this function.
Then, in section 4.2.2, we carry out in greater detail the formal calculations described
in sections 1.1 and 1.2. These calculations aim only at providing intuition into why
R(\cdot \| \nu \ast ) is a candidate Lyapunov function for the problem at hand, and making some
of the calculations carried out later in the proof more transparent. However, this
section is purely motivational, and the reader could also skip directly to the more
involved rigorous proof given in section 4.2.3.

4.2.1. Estimates related to the extended relative entropy functional.
The proof of Theorem 3.2(2) will make use of two properties of extended relative
entropy which we now state.

Lemma 4.4. Suppose P and Q are finite nonnegative Borel measures on \BbbR +,
equipped with the Borel \sigma -algebra, with cP := P (\BbbR +)> 0 and Q(\BbbR +) = 1. If P and Q,
respectively, have densities p and q (with respect to Lebesgue measure), then\int \infty 

0

| p(x) - q(x)| dx\leq | cP  - 1| +
\Bigl( 
2c - 1

P | R(P\| Q)| + 2| log cP | 
\Bigr) 1/2

.(4.7)

Proof. First note that c - 1
P P and Q are probability measures, and so, invoking

Pinsker's inequality (see, e.g., p. 44 of [15]) in the second inequality below, we obtain\int \infty 

0

| p(x) - q(x)| dx\leq 
\int \infty 

0

| p(x) - c - 1
P p(x)| dx+

\int \infty 

0

| c - 1
P p(x) - q(x)| dx

\leq | cP  - 1| +
\bigl( 
2R(c - 1

P P\| Q)
\bigr) 1/2

\leq | cP  - 1| +
\bigl( 
2c - 1

P R(P\| Q) - 2 log cP
\bigr) 1/2

,

which is clearly dominated by the right-hand side of (4.7).

The second property is encapsulated in the following lemma, which crucially relies
on the lower bound on the hazard rate hs, and whose proof is relegated to Appendix A.

Lemma 4.5. Let f : [0,\infty ) \mapsto \rightarrow [0,\infty ) be a Borel measurable function that satisfies\int \infty 
0
f(x)dx \leq 1 and suppose that zf :=

\int \infty 
0
hs(x)f(x)dx <\infty and \mu f is the measure

with density f . Then\int \infty 

0

hs(x)f(x) log
f(x)

f\ast (x)
dx\geq zf log zf(4.8)

+ \varepsilon s
\int \infty 

0

f(x) log
f(x)

f\ast (x)
dx= zf log zf + \varepsilon sR(\mu f\| \nu \ast ).

4.2.2. A formal calculation. Although Theorem 3.2(2)(a) is concerned with
the supercritical case, the calculations here are valid for any \lambda \geq 0. Observe that
(2.8) expresses (\nu t)t\geq 0 as a weak solution to a transport equation (with data K).
Now, for the purposes of this formal calculation only, suppose that \nu 0 has a density,
denoted by f0, and for each t > 0, suppose the measure \nu t has a sufficiently smooth
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7212 R. ATAR, W. KANG, H. KASPI, AND K. RAMANAN

density, denoted by f(x, t), x \geq 0. Then by (2.18) and (2.7), \langle 1, \nu t\rangle =
\int \infty 
0
f(x, t)dx

and \langle hs, \nu t\rangle =
\int \infty 
0
hs(x)f(x, t)dx, the transport equation could be formally rewritten

as the PDE specified in (1.1)--(1.3), which we repeat here for convenience:

\partial tf(x, t) = - \partial xf(x, t) - hs(x)f(x, t), x > 0, t > 0,(4.9)

with the boundary condition f(0, t) = k(t), which by (2.21) takes the form

f(0, t) =

\left\{       
\lambda if

\int \infty 

0

f(x, t)dx< 1,\int \infty 

0

hs(x)f(x, t)dx if

\int \infty 

0

f(x, t)dx= 1,

(4.10)

and the initial condition

f(x,0) = f0(x), x > 0.(4.11)

As mentioned in the introduction, (4.9)--(4.11) may in general have multiple solu-
tions, and a precise analysis must consider the dynamics of \nu together with the other
components. Proceeding with purely formal calculations to gain intuition, note that
f\ast (x) = e - J(x), where J(x) :=

\int x

0
hs(y)dy <\infty for every x> 0. For t > 0, define

\^\Delta (t) :=R(\nu t\| \nu \ast ) =
\int \infty 

0

f(x, t) log
f(x, t)

f\ast (x)
dx=

\int \infty 

0

f(x, t)(log f(x, t) + J(x))dx.

(We use \^\Delta (t) to distinguish it from another function, \Delta (t), that we use in the actual
proof that is defined slightly differently from \^\Delta (t).) Taking derivatives of both sides
of the last equation with respect to t, and using (4.9), we see that

d

dt
\^\Delta (t) =

\int \infty 

0

\partial tf(x, t)(log f(x, t) + J(x) + 1)dx

= - 
\int \infty 

0

(\partial xf(x, t) + hs(x)f(x, t))(log f(x, t) + J(x) + 1)dx.

Since f(\cdot , t) is integrable over [0,Hs) and Hs =\infty , it follows that lim infx\rightarrow \infty f(x, t) =
0. Using integration by parts, and assuming (without justification) that we have the
following: limx\rightarrow \infty f(x, t)(log f(x, t) + J(x)) = 0, we conclude that\int \infty 

0

\partial xf(x, t)(log f(x, t) + J(x) + 1)dx

= - f(0, t)(log f(0, t) + 1) - 
\int \infty 

0

f(x, t)

\biggl( 
\partial xf(x, t)

f(x, t)
+ hs(x)

\biggr) 
dx

= - f(0, t) log f(0, t) - 
\int \infty 

0

hs(x)f(x, t)dx.

On combining the last two equations, and recalling that J(x) = - log f\ast (x), we obtain

d

dt
\^\Delta (t) = f(0, t) log f(0, t) - 

\int \infty 

0

hs(x)f(x, t)(log f(x, t) + J(x))dx

= f(0, t) log f(0, t) - 
\int \infty 

0

hs(x)f(x, t) log
f(x, t)

f\ast (x)
dx.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

11
/0

9/
23

 to
 1

32
.6

8.
49

.1
29

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



ASYMPTOTICS OF COUPLED MEASURE-VALUED EQUATIONS 7213

Note that
\int \infty 
0
f(x, t)dx= \langle 1, \nu t\rangle \leq 1 and that for almost every t\in [0,\infty ), (2.7) implies

that zf(\cdot ,t) =
\int \infty 
0
hs(x)f(x, t)dx <\infty . Hence Lemma 4.5 is applicable with f = f(\cdot , t)

and we obtain\int \infty 

0

hs(x)f(x, t) log
f(x, t)

f\ast (x)
dx\geq 

\biggl( \int \infty 

0

hs(x)f(x, t)dx

\biggr) 
log

\biggl( \int \infty 

0

hs(x)f(x, t)dx

\biggr) 
+ \varepsilon s

\int \infty 

0

f(x, t) log
f(x, t)

f\ast (x)
dx

= zf(\cdot ,t) log zf(\cdot ,t) + \varepsilon s \^\Delta (t).

Substituting this into the previous display and using the boundary condition (4.10),
we have

d

dt
\^\Delta (t)\leq 

\Biggl\{ 
 - \varepsilon s \^\Delta (t) + \lambda log\lambda  - zf(\cdot ,t) log zf(\cdot ,t) if

\int \infty 
0
f(x, t)dx< 1,

 - \varepsilon s \^\Delta (t) if
\int \infty 
0
f(x, t)dx= 1.

(4.12)

As already observed in the introduction, this estimate does not directly imply the con-

vergence of \^\Delta (t) to zero. However, the fact that it takes the form d \^\Delta 
dt (t) \leq  - \varepsilon s \^\Delta (t)

in the case
\int \infty 
0
f(x, t)dx = 1 is a sign that the approach might be useful, espe-

cially in the supercritical case (\lambda > 1), where one might expect that for sufficiently
large t,

\int \infty 
0
f(x, t)dx = 1. However, converting this into a fully rigorous argument is

rather nontrivial. The argument provided in the next section is considerably more
involved and copes with the more complicated structure of the estimate in the case\int \infty 
0
f(x, t)dx< 1, as well as the fact that \^\Delta (t) can go negative.

4.2.3. Proof of Theorem 3.2(2)(a). First, note that the limit \eta t \Rightarrow \lambda \eta \ast in
(3.1) holds for any \lambda \geq 0 from Lemma 4.1. To establish the remaining limits, we
begin with the representation for the age measure \nu t given in (2.20), which shows
that \nu t = \theta t + \mu t, where \theta t, \mu t \in \scrM F [0,\infty ), are defined by

\langle \psi ,\theta t\rangle :=
\int 
[0,\infty )

\=Gs(x+ t)
\=Gs(x)

\psi (x+ t)\nu 0(dx) and \langle \psi ,\mu t\rangle :=
\int \infty 

0

\psi (x) \~f(x, t)dx,

(4.13)

for every \psi \in \scrC b[0,\infty ) and also for \psi = hs, where for all t\geq 0,

\~f(x, t) :=

\Biggl\{ 
\=Gs(x)k(t - x) x\in [0, t],

0 x\in (t,\infty ),
(4.14)

where we recall that k, defined in (2.21), is a.e. equal to the derivative K \prime of the
auxiliary process K defined in (2.9) of the fluid equations.

Now, to estimate dTV(\mu t, \nu \ast ), recall that f\ast = \=Gs is the density of \nu \ast , and so
both \mu t and \nu \ast are absolutely continuous with respect to Lebesgue measure. Thus,
Lemma 4.4 shows that

dTV(\mu t, \nu \ast ) =

\int \infty 

0

\bigm| \bigm| \bigm| \~f(x, t) - f\ast (x)
\bigm| \bigm| \bigm| dx\leq | \langle 1, \mu t\rangle  - 1| (4.15)

+
\bigl( 
2\langle 1, \mu t\rangle  - 1| \Delta (t)| + 2| log\langle 1, \mu t\rangle | 

\bigr) 1/2
,
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7214 R. ATAR, W. KANG, H. KASPI, AND K. RAMANAN

where for t\geq 0,

\Delta (t) :=R(\mu t\| \nu \ast ) =
\int \infty 

0

\~f(x, t) log
\~f(x, t)

f\ast (x)
dx(4.16)

=

\int t

0

\=Gs(t - x)k(x) logk(x)dx,(4.17)

with the last equality using the fact that k(t - x) = \~f(x, t)/f\ast (x) for x\in [0, t], due to
(4.14). Since the expression in (2.21) and Assumption 3.1(1) show that k is strictly
positive and bounded above by \lambda \vee cs = \lambda \vee supx\in [0,\infty ) h

s(x), \Delta (t) is well defined and
finite.

Remark 4.6. Due to the pointwise convergence
\=Gs(x+t)
\=Gs(x)

\rightarrow 0 as t \rightarrow \infty for each

x > 0, the dominated convergence theorem shows that \langle 1, \theta t\rangle , the total mass of \theta t,
converges to zero as t \rightarrow \infty . Hence, \theta t converges to the zero measure in total vari-
ation. Together with (4.15), it follows that in order to show Bt = \langle 1, \nu t\rangle \rightarrow 1 and
dTV(\nu t, \nu \ast ) \rightarrow 0 (and hence, \nu t \Rightarrow \nu \ast ) as t\rightarrow \infty , it suffices to prove that \langle 1, \mu t\rangle \rightarrow 1
and \Delta (t)\rightarrow 0 as t\rightarrow \infty .

Our main goal in this section is to establish these limits in the supercritical regime
\lambda > 1.

Proposition 4.7. Suppose Assumptions 2.1 and 3.1(1) hold and \lambda > 1. Then
there exists T \in (0,\infty ) such that B(t) = 1 for all t\geq T . In addition,

\langle 1, \mu t\rangle \rightarrow 1 and \Delta (t)\rightarrow 0, as t\rightarrow \infty ,(4.18)

and also \nu t \Rightarrow \nu \ast and \langle hs, \nu t\rangle \rightarrow 1 as t\rightarrow \infty .

To establish this proposition, we proceed in several steps, establishing various
intermediate results in Steps 1--3, culminating in the proof of Proposition 4.7 in
Step 4.

Step 1. We start with simple bounds on quantities associated with the measure-
valued function \theta t defined in (4.13). Recall the convention 0 log 0 = 0.

Lemma 4.8. We have the following: supt\langle hs, \theta t\rangle \leq cs,
\int \infty 
0

\langle hs, \theta t\rangle dt < \infty , and\int \infty 
0

| \langle hs, \theta t\rangle log\langle hs, \theta t\rangle | dt <\infty .

Proof. Recall that \theta t = \nu t  - \mu t is a nonnegative measure. Moreover, substituting
\psi = hs in (4.13), we have for each t > 0,

\langle hs, \theta t\rangle =
\int 
[0,\infty )

\=Gs(x+ t)hs(x+ t)
\=Gs(x)

\nu 0(dx).(4.19)

For the first assertion, note that for all t\geq 0, \langle hs, \theta t\rangle \leq cs\langle 1, \nu 0\rangle \leq cs. This proves the
first bound.

With a view to establishing the remaining two bounds we first prove a refinement
of the above bound; specifically, we show that \langle hs, \theta t\rangle \leq cse - \varepsilon st for all t \geq 0. To
this end, first use the relation \=Gs(y) = e - 

\int y
0
hs(u)du and the definition of \varepsilon s as the

essential infimum of hs (see Assumption 3.1(1)) to conclude that for all x \geq 0 and
t\geq 0, \=Gs(x+t)\leq \=Gs(x)e - \varepsilon st. Substituting this into (4.19) and invoking the definition
of cs as the supremum of hs (see Assumption 3.1(1)), this yields

\langle hs, \theta t\rangle \leq e - \varepsilon st

\int 
[0,\infty )

hs(x+ t)\nu 0(dx)\leq cse - \varepsilon st\langle 1, \nu 0\rangle \leq cse - \varepsilon st,(4.20)

which immediately implies the second bound:
\int \infty 
0

\langle hs, \theta t\rangle dt <\infty .
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ASYMPTOTICS OF COUPLED MEASURE-VALUED EQUATIONS 7215

To prove the last assertion of the lemma, note that on (0, e - 1], the function
x \mapsto \rightarrow  - x logx is increasing and nonnegative. Let t0 > 0 be such that cse - \varepsilon st0 < e - 1.
Then using (4.20) for t > t0, we obtain

| \langle hs, \theta t\rangle log\langle hs, \theta t\rangle | = - \langle hs, \theta t\rangle log\langle hs, \theta t\rangle \leq  - cse - \varepsilon st log(cse - \varepsilon st)= cs(\varepsilon st - log cs)e - \varepsilon st,

which in turn implies
\int \infty 
t0

| \langle hs, \theta t\rangle log\langle hs, \theta t\rangle | dt <\infty . On the other hand, by the first
bound of the lemma,\int t0

0

| \langle hs, \theta t\rangle log\langle hs, \theta t\rangle | dt\leq t0 sup
t\in [0,t0]

| \langle hs, \theta t\rangle log\langle hs, \theta t\rangle | \leq t0 sup
[0,cs]

| x logx| .

But, this is also finite since the function [0,\infty ) \ni x \mapsto \rightarrow x logx, which takes the value
0 when x= 0, is continuous, and hence bounded on [0, t0]. When combined, the last
two statements prove the last assertion and complete the proof of the lemma.

Step 2. We now establish our main estimate on \Delta (t) in Corollary 4.10, building
off preliminary estimates that we first obtain in Lemma 4.9. In what follows, we will
say (t1, t2)\subset [0,\infty ) is a busy interval if Bt = 1 for t\in (t1, t2) and say it is an excursion
interval if Bt < 1 for t\in (t1, t2) and Bt1 =Bt2 = 1.

Let m(\cdot ) denote the modulus of continuity of the continuous function x \mapsto \rightarrow x logx
on the compact interval [0, cs], i.e., m(\delta ) = sup\{ | x logx  - y log y| : 0 \leq x \leq y \leq 
cs \wedge (x + \delta )\} . On [0, e - 1] this function is decreasing. Now, for 0 \leq x < y \leq e - 1,
applying the inequality p log p+ (1 - p) log(1 - p)\leq 0 (which holds for p\in [0,1]) with
p= x/y, we see that

0\geq x

y
log

x

y
+

\biggl( 
1 - x

y

\biggr) 
log

\biggl( 
1 - x

y

\biggr) 
=

1

y
[x logx+ (y - x) log(y - x) - y log y].

Hence, it follows that for 0\leq x< y\leq e - 1,

| x logx - y log y| = x logx - y log y\leq (x - y) log(y - x) = | (x - y) log(y - x)| .

Moreover, in case cs > e - 1, the function x \mapsto \rightarrow x logx is Lipschitz on [e - 1, cs]. As a
result, there is a constant c1 (depending only on cs) such that

m(\delta )\leq | \delta log \delta | + c1\delta , \delta \in [0, cs].(4.21)

Lemma 4.9. For t\geq 0, define \Upsilon t :=m(\langle hs, \theta t\rangle ), where \theta t is defined by (4.13). If
(t1, t2) is a busy interval, then

\Delta (t)\leq \Delta (t1)e
 - \varepsilon s(t - t1) +

\int t

t1

\Upsilon udu, t\in (t1, t2).(4.22)

On the other hand, if (t1, t2) is an excursion, then

\Delta (t2)\leq \Delta (t1) +

\int t2

t1

\Upsilon udu,(4.23)

and

B\prime (t) = \lambda  - \langle hs, \nu t\rangle , t\in (t1, t2).(4.24)

Furthermore, there exist finite positive constants c\Delta and clip such that supt | \Delta (t)| \leq c\Delta 
and for any 0 \leq u < t < \infty , | \Delta (t)  - \Delta (u)| \leq clip| t  - u| , showing that the function
t\rightarrow \Delta (t) is bounded and globally Lipschitz on [0,\infty ).
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7216 R. ATAR, W. KANG, H. KASPI, AND K. RAMANAN

Proof. Note that although the function \~f defined in (4.14) is discontinuous in t
and in x, since \=Gs has a density, the relation (4.17) shows that \Delta is differentiable
(although not continuously differentiable) with derivative

d\Delta 

dt
(t) = k(t) logk(t) - 

\int t

0

gs(t - x)k(x) logk(x)dx

= k(t) logk(t) - 
\int t

0

gs(x)k(t - x) logk(t - x)dx.(4.25)

Substituting the identities gs = hs \=Gs = hsf\ast and k(t - x) = \~f(x, t)/f\ast (x) into (4.25),
recalling the definition of \~f from (4.14) and the convention 0 log 0 = 0, and then
applying Lemma 4.5, with f(x) replaced with \~f(x, t) (since

\int \infty 
0

\~f(x, t)dx\leq \langle 1, \nu t\rangle \leq 1),
we obtain

d\Delta (t)

dt
= k(t) logk(t) - 

\int \infty 

0

hs(x) \~f(x, t) log
\~f(x, t)

f\ast (x)
dx

\leq k(t) logk(t) - z \~f(\cdot ,t) log z \~f(\cdot ,t)  - \varepsilon s\Delta (t),(4.26)

where, as in Lemma 4.5, z \~f(\cdot ,t) =
\int \infty 
0
hs(x) \~f(x, t)dx, which is equal to \langle hs, \mu t\rangle by

(4.13).
Now, suppose that (t1, t2) is a busy interval for some 0 \leq t1 < t2 \leq \infty . Then by

(2.21) and Assumption 3.1(1), for t \in (t1, t2), c
s \geq k(t) = \langle hs, \nu t\rangle = \langle hs, \mu t\rangle + \langle hs, \theta t\rangle ,

which implies k(t)  - z \~f(\cdot ,t) = \langle hs, \theta t\rangle \geq 0. Since m is the modulus of continuity of
x \mapsto \rightarrow x logx on the interval [0, cs], it follows that

| k(t) logk(t) - z \~f(\cdot ,t) log z \~f(\cdot ,t)| \leq m(\langle hs, \theta t\rangle ) =\Upsilon t.

When combined with (4.26), this shows that for any busy interval (t1, t2),

d\Delta 

dt
(t)\leq \Upsilon t  - \varepsilon s\Delta (t), t\in (t1, t2).(4.27)

Now, let \~\Delta denote the solution to the differential equation d \~\Delta 
dt (t) = \Upsilon t  - \varepsilon s \~\Delta (t)

with the same initial condition as \Delta , namely \~\Delta (t1) = \Delta (t1). Then \~\Delta can be solved
explicitly:

\~\Delta (t)=( \~\Delta (t1))
 - \varepsilon s(t - t1) +

\int t

t1

e - \varepsilon s(u - t1)\Upsilon t - udu\leq \Delta (t1)e
 - \varepsilon s(t - t1)+

\int t

t1

\Upsilon udu, t\in (t1, t2).

A standard comparison theorem for ordinary differential equations yields \Delta (t)\leq \~\Delta (t)
for t\in (t1, t2). This proves (4.22).

Next, consider an excursion interval (t1, t2). Then (2.21) implies that k(t) = \lambda 
for t \in (t1, t2). Moreover, it is not hard to see that the fluid age equation (2.8) holds
with the test function \varphi \equiv 1, by approximating this function by compactly supported
test functions whose derivatives in x are bounded. Since \varphi x = \varphi t = 0, differentiating
the equation yields (4.24). Toward showing (4.23), recall that \langle 1, \nu t\rangle = B(t) and
B(t1) = B(t2) = 1 by definition of an excursion interval. Hence, D(t2)  - D(t1) =
K(t2) - K(t1) = \lambda (t2  - t1) and it follows that

1

t2  - t1

\int t2

t1

\langle hs, \nu t\rangle dt= \lambda .(4.28)
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ASYMPTOTICS OF COUPLED MEASURE-VALUED EQUATIONS 7217

Thus, the convexity of x logx and Jensen's inequality together imply

\lambda log\lambda \leq 1

t2  - t1

\int t2

t1

\langle hs, \nu t\rangle log\langle hs, \nu t\rangle dt.(4.29)

Also, recalling \theta t = \nu t  - \mu t, we have

| \langle hs, \mu t\rangle log\langle hs, \mu t\rangle  - \langle hs, \nu t\rangle log\langle hs, \nu t\rangle | \leq m(\langle hs, \nu t\rangle  - \langle hs, \mu t\rangle ) =\Upsilon t.

As a result, for t\in (t1, t2), the right-hand side of (4.26) is bounded above by \lambda log\lambda  - 
\langle hs, \nu t\rangle log\langle hs, \nu t\rangle +\Upsilon t. Integrating both sides of (4.26) and using (4.29) we have

\Delta (t2) - \Delta (t1)\leq (t2  - t1)\lambda log\lambda  - 
\int t2

t1

(\langle hs, \nu t\rangle log\langle hs, \nu t\rangle  - \Upsilon t)dt\leq 
\int t2

t1

\Upsilon tdt.

We now turn to the last assertion of the lemma. The bound 0 \leq k(t) \leq cs \vee \lambda 
(by continuity of the function \BbbR + \ni x \mapsto \rightarrow x logx) implies that | k(t) logk(t)| \leq c2 for
some finite constant c2. The boundedness of t\rightarrow \Delta (t) thus follows from (4.17) and
the fact that

\int \infty 
0

\=Gs(x)dx = 1 (see Assumption 2.1(1)). By (4.25), the bound on
| k(t) logk(t)| also implies that d\Delta 

dt (t) is bounded and hence that t \mapsto \rightarrow \Delta (t) is globally
Lipschitz on [0,\infty ).

As a corollary, we obtain our main estimate on \Delta (t). For t > 0, define

L(t) :=

\int t

0

1\{ B(u)=1\} du, t > 0, and \scrB := \{ t > 0 :B(t) = 1\} .(4.30)

Corollary 4.10. For every \=t\geq 0 and t > \=t, t\in \scrB ,

\Delta (t)\leq c\Delta e
 - \varepsilon s(L(t) - L(\=t)) +

\int t

\=t

\Upsilon \tau d\tau ,(4.31)

where c\Delta is the constant from Lemma 4.9.

Proof. Fix \=t \geq 0 and t > \=t, t \in \scrB . Denote t0 := inf\{ u \geq \=t : Bu = 1\} . Fix
a nonempty open interval (s0, s1) \subset (t0, t). Then (s0, s1) is said to be a maximal
busy interval if it is a busy interval that is not a proper subset of any open busy
interval contained in (t0, t). Further, (s0, s1)\subset (t0, t) is referred to as admissible if it
is either an excursion or a maximal busy interval. Since B is continuous it is clear
that \scrO := \{ u\in (\=t, t) :Bu < 1\} is an open set, and hence, can be written as a countable
union of open intervals. Thus, there are at most a countable number of excursions.
Since any maximal busy interval must be contiguous to one of the intervals comprising
\scrO , it follows that the collection of admissible intervals is also countable. For u > 0,
define a u-admissible interval to be an admissible interval whose length is at least
u. Denote by \scrT u the complement in (t0, t) of the union of all u-admissible intervals.
Then, as u\rightarrow 0, the Lebesgue measure | \scrT u| of this set clearly converges to zero.

Let u > 0 be given, and let Iu be the number of u-admissible intervals. Since
there are only a finite number of such intervals, we can label the intervals (tn, t

\prime 
n),

n = 1, . . . , Iu, in such a way that \=t \leq t0 \leq t1 < t2 < t3 < \cdot \cdot \cdot < tIu \leq t. Let clip denote
the (global) Lipschitz constant of t \mapsto \rightarrow \Delta (t), which exists by Lemma 4.9. We now show
by induction that, for n= 1,2, . . . , Iu,

\Delta (tn)\leq \Delta (t1)e
 - \varepsilon s

\sum n - 1
i=1 (L(t\prime i) - L(ti)) +

n - 1\sum 
i=1

\int t\prime i

ti

\Upsilon \tau d\tau + clip

n - 1\sum 
i=1

(ti+1  - t\prime i),(4.32)

where a sum with the upper limit less than the lower limit is taken to be zero.
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7218 R. ATAR, W. KANG, H. KASPI, AND K. RAMANAN

Base case: For n = 1, (4.32) reduces to the trivial inequality \Delta (t1) \leq \Delta (t1) and
thus is satisfied.

Induction step: Assuming (4.32) holds for an arbitrary n \in \{ 1, . . . , Iu  - 1\} , we
show it holds for n + 1. From (4.22) and (4.23) of Lemma 4.9, along with the fact
that L(t\prime n) - L(tn) is equal to zero if (tn, t

\prime 
n) is an excursion, and is equal to t\prime n  - tn if

it is a busy interval, we have

\Delta (t\prime n)\leq \Delta (tn)e
 - \varepsilon s(L(t\prime n) - L(tn)) +

\int t\prime n

tn

\Upsilon \tau d\tau .

Using this estimate, the Lipschitz continuity of \Delta established in Lemma 4.9, and the
induction hypothesis, it follows that

\Delta (tn+1)\leq \Delta (t\prime n) + clip(tn+1  - t\prime n)

\leq \Delta (tn)e
 - \varepsilon s(L(t\prime n) - L(tn)) +

\int t\prime n

tn

\Upsilon \tau d\tau + clip(tn+1  - t\prime n)

\leq 
\Bigl( 
\Delta (t1)e

 - \varepsilon s
\sum n - 1

i=1 (L(t\prime i) - L(ti)) +

n - 1\sum 
i=1

\int t\prime i

ti

\Upsilon \tau d\tau 

+ clip

n - 1\sum 
i=1

(ti+1  - t\prime i)
\Bigr) 
e - \varepsilon s(L(t\prime n) - L(tn))

+

\int t\prime n

tn

\Upsilon \tau d\tau + clip(tn+1  - t\prime n)

\leq \Delta (t1)e
 - \varepsilon s

\sum n
i=1(L(t\prime i) - L(ti)) +

n\sum 
i=1

\int t\prime i

ti

\Upsilon \tau d\tau + clip

n\sum 
i=1

(ti+1  - t\prime i).

This proves (4.32) by induction.
Next, note that each of the intervals (t0, t1), (t

\prime 
i, ti+1) for i = 1, . . . , Iu  - 1, and

(tIu , t), is a subset of \scrT u. Hence, we have

L(t) - L(t0) - 
Iu - 1\sum 
i=1

(L(t\prime i) - L(ti)) = (L(t1) - L(t0))

+

Iu - 1\sum 
i=1

(L(ti+1) - L(t\prime i)) + (L(t) - L(tIu))\leq | \scrT u| .

Hence, on applying (4.32) with n= Iu and noting that \Upsilon is nonnegative and the last
term on the right-hand side is bounded above by clip| \scrT u| , we obtain

\Delta (tIu)\leq c\Delta e
 - \varepsilon s(L(t) - L(t0) - | \scrT u| ) +

\int t

t0

\Upsilon \tau d\tau + clip| \scrT u| , u > 0.

Then noting that since (tIu , t) \subset \scrT u for all u > 0, it follows that limu\rightarrow 0+ tIu = t.
Finally, the result follows on sending u\rightarrow 0 since \Delta is continuous and by definition
\=t\leq t0 and L(t0) =L(\=t).

Step 3. Now, assuming \lambda > 1, we prove that \=L := suptL(t) =\infty . Note that this
implies that the ``servers"" become busy infinitely often, as one might expect in the
supercritical regime. (We will later use this to prove the stonger condition that the
complement of \scrB is bounded.)
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ASYMPTOTICS OF COUPLED MEASURE-VALUED EQUATIONS 7219

Arguing by contradiction, assume that \=L < \infty . By (4.13), clearly \langle 1, \mu t\rangle \leq 
\langle 1, \nu t\rangle \leq 1, and, by Assumption 3.1(1), \langle hs, \nu t\rangle \leq cs, for all t > 0. However, (4.13),
(4.14), and (2.21) together imply

\langle 1, \mu t\rangle =
\int \infty 

0

\~f(x, t)dx=

\int t

0

\=Gs(x)k(t - x)dx

=

\int t

0

\=Gs(x)[\lambda 1\{ B(t - x)<1\} + \langle hs, \nu t - x\rangle 1\{ B(t - x)=1\} ]dx

\geq \lambda 

\int t

0

\=Gs(x)dx - \lambda 

\int t

0

\=Gs(x)1\{ B(t - x)=1\} dx.

Moreover, it is also true that\int t

0

\=Gs(x)1\{ B(t - x)=1\} dx\leq 
\int t/2

0

1\{ B(t - x)=1\} dx+

\int t

t/2

\=Gs(x)dx

\leq (L(t) - L(t/2)) +

\int \infty 

t/2

\=Gs(x)dx.

Recalling that
\int \infty 
0

\=Gs(x)dx= 1 (see Assumption 2.1), if \=L <\infty the above expression
converges to zero as t\rightarrow \infty . Hence, lim inft\rightarrow \infty \langle 1, \mu t\rangle \geq \lambda > 1, which is a contradiction.
This proves \=L=\infty .

Step 4. We now combine the above results to prove Proposition 4.7.

Proof of Proposition 4.7. Fix \lambda > 1. We first claim that to establish (4.18),
it suffices to show that B(t) = 1 for all sufficiently large t. Recalling that \Upsilon t =
m(\langle hs, \theta t\rangle ) is integrable on [0,\infty ) by Lemma 4.8 and the bound (4.21) on m, and
that 0 \leq L(t) \rightarrow \infty as t \rightarrow \infty by Step 3, which implies \scrB is unbounded, we can
send first t\rightarrow \infty along a sequence in \scrB and then \=t\rightarrow \infty in (4.31) of Corollary 4.10,
to obtain limsupt\rightarrow \infty , t\in \scrB \Delta (t) \leq 0. We cannot directly deduce from this that the
limit of \Delta (t) along \scrB is zero, since \Delta (t) = R(\mu t\| \nu \ast ) could be negative. However,
for t \in \scrB , B(t) = \langle 1, \nu t\rangle = 1 and hence \langle 1, \mu t\rangle = 1 - \langle 1, \theta t\rangle . Since \Delta (t) = R(\mu t\| \nu \ast ),
and as t \rightarrow \infty , \langle 1, \theta t\rangle \rightarrow 0 by Remark 4.6, when combined with (4.6) this implies
limsupt\rightarrow \infty ,t\in \scrB \Delta (t)\geq limsupt\rightarrow \infty ,t\in \scrB \langle 1, \mu t\rangle ln\langle 1, \mu t\rangle = 0. Hence,

lim
t\rightarrow \infty , t\in \scrB 

\langle 1, \mu t\rangle = 1 and lim
t\rightarrow \infty , t\in \scrB 

\Delta (t) = 0,(4.33)

If \scrB \supseteq [t0,\infty ) for some finite t0, this clearly proves (4.18), and the claim follows.
We now turn to the proof of the fact that B(t) = 1 outside a finite interval. First

note that (4.33) and the Pinsker-type inequality (4.15) together show that

lim
t\rightarrow \infty , t\in \scrB 

\int \infty 

0

| \~f(x, t) - f\ast (x)| dx= 0.

Thus, given \varepsilon 0 :=
\lambda  - 1
4 there exists T \in \scrB such that

cs\langle 1, \theta t\rangle < \varepsilon 0 and cs
\int \infty 

0

| \~f(x, t) - f\ast (x)| dx< \varepsilon 0 for all t\geq T, t\in \scrB .(4.34)

We claim that [T,\infty )\subset \scrB . Arguing by contradiction, assume there exists T \prime > T for
which T \prime \not \in \scrB , that is, such that B(T \prime ) < 1. Let \tau := sup\{ t < T \prime : Bt = 1\} . By the
continuity of B, T \leq \tau < T \prime and \tau \in \scrB ; in particular, the estimates in (4.34) are valid
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7220 R. ATAR, W. KANG, H. KASPI, AND K. RAMANAN

for t= \tau . Find t\ast > 0 so small that Gs(t\ast )< 1
4 and 0< t\ast <T \prime  - \tau . For all 0\leq t\leq t\ast ,

applying Lemma 2.7 with t= \tau and (2.20) with \psi = hs, and using the fact that (2.21)
implies K(\tau + t) - K(\tau ) = \lambda t for t \in (0, t\ast ), the identity gs = hs \=Gs, the upper bound
on hs from Assumption 3.1(1), and (4.34), we obtain

\langle hs, \nu \tau +t\rangle =
\int \infty 

0

gs(x+ t)
\=Gs(x)

\nu \tau (dx) + \lambda 

\int t

0

gs(t - u)du

=

\int \infty 

0

gs(x+ t)
\=Gs(x)

\theta \tau (dx) +

\int \infty 

0

gs(x+ t)
\=Gs(x)

\nu \ast (dx)

+

\int \infty 

0

gs(x+ t)
\=G(x)

(\mu \tau (dx) - \nu \ast (dx)) + \lambda 

\int t

0

gs(t - u)du

\leq cs\langle 1, \theta \tau \rangle +
\int \infty 

0

gs(x+ t)dx+ cs
\int \infty 

0

| f(\tau ,x) - f\ast (x)| dx+ \lambda Gs(t)

\leq \varepsilon 0 + 1 - Gs(t) + \varepsilon 0 + \lambda Gs(t)

= 1+ (\lambda  - 1)Gs(t) + 2\varepsilon 0 \leq 1 + 3\varepsilon 0 = \lambda  - \varepsilon 0.

Thus for all \tau < u < \tau + t\ast , \langle hs, \nu u\rangle \leq \lambda  - \varepsilon 0. Next, since the interval (\tau , \tau + t\ast ) is a
subset of an excursion, (4.24) for B is valid for t in that interval, and it follows that
B\prime (u)\geq \varepsilon 0 for u\in (\tau , \tau + t\ast ). By the continuity of B,

B(u)\geq 1 + (t - \tau )\varepsilon 0 > 1, u\in (\tau , \tau + t\ast ),

which is a contradiction. We have thus shown that B(t) = 1 for all sufficiently large
t. Together with (4.33), this proves (4.18).

To conclude the proof of the proposition, it only remains to show that \nu t \Rightarrow \nu \ast 
and \langle hs, \nu t\rangle \rightarrow 1 as t \rightarrow \infty . Fix T \in (0,\infty ) such that B(t) = 1 for all t \geq T . By
invoking Lemma 2.7, we can assume without loss of generality that T = 0. Then
B(t) = \langle 1, \nu t\rangle = 1 for all t \geq 0, and so by (4.6) in Corollary 4.4 of [28], K has the
representation

K(t) =

\int t

0

\Biggl( \int 
[0,Hs)

Gs(x+ t - w) - Gs(x)
\=Gs(x)

\nu 0(dx)

\Biggr) 
dUs(w), t\geq 0.

In view of the representation for the fluid age measure in (2.20), the convergence
\nu t \Rightarrow \nu \ast is then a direct consequence of Lemma 6.2 of [28] with \pi = \nu . Next, to
show \langle hs, \nu t\rangle \rightarrow 1 as t \rightarrow \infty , using Lemma 2.7 and (2.20) with \psi (x) = hs(x), and
noting from (2.21) that K \prime (T + u) = \langle hs, \nu T+u\rangle for all u> 0, and recalling again that
gs = \=Gshs, we have

\langle hs, \nu T+u\rangle = z(u) +

\int 
[0,u]

gs(T + u - w)\langle hs, \nu T+w\rangle dw,

where z(u) :=
\int 
[0,\infty )

gs(x+u)
\=Gs(x)

\nu T (dx). Next, note that gs(u) = hs(u) \=Gs(u) \leq cs \=Gs(u).

Since \=Gs is nonincreasing and integrable over [0,\infty ), it is also directly Riemann in-
tegrable (see Proposition 2.16(c) in Chapter 9 of [14]), and thus so is gs. Hence,
by the key renewal theorem (e.g., see Theorem 2.8 of Chapter 9 of [14]), \langle hs, \nu T+u\rangle 
converges as u\rightarrow \infty to

\int \infty 
0
z(u)du/

\int \infty 
0
xgs(x)dx =

\int \infty 
0
z(u)du, since by Assumption

2.1,
\int \infty 
0
xgs(x)dx= 1. Thus,
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ASYMPTOTICS OF COUPLED MEASURE-VALUED EQUATIONS 7221

lim
u\rightarrow \infty 

\langle hs, \nu T+u\rangle =
\int \infty 

0

\int 
[0,\infty )

gs(x+ u)
\=Gs(x)

\nu T (dx)du

=

\int 
[0,\infty )

1
\=Gs(x)

\Bigl( \int \infty 

0

gs(x+ u)du
\Bigr) 
\nu T (dx) =

\int 
[0,\infty )

\nu T (dx),

which is equal to 1 by our choice of T . This completes the proof of the
proposition.

4.3. Proof of convergence when the hazard rate function is nonincreas-
ing. In this section, we assume throughout that Assumptions 2.1 and 3.1(2) hold, and
we establish Theorem 3.2(2) in this case, as well as Theorem 3.2(3). In addition, for
some \lambda \geq 0, let (X,\nu , \eta ) be the solution to the fluid equations with arrival rate \lambda and
some initial condition (X(0), \nu 0, \eta 0) \in S. Also, recall from (2.18) that B(t) = \langle 1, \nu t\rangle ,
and define

M(t) :=B(t) - 
\int 
[0,Hs)

\=Gs(x+ t)
\=Gs(x)

\nu 0(dx), t\geq 0.(4.35)

Note that M(t) represents the mass of jobs that entered service after time 0 and are
still in service at time t.

We will first establish the following key result.

Proposition 4.11. Suppose Assumptions 2.1 and 3.1(2) hold, and \lambda \geq 1. Then
we have

lim
t\rightarrow \infty 

M(t) = lim
t\rightarrow \infty 

B(t) = 1.(4.36)

Further, if \lambda > 1, there exists T \in [0,\infty ) such that B(t) = 1 for all t\geq T .

Before launching into the proof, we derive some useful relations that are valid for
any \lambda \geq 0. Setting \psi \equiv 1 in (2.20) and using integration by parts, it follows that for
each t\geq 0,

B(t) = \langle 1, \nu t\rangle =
\int 
[0,Hs)

\=Gs(x+ t)
\=Gs(x)

\nu 0(dx) +

\int t

0

\=Gs(t - w)dK(w)(4.37)

=

\int 
[0,Hs)

\=Gs(x+ t)
\=Gs(x)

\nu 0(dx) +K(t) - 
\int t

0

K(w)gs(t - w)dw,

which when rearranged yields

K(t) =M(t) +

\int t

0

K(t - w)gs(w)dw.(4.38)

Then (4.37), (4.35), and the fact that \nu t is a subprobability measure together imply
that for each t\geq 0,

M(t) =

\int t

0

\=Gs(t - w)dK(w)\geq 0 and M(t)\leq B(t)\leq 1.(4.39)

Together with (4.38) and the renewal theorem (see Chapter V of [7]), this implies that
for each t\geq 0

K(t) =M(t) +Z(t) with Z(t) :=

\int t

0

M(t - w) dUs(w),(4.40)
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7222 R. ATAR, W. KANG, H. KASPI, AND K. RAMANAN

where Us is the renewal function, Us(w) :=
\sum \infty 

n=0(G
s) \star n(w),w \geq 0, and for n \geq 0,

(Gs) \star n denotes the nth convolution power of Gs with the convention that (Gs) \star 0(w) =
1 for all w \geq 0. Note that Z(t) represents the mass of jobs that entered service after
time 0 and has completed service and departed the system by time t. Now, (2.7) and
(2.9) imply that

D(t) =

\int t

0

\langle hs, \nu w\rangle dw=B(0) - B(t) +K(t), t\geq 0.

Then by (4.40), (4.35), and (4.37), we obtain

D(t) = \langle 1, \nu 0\rangle  - 
\int 
[0,Hs)

\=Gs(x+ t)
\=Gs(x)

\nu 0(dx) +Z(t)

=

\int 
[0,Hs)

Gs(x+ t) - Gs(x)
\=Gs(x)

\nu 0(dx) +Z(t).(4.41)

Under Assumption 3.1(2), the hazard rate function hs is nonincreasing and hence, by
Theorem 3 of [12], the renewal function Us is concave. Since Gs has density gs, the
density us := (Us)\prime exists by Proposition 2.7 of [7] and us(x) =

\sum \infty 
n=1(g

s) \star n(x), x\geq 0,
which in particular implies that us(0) = gs(0). Moreover, by Alexandrov's theorem
(e.g., see p. 172 of [37]), the concavity of Us implies that us is nonincreasing and
differentiable a.e., that is,

(us)\prime (t)\leq 0 for a.e. t\geq 0.(4.42)

Now, differentiation of both sides of the defining equation for Z in (4.40) yields for
a.e. t\geq 0,

Z \prime (t) =M(t)us(0) +

\int t

0

M(t - w)(us)\prime (w)dw.(4.43)

On the other hand, differentiating the equation for K in (4.40) and using (2.21), one
obtains, for a.e. t\geq 0,

M \prime (t) =K \prime (t) - Z \prime (t)(4.44)

=

\biggl\{ 
\lambda  - Z \prime (t) if B(t)< 1,
D\prime (t) - Z \prime (t) if B(t) = 1.

Next, differentiating both sides of (4.41), we obtain for a.e. t\geq 0,

D\prime (t) =

\int 
[0,Hs)

gs(x+ t)
\=Gs(x)

\nu 0(dx) +Z \prime (t)\geq Z \prime (t).

Therefore, by (4.44), for a.e. t\geq 0,

if Z \prime (t)\leq \lambda , then M \prime (t)\geq 0.(4.45)

We now establish some auxiliary results that will be used in the proof of Propo-
sition 4.11.

Lemma 4.12. Suppose \lambda \geq 1. Then there is no T \in (0,\infty ) and c\in (0,1) such that
M(t)< c for all t\geq T . The same assertion also holds when M is replaced with B.
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ASYMPTOTICS OF COUPLED MEASURE-VALUED EQUATIONS 7223

Proof. Suppose the statement of the lemma is not true, that is, suppose there ex-

ists T > 0 and c\in (0,1) such thatM(t)< c for all t\geq T . Since
\int 
[0,Hs)

\=Gs(x+t)
\=Gs(x)

\nu 0(dx)\rightarrow 
0 as t\rightarrow \infty , by (4.35), there exists T \prime > T such that B(t)< 1 for all t\geq T \prime . In turn,
by (2.9), it follows that K \prime (t) = \lambda , for all t \geq T \prime , and hence (4.37) and (4.35) imply
that

M(t) =

\int t

0

\=Gs(t - w)dK(w) =

\int T \prime 

0

\=Gs(t - w)dK(w) + \lambda 

\int t

T \prime 

\=Gs(t - w)dw.

As t\rightarrow \infty , the first term converges to zero by the dominated convergence theorem and
the pointwise limit \=Gs(t - w)\rightarrow 0. For the same reason, the second term converges to
limt\rightarrow \infty \lambda 

\int t

0
\=Gs(t - w)dw= \lambda 

\int \infty 
0

\=Gs(w)dw, which is equal to \lambda by (2.1) of Assumption
2.1. Thus, limt\rightarrow \infty M(t)\geq \lambda , which is a contradiction, thus proving the first assertion

of the lemma. Since, by (4.35), B(t) - M(t) =
\int 
[0,Hs)

\=Gs(x+t)
\=Gs(x)

\nu 0(dx) \rightarrow 0 as t\rightarrow \infty ,

the same assertion holds also for B.

Next, substituting into (4.43) the inequality (4.42), the relation us(0) = gs(0),
and the fact that M(t)\in [0,1] for each t\geq 0 due to (4.39), we see that

Z \prime (t)\leq M(t)us(0) =M(t)gs(0)\leq gs(0) for a.e. t\geq 0.(4.46)

We also observe that since the hazard rate function hs is nonincreasing by
Assumption 3.1(2), then gs(0) > 0. (Otherwise, if gs(0) = 0, then hs(0) = 0, which
implies that 0\leq hs(t)\leq hs(0) = 0 for each t\geq 0 and thus gs(t) = 0 for all t\geq 0, which
would contradict the fact that gs is the density of Gs.) Therefore, for n\in \BbbN \cup \{ 0\} and
\varepsilon \in (0, 12 ), define

\lambda n :=
\lambda  - \varepsilon 

gs(0)

\Biggl( 
n\sum 

i=0

\biggl( 
1 - 1

gs(0)

\biggr) i
\Biggr) 
=
\lambda  - \varepsilon 

gs(0)

1 - 
\Bigl( 
1 - 1

gs(0)

\Bigr) n+1

1 - 
\Bigl( 
1 - 1

gs(0)

\Bigr) (4.47)

= (\lambda  - \varepsilon )

\Biggl( 
1 - 

\biggl( 
1 - 1

gs(0)

\biggr) n+1
\Biggr) 
,

and

\tau n := sup\{ t > 0 :M(t)<\lambda n\} .(4.48)

If \tau n <\infty , then

M(\tau n + t)\geq \lambda n for all t\geq 0.(4.49)

Lemma 4.13. Suppose \lambda \geq 1, \varepsilon \in (0, 12 ) and g
s(0)> 1\vee (\lambda  - \varepsilon ). Then \tau n <\infty and

hence (4.49) holds for all n \in \BbbN with n < n\ast , where n\ast := sup\{ n\in \BbbN \cup \{ 0\} : \lambda n < 1\} ,
and also for n= n\ast , if n\ast <\infty .

Proof. Since gs(0)> 1 \vee (\lambda  - \varepsilon )\geq 1 by the assumptions of the lemma, it follows
that 1 - 1

gs(0) \in (0,1) and (4.47) then implies that

\lambda n \uparrow \lambda  - \varepsilon as n\rightarrow \infty .(4.50)

We prove the lemma by induction. We first start with the base case n = 0, where
\lambda 0 = (\lambda  - \varepsilon )/gs(0). Note that \lambda 0 < 1 by the assumptions of the lemma. We argue by
contradiction to show that

M(t)<
\lambda  - \varepsilon 

gs(0)
for all t\in (0, \tau 0).(4.51)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

11
/0

9/
23

 to
 1

32
.6

8.
49

.1
29

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



7224 R. ATAR, W. KANG, H. KASPI, AND K. RAMANAN

Note that (4.51) holds trivially if \tau 0 = 0. So, suppose \tau 0 > 0 and (4.51) does not
hold. Then there must exist 0 < t1 < \tau 0 for which M(t1) \geq \lambda  - \varepsilon 

gs(0) . It follows from

(4.46) and (4.45) that for a.e. t \in (t1, \tau 0), the inequality M(t) < \lambda  - \varepsilon 
gs(0) implies that

Z \prime (t)\leq M(t)gs(0)<\lambda  - \varepsilon < \lambda and henceM \prime (t)\geq 0. SinceM is absolutely continuous,
M(t)\geq \lambda  - \varepsilon 

gs(0) = \lambda 0 for all t \in [t1, \tau 0) (see Lemma B.1). This contradicts the definition

of \tau 0, and thus (4.51) holds. If \tau 0 =\infty , then (4.51) implies M(t)<\lambda 0 < 1 for all t > 0,
which contradicts Lemma 4.12. Thus, \tau 0 <\infty . This completes the proof of the base
case.

Now, suppose that \tau k <\infty for some k \in \BbbN \cup \{ 0\} , with k < n\ast if n\ast <\infty . It follows
that \lambda k+1 < 1 by the choice of k and the definition of n\ast . By the definition of \tau k and
the continuity of M ,

M(\tau k + t)\geq \lambda k for all t\in [0,\infty ).(4.52)

Then for a.e. t\geq 0, by (4.43), (4.42), (4.52), and the relations M(t)\geq 0 and us(0) =
gs(0), we have

Z \prime (\tau k + t) =M(\tau k + t)gs(0) +

\int t

0

M(\tau k + t - w)(us)\prime (w)dw(4.53)

+

\int \tau k+t

t

M(\tau k + t - w)(us)\prime (w)dw(4.54)

\leq M(\tau k + t)gs(0) + \lambda k (u
s(t) - gs(0)) .(4.55)

Since Assumption 3.1(2) implies that the integrable function gs is also bounded, it
lies in \BbbL 1+\varepsilon (0,\infty ) for any \varepsilon > 0 and satisfies gs(t)\rightarrow 0 as t\rightarrow \infty . Thus, by Theorem
12 of [44] we can conclude that limt\rightarrow \infty us(t) = 1. Hence, there exists \sigma k > 0 such that

(\lambda  - \varepsilon )+ \lambda k(u
s(t) - 1) = (\lambda  - \varepsilon )+ \lambda k (g

s(0) - 1) + \lambda k (u
s(t) - gs(0))<\lambda for all t\geq \sigma k.

(4.56)

We now show that the following statement cannot hold:

M(\tau k + t)<\lambda k+1 =
\lambda  - \varepsilon 

gs(0)
+ \lambda k

\biggl( 
1 - 1

gs(0)

\biggr) 
for all t > \sigma k,(4.57)

where the equality follows from (4.47). Indeed, if this were true, then this would
imply that M(t) < \lambda k+1 < 1 for all t \geq \sigma \prime 

k := \tau k + \sigma k, which contradicts Lemma
4.12. Thus, (4.57) does not hold or, in other words, there exists \tau \prime k \in (\sigma \prime 

k,\infty ) such
that M(\tau \prime k) \geq \lambda k+1. We now show that for a.e. t \in (0,\infty ), if M(\tau \prime k + t) < \lambda k+1,
then M \prime (\tau \prime k + t)\geq 0. Indeed, if the first inequality is true, then substituting this into
(4.55) with \tau \prime k in place of \tau k, and using (4.56), it follows that Z \prime (\tau \prime k + t) < \lambda . When
combined with (4.45) the latter implies M \prime (\tau \prime k + t)\geq 0. Hence (applying Lemma B.1
with f =M , c= \lambda k+1, T = \tau \prime k, S =\infty ), it follows that M(\tau \prime k + t)\geq \lambda k+1 for all t\geq 0,
thus showing that \tau k+1 \leq \tau \prime k <\infty . By induction, it follows that for each 0 \leq n < n\ast ,
\tau n <\infty , and hence, (4.49) holds, and if n\ast <\infty , then also \tau n\ast <\infty and (4.49) holds
with n= n\ast . This completes the proof of the lemma.

We are now in a position to present the proof of Proposition 4.11.

Proof of Proposition 4.11. We first prove the proposition when \lambda = 1. For this,
we consider two cases.
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ASYMPTOTICS OF COUPLED MEASURE-VALUED EQUATIONS 7225

Case 1a: gs(0)\leq 1. In this case, (4.46) shows that Z \prime (t)\leq 1 for a.e. t\geq 0, then
(4.45) implies that for a.e. t \geq 0, M \prime (t) \geq 0. Since M is absolutely continuous by
(4.39) this implies that M is nondecreasing on [0,\infty ) and b := limt\rightarrow \infty M(t) exists.
Furthermore, (4.35) and the fact that \=Gs(x+ t) \rightarrow 0 as t\rightarrow \infty for every x \in [0,Hs)
imply b= limt\rightarrow \infty B(t). We now argue by contradiction to show that b= 1. Suppose
b < 1; then for any T <\infty , there exists T1 <\infty such that for t\geq 0, B(T1+ t)< 1, and
thus by (2.21) K \prime (T1+ t) = 1. Now, recalling B(\cdot ) = \langle 1, \nu \cdot \rangle from (4.37) and combining
Lemma 2.7 and Theorem 2.6, it follows that (2.20) holds with \psi = 1, and \nu t and Kt

replaced with \nu T1+t, and KT1+t  - KT1
, respectively, or in other words, for each t\geq 0,

B(T1 + t) =

\int 
[0,Hs)

\=Gs(x+ t)
\=Gs(x)

\nu T1
(dx) +

\int t

0

\=Gs(t - u)K \prime (T1 + u)du.

When combined with the relation K \prime (T1 + \cdot ) = \lambda = 1 a.e., this implies that for each
t\geq 0,

B(T1 + t) =

\int 
[0,Hs)

\=Gs(x+ t)
\=Gs(x)

\nu T1(dx) +

\int t

0

\=Gs(t - w)dw.

Sending t\rightarrow \infty , using \=Gs(x+ t) \rightarrow 0 pointwise and the dominated convergence the-
orem, as well as (2.2) of Assumption 2.1, this implies b = limt\rightarrow \infty B(t) = 1. This
contradicts the supposition that b < 1 and thus proves that b= 1.

Case 1b: gs(0)> 1. Let \varepsilon \in (0,1/2). In this case, by (4.47),

\lambda n = (1 - \varepsilon )

\Biggl( 
1 - 

\biggl( 
1 - 1

gs(0)

\biggr) n+1
\Biggr) 
< 1 for all n\geq 1.

Thus, by Lemma 4.13, for each n \geq 1, we have \tau n < \infty and so (4.49) implies
lim inft\rightarrow \infty M(t) \geq \lambda n for each n \geq 1. By (4.50), we obtain lim inft\rightarrow \infty M(t) \geq 1 - \varepsilon .
Sending \varepsilon \downarrow 0, we obtain lim inft\rightarrow \infty M(t)\geq 1. Since limsupt\rightarrow \infty M(t)\leq 1 by (4.39) it
follows that in fact limt\rightarrow \infty M(t) = 1. When combined with (4.35) and the fact that
\=Gs(x+ t) \rightarrow 0 as t\rightarrow \infty for every x \in [0,Hs), it follows that limt\rightarrow \infty B(t) = 1, thus
proving the proposition in this case.

We next prove the proposition for the case that \lambda > 1. Let \varepsilon > 0 be small enough
such that \lambda  - \varepsilon > 1. We now consider two cases.

Case 2a: gs(0)\leq \lambda  - \varepsilon . In this case, (4.46) shows that Z \prime (t)\leq \lambda  - \varepsilon < \lambda for a.e.
t\geq 0, and hence (4.45) implies that for a.e. t\geq 0, M \prime (t)\geq 0. Moreover, by (4.44), we
have M \prime (t) = \lambda  - Z \prime (t)\geq \varepsilon if B(t)< 1. By the definition of M in (4.35), we obtain

B\prime (t) =M \prime (t) +

\int 
[0,Hs)

gs(x+ t)
\=Gs(x)

\nu 0(dx).

Since hs is nonincreasing, we have hs(x+ t) \leq hs(0) for each x \in [0,Hs  - t), and an
application of the dominated convergence theorem shows that\int 

[0,Hs)

gs(x+ t)
\=Gs(x)

\nu 0(dx)\leq 
\int 
[0,Hs)

hs(0) \=Gs(x+ t)
\=Gs(x)

\nu 0(dx)\rightarrow 0 as t\rightarrow \infty .

The last three displays together imply that there exists T \in (0,\infty ) such that B\prime (t)>
\varepsilon /2 whenever B(t)< 1 for a.e. t \in [T,\infty ). Since B is bounded (by 1), the inequality
B(t)< 1 cannot hold for all t\geq T . In other words, there must exist T \prime >T such that
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7226 R. ATAR, W. KANG, H. KASPI, AND K. RAMANAN

B(T \prime ) = 1. Since B is absolutely continuous and bounded by 1 (applying Lemma B.1
with f =B, c= 1, T = T \prime , and S =\infty ), we conclude that B(t) = 1 for all t\in [T \prime ,\infty ).

Case 2b: gs(0)>\lambda  - \varepsilon > 1. Then n\ast <\infty since (4.47) shows that \lambda n \uparrow (\lambda  - \varepsilon )> 1
as n\rightarrow \infty . Since by Lemma 4.13, \tau n\ast <\infty , then the continuity of W dictates that
M(\tau n\ast ) = \lambda n\ast . Together with (4.55) with k = n\ast and the fact that M is bounded by
1 due to (4.39), this and (4.43) together imply that for a.e. t\geq 0,

Z \prime (\tau n\ast + t)\leq M(\tau n\ast + t)gs(0) + \lambda n\ast (us(t) - gs(0))

\leq (1 - \lambda n\ast )gs(0) + \lambda n\ast us(t).

By the definition of n\ast , we have \lambda n\ast < 1\leq \lambda n\ast +1. Together with the definition of \lambda n
in (4.47), this implies that

0< 1 - \lambda n\ast \leq \lambda n\ast +1  - \lambda n\ast =
\lambda  - \varepsilon 

gs(0)

\biggl( 
1 - 1

gs(0)

\biggr) n\ast +1

.

Combining the above two displays, we obtain

Z \prime (\tau n\ast + t)\leq (\lambda  - \varepsilon )

\biggl( 
1 - 1

gs(0)

\biggr) n\ast +1

+ \lambda n\ast us(t).

Recalling that limt\rightarrow \infty us(t) = 1 and using the expression for \lambda n\ast from (4.47), it follows
that as t\rightarrow \infty ,

(\lambda  - \varepsilon )

\biggl( 
1 - 1

gs(0)

\biggr) n\ast +1

+ \lambda n\ast us(t)\rightarrow (\lambda  - \varepsilon )

\biggl( 
1 - 1

gs(0)

\biggr) n\ast +1

+ \lambda n\ast = \lambda  - \varepsilon .

Thus, for all t large enough, Z \prime (\tau n\ast + t)< \lambda  - \varepsilon /2. However, note that by (4.44), we
have for a.e. t\geq 0,

M \prime (\tau n\ast + t) = \lambda  - Z \prime (\tau n\ast + t)> \varepsilon /2 if B(\tau n\ast + t)< 1.

By the definition of M in (4.35), we obtain for a.e. t\geq 0,

B\prime (\tau n\ast + t) =M \prime (\tau n\ast + t) +

\int 
[0,Hs)

gs(x+ \tau n\ast + t)
\=Gs(x)

\nu 0(dx).

Since hs is nonincreasing, it follows that hs(x+ \tau n\ast + t)\leq hs(0) for each x \in [0,Hs),
and we obtain by the dominated convergence theorem that\int 

[0,Hs)

gs(x+ \tau n\ast + t)
\=Gs(x)

\nu 0(dx)\leq 
\int 
[0,Hs)

hs(0) \=Gs(x+ \tau n\ast + t)
\=Gs(x)

\nu 0(dx)\rightarrow 0 as t\rightarrow \infty .

The rest of the proof follows as in Case 1b. The last four displays imply that there
exists T \in (0,\infty ) such that B\prime (t)> \varepsilon /4 whenever B(t)< 1 for a.e. t \in [T,\infty ). By the
boundedness of B it follows that there exists T \prime > T such that B(T \prime ) = 1. Thus, for
a.e. t \geq T \prime , we have B\prime (t) > \varepsilon /4 whenever B(t) < 1. In turn (by Lemma B.1) this
implies that B(t) = 1 for all t\in [T \prime ,\infty ). Since all possible cases have been considered,
this concludes the proof of the proposition.

We now consider convergence properties of the measure-valued age process.

Lemma 4.14. For \lambda \geq 1, under the assumptions of Proposition 4.11, suppose there
exists T < \infty such that B(t) = 1 for all t \geq T . Then \nu t \Rightarrow \nu \ast and \langle hs, \nu t\rangle \rightarrow 1 as
t\rightarrow \infty .
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ASYMPTOTICS OF COUPLED MEASURE-VALUED EQUATIONS 7227

Proof. By invoking Lemma 2.7, we can assume without loss of generality that
T = 0. Then B(t) = \langle 1, \nu t\rangle = 1 for all t\geq 0, and so by relation (4.6) in Corollary 4.4
of [28], K has the representation

K(t) =

\int t

0

\Biggl( \int 
[0,Hs)

Gs(x+ t - w) - Gs(x)
\=Gs(x)

\nu 0(dx)

\Biggr) 
dUs(w), t\geq 0.

In view of the representation for the fluid age measure in (2.20), the convergence
\nu t \Rightarrow \nu \ast is then a direct consequence of Lemma 6.2 of [28] with \pi = \nu . Finally, since
hs is bounded and monotone by Assumption 3.1(2), the set of its discontinuities is
countable and thus has zero Lebesgue measure. Since \nu \ast is an absolutely continuous
measure, the continuous mapping theorem implies \langle hs, \nu t\rangle \rightarrow \langle hs, \nu \ast \rangle =

\int \infty 
0
gs(x)dx=

1, as t\rightarrow \infty . This concludes the proof of the lemma.

4.4. Convergence of \bfitX in the supercritical regime. When \lambda > 1, we now
establish the large-time convergence of X(t) under Assumption 2.8.

Proposition 4.15. Suppose that \lambda > 1 and Assumptions 2.1, 2.8, and 3.1 hold.
Then for any solution (X,\nu , \eta ) to the fluid equations with arrival rate \lambda and initial
condition (X(0), \nu 0, \eta 0)\in S,

X(t)\rightarrow x\lambda \ast ,(4.58)

with x\lambda \ast being the unique element of \scrX \lambda in (2.25).

Proof. Fix \lambda > 1. It is shown in Proposition 4.7 and Lemma 4.14 that there exists
T <\infty such that

B(t) = \langle 1, \nu t\rangle = 1 for all t\geq T(4.59)

and

\nu t \Rightarrow \nu \ast and \langle hs, \nu t\rangle \rightarrow 1 as t\rightarrow \infty .(4.60)

The relation (2.14) shows that X(t) =Q(t) + 1 for all t\geq T , and (2.22) implies that
for a.e. t\geq T ,

K \prime (t) = \lambda  - Q\prime (t) - 
\int Q(t)

0

hr((F \eta t) - 1(y))dy and K \prime (t) = \langle hs, \nu t\rangle .(4.61)

By using a change of variables and (2.19), we see that for each t\geq 0,\int Q(t)

0

hr((F \eta t) - 1(y))dy= \lambda Gr(t\wedge (F \eta t) - 1(Q(t)))(4.62)

+

\int 
[0,Hr)

1[0,(F\eta t ) - 1(Q(t))](x+ t)
gr(x+ t)
\=Gr(x)

\eta 0(dx).

We now claim that for every \varepsilon > 0, there exists T \dagger (\varepsilon )<\infty such that

F \eta t(t)>\lambda \langle 1, \eta \ast \rangle  - \varepsilon and (F \eta t) - 1(Q(t))< t for all t\geq T \dagger (\varepsilon ).(4.63)

To prove the claim we argue by contradiction. Suppose to the contrary that there ex-
ists a sequence of times \{ un\} n\in \BbbN with un \rightarrow \infty as n\rightarrow \infty such that (F \eta un ) - 1(Q(un))\geq 
un for each n\in \BbbN . Then by (1.7) it follows that

Q(un)\geq F \eta un (un) for all n\in \BbbN .(4.64)
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7228 R. ATAR, W. KANG, H. KASPI, AND K. RAMANAN

Since by (2.15) and Lemma 4.1, Q(t) \leq \langle 1, \eta t\rangle \rightarrow \lambda \langle 1, \eta \ast \rangle as t\rightarrow \infty and \eta t \Rightarrow \lambda \eta \ast as
t\rightarrow \infty , this implies

limsup
n\rightarrow \infty 

F \eta un (un)\leq limsup
n\rightarrow \infty 

Q(un)\leq \lambda \langle 1, \eta \ast \rangle .(4.65)

On the other hand, fix any m \in (0,\infty ). Since \eta t \Rightarrow \lambda \eta \ast as t \rightarrow \infty , and \eta \ast is an
absolutely continuous measure, \eta t[0,m]\rightarrow \lambda \eta \ast [0,m] as t\rightarrow \infty . Hence, it follows that

lim inf
t\rightarrow \infty 

F \eta t(t)\geq lim inf
t\rightarrow \infty 

F \eta t(m) = \lambda \eta \ast [0,m].

Letting m\rightarrow \infty in the above display, we have

lim inf
t\rightarrow \infty 

F \eta t(t)\geq \lambda \langle 1, \eta \ast \rangle .(4.66)

Combining (4.66) and (4.67), it follows that F \eta un (un)\rightarrow \lambda \langle 1, \eta \ast \rangle as n\rightarrow \infty . Together
with (4.65) and the fact established above that limsupt\rightarrow \infty Q(t)\leq \lambda \langle 1, \eta \ast \rangle , this implies
Q(un) \rightarrow \lambda \langle 1, \eta \ast \rangle as n \rightarrow \infty . Next, let M \in (0,Hr) be such that Gr(M) > 1  - 1

4\lambda 
and choose 0 < \varepsilon < \lambda (\langle 1, \eta \ast \rangle  - \eta \ast [0,M ]). Then, since (as argued above) \eta t[0,M ] \rightarrow 
\lambda \eta \ast [0,M ] as t \rightarrow \infty , there exists T (\varepsilon ) > M such that \eta t[0,M ] < \lambda \langle 1, \eta \ast \rangle  - \varepsilon for all
t\geq T (\varepsilon ). Moreover, for every t\geq T (\varepsilon ), if Q(t)>\lambda \langle 1, \eta \ast \rangle  - \varepsilon , then \eta t[0,M ]<Q(t) and
hence (F \eta t) - 1(Q(t))>M , and therefore t\wedge (F \eta t) - 1(Q(t))>M . Thus, by (4.62), for
every t\geq T (\varepsilon ),

Q(t)>\lambda \langle 1, \eta \ast \rangle  - \varepsilon \Rightarrow 
\int Q(t)

0

hr((F \eta t) - 1(y))dy\geq \lambda Gr(t\wedge (F \eta t) - 1(Q(t)))

\geq \lambda Gr(M)>\lambda  - 1/4.

Due to the second display in (4.61), together with (4.60), without loss of generality,
by choosing T (\varepsilon ) larger if necessary, we can assume that for all t \geq T (\varepsilon ), K \prime (t) =
\langle hs, \nu t\rangle > 1 - 1/4. Together with the first display in (4.61), this implies that for all
t\geq T (\varepsilon ),

Q(t)>\lambda \langle 1, \eta \ast \rangle  - \varepsilon \Rightarrow Q\prime (t)< - 1 + 2/4 = - 1/2.

In turn, this implies that the time

\~T (\varepsilon ) := inf\{ t\geq T (\varepsilon ) :Q(t)\leq \lambda \langle 1, \eta \ast \rangle  - \varepsilon \} 

must be finite. Then Lemma B.1, with f = - Q, T = \~T (\varepsilon ), S =\infty , and c= - \lambda \langle 1, \eta \ast \rangle +
\varepsilon , implies that Q(t)\leq \lambda \langle 1, \eta \ast \rangle  - \varepsilon for all t\geq \~T (\varepsilon ). By (4.67), there exists T \dagger (\varepsilon )> \~T (\varepsilon )
such that for all t \geq T \dagger (\varepsilon ), F \eta t(t) > \lambda \langle 1, \eta \ast \rangle  - \varepsilon \geq Q(t). Hence, (F \eta t) - 1(Q(t)) < t,
which proves the stated claim (4.64).

Given the claim (4.64), by (4.62) it follows that for all t\geq T \dagger (\varepsilon ),\int Q(t)

0

hr((F \eta t) - 1(y))dy= \lambda Gr((F \eta t) - 1(Q(t))),(4.67)

and thus (4.61) implies that

Q\prime (t) = \lambda  - \langle hs, \nu t\rangle  - \lambda Gr((F \eta t) - 1(Q(t))).(4.68)

Since Q is continuous and (as shown above) Q(t)\leq \lambda \langle 1, \eta \ast \rangle  - \varepsilon for all t\geq T \dagger (\varepsilon ), Q is
bounded on [0,\infty ).
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ASYMPTOTICS OF COUPLED MEASURE-VALUED EQUATIONS 7229

We now show that q\ast = limt\rightarrow \infty Q(t) exists. Arguing by contradiction, suppose
that there exist q1 and q2 such that

lim inf
t\rightarrow \infty 

Q(t)< q1 < q2 < limsup
t\rightarrow \infty 

Q(t).

Due to the absolute continuity of Q, this implies there must exist two sequences of
times \{ tn\} n\in \BbbN , and \{ sn\} n\in \BbbN in [T \dagger (\varepsilon ),\infty ) with tn \rightarrow \infty , sn \rightarrow \infty as n\rightarrow \infty such that

Q(tn)\rightarrow q1 and Q(sn)\rightarrow q1, as n\rightarrow \infty ,(4.69)

and Q\prime (tn) \geq 0 and Q\prime (sn) \leq 0 for all n \in \BbbN . When combined with (4.69) and the
second display of (4.60), this implies that as n\rightarrow \infty ,

limsup
n\rightarrow \infty 

\lambda Gr((F \eta tn ) - 1(Q(tn)))\leq \lambda  - 1 and lim inf
n\rightarrow \infty 

\lambda Gr((F \eta sn ) - 1(Q(sn)))\geq \lambda  - 1.

(4.70)

Since by Lemma 4.1, \eta t \Rightarrow \lambda \eta \ast as t \rightarrow \infty , properties of the inverse function (see
Theorem 13.6.3 of [46]) imply that there exists a dense subset \scrA \subset (0,\infty ) such that

(F \eta tn ) - 1(y)\rightarrow 
\bigl( 
F\lambda \eta \ast 

\bigr)  - 1
(y) and (F \eta sn ) - 1(y)\rightarrow 

\bigl( 
F\lambda \eta \ast 

\bigr)  - 1
(y) as n\rightarrow \infty for all y \in \scrA .

Together with the continuity of Gr, (4.70), the fact that
\bigl( 
F\lambda \eta \ast 

\bigr)  - 1
is nondecreasing,

and (4.71), this implies that for each \delta 1, \delta 2 > 0 such that q1  - \delta 1 and q1 + \delta 2 lie in \scrA ,

\lambda Gr(
\bigl( 
F\lambda \eta \ast 

\bigr)  - 1
(q1  - \delta 1))\leq limsup

n\rightarrow \infty 
\lambda Gr((F \eta tn ) - 1(Q(tn)))\leq \lambda  - 1(4.71)

and, likewise,

\lambda Gr(
\bigl( 
F\lambda \eta \ast 

\bigr)  - 1
(q1 + \delta 2))\geq lim inf

n\rightarrow \infty 
\lambda Gr((F \eta tn ) - 1(Q(tn)))\geq \lambda  - 1.

Together, the last two inequalities imply

\lambda Gr(
\bigl( 
F\lambda \eta \ast 

\bigr)  - 1
(q1  - \delta 1))\leq \lambda  - 1\leq \lambda Gr(

\bigl( 
F\lambda \eta \ast 

\bigr)  - 1
(q1 + \delta 2)).

Recalling that both Gr and (F\lambda \eta \ast ) - 1 are continuous and letting \delta 1 \vee \delta 2 \downarrow 0, it follows
that

Gr(
\bigl( 
F\lambda \eta \ast 

\bigr)  - 1
(q1)) =

\lambda  - 1

\lambda 
,(4.72)

and thus q1+1 belongs to the set \scrX \lambda from (2.25). An exactly analogous argument can

be used to show that Gr(
\bigl( 
F\lambda \eta \ast 

\bigr)  - 1
(q2)) = (\lambda  - 1)/\lambda or, equivalently, that q2+1\in \scrX \lambda .

Since \scrX \lambda is a singleton by Assumption 2.8, this implies q1 = q2, which contradicts our
initial assumption q1 < q2. Thus, q\ast = limt\rightarrow \infty Q(t) exists.

By the same argument as above, choosing \delta 1, \delta 2 such that q\ast  - \delta 1 and q\ast +\delta 2 \in \scrA ,
and then sending \delta 1, \delta 2 \rightarrow 0, we can conclude that (4.73) also holds when q1 is replaced
with q\ast . Hence, by Assumption 2.8, q\ast + 1= x\lambda \ast , the unique element of \scrX \lambda . Together
with (2.14), (2.18), and (4.59), this implies that X(t)\rightarrow q\ast + 1 = x\lambda \ast . This completes
the proof of the proposition.

4.5. Uniqueness of the invariant distribution. We now show how the con-
vergence results of the last three sections can be bootstrapped to conclude, under
Assumption 2.8, the uniqueness of the invariant distribution.
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7230 R. ATAR, W. KANG, H. KASPI, AND K. RAMANAN

Proposition 4.16. Suppose \lambda \geq 1, suppose Assumptions 2.1, 2.8, and 3.1 hold,
and suppose that for any solution (X,\nu , \eta ) to the fluid equations with arrival rate \lambda 
and initial condition (X(0), \nu 0, \eta 0)\in S,

\eta t \Rightarrow \lambda \eta \ast and B(t)\rightarrow 1.(4.73)

Then any invariant distribution \mu for the fluid equations with arrival rate \lambda satisfies
\mu = \delta z\lambda 

\ast 
, where z\lambda \ast = (x\lambda \ast , \nu \ast , \lambda \eta \ast ), with x

\lambda 
\ast being the unique element of \scrX \lambda in (2.25).

Proof. Fix \lambda \geq 1 and let \mu be an invariant distribution for the fluid equations
with arrival rate \lambda . Let (X(0), \nu 0, \eta 0) be a random element taking values in \BbbR + \times 
\scrM F [0,H

s) \times \scrM F [0,H
r) with law \mu and let (X,\nu , \eta ) be the solution to the fluid

equations with arrival rate \lambda and initial condition (X(0), \nu 0, \eta 0) \in S. Since \eta t \Rightarrow \lambda \eta \ast 
and B(t) \rightarrow 1 by assumption and the laws of \eta t and \nu t are invariant in t since \mu is
an invariant distribution, we have \BbbP (\eta 0 = \lambda \eta \ast ) = 1 and \BbbP (B(t) = \langle 1, \nu t\rangle = 1) = 1.
Further, by continuity of B, we have \BbbP -almost surely, B(t) = 1 for all t\geq 0. Then by
Lemma 4.14 and Proposition 4.7, it follows that \nu t \Rightarrow \nu \ast as t\rightarrow \infty . Since the law of
\nu t is invariant in t, it follows that \BbbP (\nu 0 = \nu \ast ) = 1.

To complete the proof, it only remains to show that \BbbP (X(0) = x\lambda \ast ) = 1. Since
almost surely, for all t \geq 0, B(t) = 1, and \eta t = \lambda \eta \ast , the relations (2.14) and (2.13)
show that almost surely for all t\geq 0, X(t) =Q(t) + 1 and

R(t) =

\int t

0

\Biggl( \int Q(u)

0

hr(
\bigl( 
F\lambda \eta \ast 

\bigr)  - 1
(y))dy

\Biggr) 
du= \lambda 

\int t

0

Gr(
\bigl( 
F\lambda \eta \ast 

\bigr)  - 1
(Q(u)))du.

Moreover, using the fact that almost surely for each t \geq 0, \nu t = \nu \ast , and hence,
D(t) = t\langle hs, \nu \ast \rangle = t, we have from (2.14), (2.12) and the fact that E =E\lambda that almost
surely for each t\geq 0,

Q(t) =Q(0) + (\lambda  - 1)t - \lambda 

\int t

0

Gr(
\bigl( 
F\lambda \eta \ast 

\bigr)  - 1
(Q(u)))du(4.74)

=Q(0) +

\int t

0

\Bigl( 
\lambda \=Gr(

\bigl( 
F\lambda \eta \ast 

\bigr)  - 1
(Q(u))) - 1

\Bigr) 
du.(4.75)

We now consider two cases.
Case 1: \lambda = 1. In this case, we have\int t

0

\Bigl( 
\lambda \=Gr(

\bigl( 
F\lambda \eta \ast 

\bigr)  - 1
(Q(u))) - 1

\Bigr) 
du= - 

\int t

0

Gr((F \eta \ast )
 - 1

(Q(u)))du.

It is clear from (4.76) that Q is nonincreasing on [0,\infty ). By the nonnegativity of Q,
q\ast := limt\rightarrow \infty Q(t) exists and the fact thatX(t) =Q(t)+1 implies limt\rightarrow \infty X(t) = x\ast :=
q\ast +1. Note that Gr((F \eta \ast )

 - 1
(q\ast )) = 0 since, otherwise, Q(t)\rightarrow  - \infty as t\rightarrow \infty , which

contradicts the nonnegativity of Q. Therefore, by Assumption 2.8, the definition of
\scrX \lambda in (2.25), and the fact that \lambda  - 1 = 0, it follows that x\ast = 1 (then q\ast = 0) is equal
to the unique element x\lambda \ast of \scrX \lambda . As before, since \mu is an invariant distribution, this
implies that \BbbP (X(0) = x\lambda \ast ) = 1.

Case 2: \lambda > 1. In this case, it follows from Proposition 4.15 that X(t)\rightarrow q\ast +1=
x\ast \lambda as t\rightarrow \infty . Thus, we can argue as in Case 1 that \BbbP (X(0) = x\ast \lambda ) = 1. This completes
the proof of the proposition.
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ASYMPTOTICS OF COUPLED MEASURE-VALUED EQUATIONS 7231

4.6. Proof of Theorem 3.2. We now indicate where each part of the result
has been proved. The proof of statement (1) is given in section 4.1, and for all \lambda \geq 0,
the (weak) convergence of \eta t to \lambda \eta \ast under Assumption 3.1 follows from Lemma 4.1.
When \lambda > 1, (3.1) and (3.2) follow from Proposition 4.7 and Remark 4.6 when
Assumption 3.1(1) holds, and from Proposition 4.11 and Lemma 4.14 when
Assumption 3.1(2) holds, and moreover, (3.3) follows from Proposition 4.15. Fur-
ther, when \lambda = 1 the convergence B(t)\rightarrow 1 under Assumption 3.1(2) also follows from
Proposition 4.11. Last, the uniqueness results for the invariant distribution for \lambda 
stated in (2)(b) and (3) follow from the convergence results in (2)(a) and (3) and
Proposition 4.16.

5. Results regarding the multiclass model. Here we consider the model with
multiple classes operating under a fixed priority discipline. This model, with general
class-dependent service time and patience time distributions, was analyzed in [10] and
convergence at the fluid scale, uniformly on compact time intervals, was established.
Here, we study the large-time behavior under the additional assumption that the
service time hazard rate satisfies Assumption 3.1. For simplicity of exposition, we
also assume that the reneging distributions are exponential (but may depend on the
job class) since the main motivation is to deduce the optimality of a certain priority
scheduling rule (known as the c\mu /\theta rule; see details below) discussed in [10], which
is not expected to hold beyond the exponential reneging case. As shown in [10], this
optimality result relies on the convergence of the invariant distributions of the fluid-
scaled process, as N \rightarrow \infty , to the unique element of the invariant manifold of the fluid
limit (under assumptions that ensure such uniqueness). However, the proof of the
convergence result in [10] (specifically Theorem 4.3 therein) has the same gap as that
described for the single-class case in Remark 3.4; namely, from the proof in [10] one can
only deduce that the invariant distributions of theN -server systems exist and are tight
and that any subsequential limit of the sequence of invariant distributions must be an
invariant distribution of the fluid equations (defined analogously to Definition 2.10).
As explained in Remark 2.11 in the single-class setting, in order to show that there is
a unique invariant distribution (which must then coincide with the Dirac delta mass
at the unique element of the invariant manifold), it suffices to establish the large-time
convergence of the solution of the fluid equations with any initial condition to the
unique element of the invariant manifold. Thus, the limit interchange result that we
prove here fixes the gap in the main optimality result of [10] under the additional
assumptions on the service distribution stated above. This leaves open the question
of whether there is also a limit interchange for class-dependent service times and when
hazard rates are more general. We present the fluid equations in section 5.1, and then
state and prove the theorem in section 5.2.

5.1. Fluid equations for the multiclass system. Analogous to the single-
class case, for each class i \in \{ 1, . . . , J\} , we denote by Bi, Xi, and Qi nonnega-
tive functions that represent the fluid analogues of the number in service, number
in system, and number in queue, let the nonnegative, nondecreasing functions Di,
Ki, and Ri represent the fluid analogues of cumulative class i departures from ser-
vice, cumulative entries to service, and cumulative reneging, and let \nu i represent
the fluid analogue of the measure-valued function that encodes the ages of class i
jobs in service. Since we assume exponential reneging times, we will not require
the potential reneging measures \eta i, but only the reneging rate \theta i > 0. Also, let
(X,\theta , \nu ,B,Q,D,K,R) be the corresponding vector-valued processes whose ith com-
ponent is given by (Xi, \theta i, \nu i,Bi,Qi,Di,Ki,Ri). We describe the fluid equations only
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7232 R. ATAR, W. KANG, H. KASPI, AND K. RAMANAN

for the special case when all service distributions are identical, with common cu-
mulative distribution function G = Gs, hazard rate function h = hs and support
[0,H) = [0,Hs) = [0,\infty ), and arrival rates \lambda i > 0, i= 1, . . . , J .

Before we present the fluid equations, let us comment on the special form that the
single-server fluid equations (of Definition 2.3) take when the reneging is exponential.
In this case, the reneging hazard rate function is constant, namely hr(x) = \theta for all
x\geq 0, and hence, (2.13) takes the form

R(t) = \theta 

\int t

0

Q(u)du.

Thus, there is no longer any need to keep track of the potential reneging measure \eta .
Accordingly, in the multiclass setting, our fluid system is an extension of a modified
set of fluid equations where the equation for R is similar to the above display, and
from which \eta is absent.

Definition 5.1. Given arrival and reneging rate vectors \lambda \in (0,\infty )J and \theta \in 
(0,\infty )J , and initial condition (X(0), \nu 0)\in [0,\infty )J\times (\scrM F [0,\infty ))J , a tuple (B,X,Q,D,
K,R,\nu ) \in (\scrD \BbbR J

+
(\BbbR +))

3 \times (\scrD +
\BbbR J

+

(\BbbR +))
3 \times (\scrD \scrM F [0,\infty )(\BbbR +))

J is said to be a solution to

the multiclass fluid equations with initial condition (X(0), \nu 0) and arrival and reneging
rate vectors \lambda and \theta if (5.1)--(5.2) below are satisfied: For \varphi \in \scrC 1

c ([0,\infty )\times \BbbR +), and
t\geq 0,

\langle \varphi (\cdot , t), \nu i,t\rangle = \langle \varphi (\cdot ,0), \nu i,0\rangle +
\int t

0

\langle \varphi x(\cdot , u) +\varphi u(\cdot , u), \nu i,u\rangle du

 - 
\int t

0

\langle h(\cdot )\varphi (\cdot , u), \nu i,u\rangle du+
\int t

0

\varphi (0, u)dKi(u),(5.1)

where B,D,R are the auxiliary processes given by

Bi(t) = \langle 1, \nu i,t\rangle , Di(t) =

\int t

0

\langle h, \nu i,u\rangle du, Ri(t) = \theta i

\int t

0

Qi(u)du,(5.2)

and for each t\geq 0, K,B,D satisfy the following balance equations and basic relations:

Bi(t) =Bi(0) - Di(t) +Ki(t),(5.3)

Xi(t) =Xi(0) - Di(t) + \lambda it - Ri(t),(5.4)

Qi(t) =Xi(t) - Bi(t),(5.5)

as well as conditions imposing work conservation and nonpreemptive priority:

I(t) := 1 - 
J\sum 

i=1

Bi(t) =
\Bigl( 
1 - 

J\sum 
i=1

Xi(t)
\Bigr) +
,(5.6)

Ki(t) =

\int 
[0,t]

1\{ 
\sum i - 1

j=1 Qj(u)=0\} dKi(u), i\geq 2.(5.7)

Under the assumption of a bounded reneging hazard rate function, which is indeed
fulfilled when the reneging distribution is exponential, it was shown in Theorem 3.1
of [10] that uniqueness holds for solutions to the fluid equations for any given data
and initial conditions. Existence of solutions was also established there by showing
that the scaling limit of the underlying N -server system is a solution.
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ASYMPTOTICS OF COUPLED MEASURE-VALUED EQUATIONS 7233

By the same argument given in the proof of Theorem 2.6, it follows from the
results in Theorem 4.1 of [28] that the measure-valued age equation (5.1) implies that
for every \psi \in \scrC b([0,\infty )) or \psi = h,

\langle \psi ,\nu i(t)\rangle =
\int 
[0,\infty )

\=G(x+ t)
\=G(x)

\psi (x+ t)\nu i,0(dx) +

\int 
[0,t]

\=G(t - u)\psi (t - u)dKi(u),(5.8)

where recall \=G = 1 - G. In what follows, given a vector or vector-valued process Y ,
we use \~Y to be generic notation for the sum

\sum J
i=1 Yi. By (5.8), \~\nu and \~K satisfy, for

every \psi \in \scrC b([0,\infty )) or \psi = h,

\langle \psi , \~\nu t\rangle =
\int 
[0,\infty )

\=G(x+ t)
\=G(x)

\psi (x+ t)\~\nu 0(dx) +

\int 
[0,t]

\=G(t - u)\psi (t - u)d \~K(u).(5.9)

In other words, (2.20) holds with (\nu ,K) and Gs replaced with (\~\nu , \~K) and G. We
now argue that \~K and \~B satisfy the analogue of (2.21). First, note that by (5.2),
\~B = \langle 1, \~\nu \rangle , and if \~B(t)< 1, then on an open interval containing t we have \~X < 1 due
to (5.6). Hence, \~Q = 0 by (5.5) and \~R = 0 by (5.2). Hence, subtracting (5.4) from
(5.3), \~K = \~E+c on this interval (where c does not depend on time), and so \~K \prime (u) = \~\lambda 
holds at each u in the interval. Combining this with

\~K(t) = \~B(t) - \~B(0) +

\int t

0

\langle h, \~\nu u\rangle du,

which follows from (5.3) and (5.2), we obtain, exactly as in Theorem 3.2 of [10], that
for almost every t, \~K \prime (t) = \~k(t) where

\~k(t) =

\Biggl\{ 
\langle h, \~\nu t\rangle , \~B(t) = 1,
\~\lambda , \~B(t)< 1.

(5.10)

5.2. Results for the multiclass system. We will be interested in the su-
percritical case where

\sum 
i \lambda i > 1 and \theta min := mini \theta i > 0. Let \rho i, i = 1, . . . , J be

characterized by

j\sum 
i=1

\rho i =
\Bigl( j\sum 

i=1

\lambda i

\Bigr) 
\wedge 1, j = 1, . . . , J,

and let

qi :=
\lambda i  - \rho i
\theta i

, i= 1, . . . , J.

We now state the main result.

Theorem 5.2. Suppose that h satisfies Assumption 3.1, and \lambda , \theta \in (0,\infty )J are
such that \~\lambda =

\sum J
i=1 \lambda i > 1, and (X0, \nu 0) \in \BbbR J

+ \times (\scrM F [0,\infty ))J satisfies 1  - \langle 1, \~\nu \rangle =
(1  - \~X)+. Then any solution (B,X,Q,D,K,R,\nu ) to the multiclass fluid equations
with initial condition (X0, \nu 0) and arrival and reneging rate vectors \lambda and \theta satisfies
\nu i(t)\Rightarrow \rho i\nu \ast and Qi(t)\rightarrow qi as t\rightarrow \infty for i= 1, . . . , J .

Remark 5.3. This validates Theorem 5.1 of [10] in the special case where for all
i, hsi = h, with h satisfying Assumption 3.1.

Remark 5.4. The characterizations in (5.8) and (5.10) show that the aggregate
processes ( \~X, \~\nu ) and ( \~D, \~K, \~R, \~S, \~Q, \~B) satisfy the fluid equations of the single class
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7234 R. ATAR, W. KANG, H. KASPI, AND K. RAMANAN

case (see Definition 2.3), subject to the simplification described at the beginning of
section 5.1, where in particular reneging is given directly by (5.2) and the process \eta 
is not used. Hence, in the supercritical setting \~\lambda > 1, we may conclude from Theorem
3.2(2) that, with \nu \ast (dx) = \=G(x)dx, one has \~\nu t \Rightarrow \nu \ast and that there exists T <\infty such
that \~B(t) = 1 for all t\geq T . Moreover, by Proposition 4.7 and Lemma 4.14, \langle h, \~\nu t\rangle \rightarrow 1.
As a result, by (2.21), one has \~k(t) = \langle h, \~\nu t\rangle for all large t, and hence also \~k(t)\rightarrow 1.

Proof of Theorem 5.2. In this proof, the special case in which there exists i0 \in 
\{ 1, . . . , J - 1\} such that

\sum i0
i=1 \lambda i = 1 is called the borderline case, and the more typical

case, where such i0 does not exist, is called the typical case.
If \lambda 1 < 1, set \ell := max\{ j :

\sum j
i=1 \lambda i < 1\} , otherwise let \ell = 0. Also, set m= \ell + 1.

Then, since by assumption \~\lambda > 1, by the definition of m, we have
\sum m

i=1 \lambda i = 1
(respectively, > 1) in the borderline case (respectively, in the typical case). Also, in
what follows, we use the hat (when \ell \geq 1) and \# notation for summation up to l and,
respectively, m, as in

\^Y =

\ell \sum 
i=1

Yi, and Y \# =

m\sum 
i=1

Yi, Y = \lambda ,X,\nu ,D,K,R,B(5.11)

(in addition to the notation already introduced, \~Y =
\sum J

i=1 Yi).
The structure of the proof is as follows. In Step 1 we prove the assertions for

i\leq \ell . Steps 2 and 3 address the remaining classes i\geq m in the typical and borderline
cases, respectively. First, note that since \~\lambda > 1, by Remark 5.4, there exists T <\infty 
such that

\~k(t)\rightarrow 1, \langle h, \~\nu t\rangle \rightarrow 1 as t\rightarrow \infty and \~B(t) = 1 for all t\geq T.(5.12)

Step 1. Consider the case \ell \geq 1 (that is, \lambda 1 < 1). In this step we consider classes
1\leq i\leq \ell and establish the claim that there exists t1 <\infty such that Qi(t) = 0 for all
t \geq t1 and, moreover, that \nu i,t \rightarrow \rho i\nu \ast as t\rightarrow \infty . (Note that for i \leq \ell , \lambda i = \rho i, hence
the asserted convergence Qi(t)\rightarrow qi = 0 would then follow.)

Recalling the notational convention (5.11), by the definition of \ell , \^\lambda =
\sum \ell 

i=1 \lambda i < 1,

and so there exist \varepsilon 0 > 0 and 0 < t0 < \infty such that \langle h, \~\nu t\rangle > \^\lambda + \varepsilon 0 for all t \geq t0.
If \^Q(t) = 0 for all t \geq t0, then the claim follows trivially. So, we now consider the
converse case, when \scrO := \{ t > t0 : \^Q(t) > 0\} is nonempty. Since \^Q is continuous, \scrO 
is open and is a union of countable open intervals. For a.e. u in each such interval,
by (5.7), for all i > \ell , K \prime 

i(u) = 0. Moreover, since (5.5) and (5.6) together show that
\~Q(t) > 0 implies \~B(t) = 1 for any t > 0, we conclude in particular that \~B(u) = 1. In
turn, (5.3), (5.5), (5.2), and the fact that \~R is nondecreasing together imply that for
a.e. u\in \scrO , \~D\prime (u) = \~K \prime (u) = \langle h, \~\nu u\rangle . Thus, we have for a.e. u> t0,

if \^Q(u)> 0 then \^Q\prime (u) = \^\lambda  - \^R\prime (u) - \^K \prime (u)\leq \^\lambda  - \langle h, \~\nu u\rangle \leq  - \varepsilon 0.

Thus, there must exist a finite time, t1 \geq t0, when \^Q(t1) = 0. Since the last display
continues to hold for all s \geq t1, applying Lemma B.1 with f =  - Q, T = t1, S = \infty ,
and c= 0, it follows that for all t\geq t1, \^Q(t) = 0, or equivalently, Qi(t) = 0 for all i\leq \ell .

To finish proving the claim in Step 1, it only remains to show that \nu i,t \rightarrow \rho i\nu \ast =
\lambda i\nu \ast for i \leq \ell . For t \geq t1, it follows from (5.5) and (5.2), respectively, that for i \leq \ell ,
Xi(t) = Bi(t) and R\prime 

i(t) = 0. Hence by (5.3)--(5.4), K \prime 
i(t) = \lambda i for such i and t.

Substituting these relations in (5.8) and taking the large t limit yields (exactly as in
the proof of Lemma 4.1) the convergence of \nu i,t(dx) to \lambda i \=G(x)dx as asserted.
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Step 2. In this step we treat the typical case, proving the claim for all the
remaining classes i\geq m= \ell + 1 (where possibly \ell = 0, m= 1). Recall the notation in
(5.11) and note that in this case one has \lambda \# =

\sum m
i=1 \lambda i > 1. By the definition of m

and \rho i, this implies \rho m <\lambda m.
Let t1 <\infty be as in Step 1, and assume without loss of generality that t1 \geq T ,

where T is as in (5.12). Then given \varepsilon \in (0,1 - \lambda \#), there exists t2 = t2(\varepsilon ) \geq t1 such
that for all t \geq t2, | \langle h, \~\nu t\rangle  - 1| < \varepsilon , | \~k(t) - 1| < \varepsilon , and \~B(t) = 1. Then (5.2) implies
that \~D\prime 

t(t) = \langle h, \~\nu t\rangle \leq (1 + \varepsilon ), and since clearly, (D\#)\prime \leq \~D\prime , on [t2,\infty ), we have for
all \varepsilon 1 \leq \lambda \#  - 1 - \varepsilon ,

dX\#

dt
= \lambda \#  - dD\#

dt
 - dR\#

dt
\geq \lambda \#  - (1 + \varepsilon ) - \theta mQm \geq \varepsilon 1  - \theta mQm.

We now argue by contradiction to prove the claim that there exists t3 \geq t2 such that
Qm(t3)> 0. Indeed, assume Qm vanishes on the whole interval [t2,\infty ). Then the last
display shows that X\#(t)\rightarrow \infty , and hence by (5.5) and the fact that (5.6) implies \~B
lies in [0,1], Q\#(t) \rightarrow \infty . But since \^Q vanishes on (t1,\infty ) \supset (t2,\infty ) by Step 1, this
implies Qm(t) =Q\#(t) - \^Q(t) =Q\#(t)\rightarrow \infty , which contradicts the assumption that
Qm is identically zero on [t2,\infty ). This proves the claim.

Let t3 \geq t2 be such that Qm(t3)> 0, and let \scrO m := \{ u\in [t3,\infty ) :Qm(u)> 0\} . We
show below that \scrO m = [t3,\infty ). Toward this goal, we will find it more convenient to
work with the balance equation for Q\# than with X\#. That is, using (5.3)--(5.5) and
(5.2), note that

Q\prime 
i = \lambda i  - K \prime 

i  - \theta iQi, i= 1, . . . , J, and
dQ\#

dt
= \lambda \#  - dK\#

dt
 - 

m\sum 
i=1

\theta iQ
\#
i .

(5.13)

On any open interval in \scrO m, Qm > 0 and \^Q = 0, and hence the priority rule (5.7)
implies dK\#/dt= d \~K/dt= \~k, where recall | \~k(t) - 1| < \varepsilon . Thus, for all t\geq t3, we have

if Qm(t)> 0 then Q\prime 
m(t) =

dQ\#

dt
(t)\geq \lambda \#  - (1 + \varepsilon ) - dR\#

dt
(t)\geq \varepsilon 1  - \theta mQm(t).

Since this is strictly greater than \varepsilon 1/2 whenever Qm(t)< \varepsilon 1/2\theta m, this clearly implies
Qm(t) > 0 for all t \in [t3,\infty ), as claimed. In turn, by the priority rule (5.7), this
implies that on [t3,\infty ), K \prime 

i = 0 for all i >m. We can therefore use a version of (2.20)
for \nu i to conclude that \nu i,t \Rightarrow 0 and Bi(t)\rightarrow 0 for i >m. As t\rightarrow \infty , since we already
have convergence of the aggregate \~\nu t \Rightarrow \nu \ast (see Remark 5.4) and \nu i,t \Rightarrow \lambda i\nu \ast for all
i <m (by Step 1), we conclude that \nu m,t \Rightarrow \rho m\nu \ast .

To complete Step 2, it only remains to address the convergence of Qi, i \geq m.
Since, as argued above, for t\in [t3,\infty ), K \prime 

i(t) = 0 for i >m, (5.13) shows that Qi(t)\rightarrow 
\lambda i/\theta i = qi as t \rightarrow \infty . As for Qm, note that since on [t3,\infty ), for 1 \leq i \leq \ell = m - 1,
Qi = 0 by Step 1, (5.13) shows that K \prime 

i = \lambda i, or equivalently, \^K \prime = \^\lambda . Thus, denoting
e(t) := \~k(t) - 1, we have e(t)\rightarrow 0, and recalling that \rho m = \^\lambda  - 1,

K \prime 
m(t) = \~K \prime (t) - \^K \prime 

i(t) =
\~k(t) - \^\lambda = (\rho m + e(t)).

Thus, we obtain

Q\prime 
m(t) = (\lambda m  - \rho m  - e(t)) - \theta mQm(t).
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This implies that as t\rightarrow \infty , Qm(t) converges to qm = (\lambda m  - \rho m)/\theta m. Here, we used
the elementary fact that for a differentiable function u on [0,\infty ),

if u\prime (t) =w(t) - \theta u(t) and u(0) = u0 then u(t) =

\int t

0

e - \theta (t - s)w(s)ds+ u0e
 - \theta t,

(5.14)

which converges to c/\theta whenever w(t)\rightarrow c as t\rightarrow \infty .
Step 3. Last, we consider the borderline case and establish the assertions regarding

the remaining classes i\in \{ m, . . . , J\} . In this case \lambda \# =
\sum m

i=1 \lambda i = 1.
As in (5.10), the priority structure specified by (5.7) dictates that dK\#/dt= k\#,

where k\#(t) is given by \langle h, \~\nu t\rangle when B\#(t) = 1 and equal to \lambda \# when B\#(t) < 1.
Since \lambda \# = 1 and by (5.12), \langle h, \~\nu t\rangle \rightarrow 1 we infer that k\#(t)\rightarrow 1 as t\rightarrow \infty . Summing
(5.8) over i \leq m, using

\int \infty 
0

\=G(x)dx = 1, and applying the test function \psi = 1 shows
that B\#(t) \rightarrow 1 as t \rightarrow \infty (where the application of bounded continuous \psi can be
justified in the usual manner). Applying general compactly supported test functions
gives \nu \#t \Rightarrow \nu \ast , where \nu \ast (dx) = \=G(x)dx. Given the convergence already established
for \nu i(t), i \leq \ell = m  - 1, the convergence of \nu \#t yields that of \nu m(t) \rightarrow \lambda m\nu \ast (note
that in the borderline case currently considered, \lambda m = \rho m). Moreover, the fact that
B\#(t)\rightarrow 1 implies that

\sum J
i=m+1Bi(t) = \~B(t) - B\#(t)\rightarrow 0, and hence, for all i > m,

Bi(t)\rightarrow 0 and consequently \nu i,t \Rightarrow 0.
Next we show that Qi(t)\rightarrow qi for i >m, for which we again use (5.13). Combining

the convergence k\#(t)\rightarrow 1 that we just showed with \~k(t)\rightarrow 1 from (5.12), it follows
that ki(t) \rightarrow 0 for all i > m. Recalling that K \prime 

i = ki and using the first equation in
(5.13) and (5.14) yields Qi(t)\rightarrow \lambda i/\theta i = qi for i >m.

We finally show that Qm(t)\rightarrow 0. To this end, note that by the aggregate equation
in (5.13) and the property that for sufficiently large t, Qi(t) = 0, for i\leq \ell , (from Step
1) giving dR\#(t)/dt = \theta mQm(t) = \theta mQ

\#(t). Since \lambda \# = 1, (5.13) shows that the
following is valid for all large t:

dQ\#

dt
= 1 - k\#(t) - \theta mQ

\#(t).

Recalling that k\#(t)\rightarrow 1, and again using (5.14), it follows that Q\#(t)\rightarrow 0. Conse-
quently, Qm(t)\rightarrow 0. This completes the proof.

Appendix A. Proof of Lemma 4.5.

Proof of Lemma 4.5. Recall zf :=
\int \infty 
0
hs(x)f(x)dx <\infty and let U(x) := x logx,

x > 0, U(0) = 0. Fix a measurable function f : [0,\infty ) \mapsto \rightarrow \BbbR + with
\int \infty 
0
f(x)dx\leq 1. For

notational conciseness, define

A(f) :=

\int \infty 

0

hs(x)f(x) log
f(x)

f\ast (x)
dx - zf log zf(A.1)

=

\int \infty 

0

U

\biggl( 
f(x)

f\ast (x)

\biggr) 
hs(x)f\ast (x)dx - U (zf ) .

Since
\int \infty 
0
hs(x)f\ast (x)dx = 1 and

\int \infty 
0

f(x)
f\ast (x)

hs(x)f\ast (x)dx = zf , the convexity of U and

Jensen's inequality imply the nonnegativity of A(f). To obtain the more refined
estimate (4.8), define

V (x) :=U(x) - [U \prime (zf )(x - zf ) +U(zf )].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

11
/0

9/
23

 to
 1

32
.6

8.
49

.1
29

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



ASYMPTOTICS OF COUPLED MEASURE-VALUED EQUATIONS 7237

Then, the strict convexity of U implies V (x)\geq 0 and V (x) = 0 if and only if x= zf .
Using (A.1) we have

A(f) =

\int \infty 

0

V
\Bigl( f(x)
f\ast (x)

\Bigr) 
hs(x)f\ast (x)dx+

\int \infty 

0

U \prime (zf )
\Bigl( f(x)
f\ast (x)

 - zf

\Bigr) 
hs(x)f\ast (x)dx

=

\int \infty 

0

V
\Bigl( f(x)
f\ast (x)

\Bigr) 
hs(x)f\ast (x)dx,

where the last equality uses the definition of zf . Since V \geq 0, denoting cf :=\int \infty 
0
f(x)dx\leq 1, and recalling the functional R from (4.5), we have

A(f)\geq \varepsilon s
\int \infty 

0

V
\Bigl( f(x)
f\ast (x)

\Bigr) 
f\ast (x)dx

= \varepsilon s
\biggl[ \int \infty 

0

f(x) log
f(x)

f\ast (x)
dx - 

\int \infty 

0

U \prime (zf )
\Bigl( f(x)
f\ast (x)

 - zf

\Bigr) 
f\ast (x)dx - U(zf )

\biggr] 
= \varepsilon s[R(\mu f\| \nu \ast ) - cfU

\prime (zf ) +U \prime (zf )zf  - U(zf )]

= \varepsilon s[R(\mu f\| \nu \ast ) - cf log zf  - cf + zf ]

= \varepsilon s\{ R(\mu f\| \nu \ast ) + cf [ - log zf  - 1 + zf ] + zf (1 - cf )\} 
\geq \varepsilon sR(\mu f\| \nu \ast ),

where the third equality used the fact that U \prime (x) = logx+ 1 and U \prime (x)x - U(x) = x,
and the last inequality uses the elementary inequality x - logx\geq 1 for all x> 0. This
proves (4.8).

Appendix B. An elementary property of absolutely continuous func-
tions. The following simple property is used in section 4.3.

Lemma B.1. Let f be an absolutely continuous function defined on [0, S) for some
0< S \leq \infty . Suppose that there exist a time T \in (0, S) and a constant c > 0 such that
f(T )\geq c and for a.e. t\in (T,S), f \prime (t)\geq 0 if f(t)< c. Then f(t)\geq c for all t\in [T,S).

Proof. Suppose the conclusion of the lemma does not hold. Then there must
exist T < t1 < t2 for which f(t1)\geq c and f(t2)< c. Since f is absolutely continuous,
there must exist some interval (s1, s2) \subset (t1, t2) such that f(s) < c for s \in (s1, s2)
and f \prime (s) < 0 for s in a subset \scrS \subset (s1, s2) of positive Lebesgue measure. However,
this contradicts the assumption of the lemma, that is, for almost every t \in [T,\infty ),
f \prime (t)\geq 0 if f(t)< c. Hence the lemma is proved.
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