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Abstract

This paper studies a 2-class, 2-server parallel server system under the recently introduced
extended heavy traffic condition [1], which states that the underlying ‘static allocation’ linear
program (LP) is critical, but does not require that it has a unique solution. The main result is the
construction of policies that asymptotically achieve a lower bound, proved in [1], on an expected
discounted linear combination of diffusion-scaled queue lengths, and are therefore asymptoti-
cally optimal (AO). Each extreme point solution to the LP determines a control mode, i.e., a set
of activities (class–server pairs) that are operational. When there are multiple solutions, these
modes can be selected dynamically. It is shown that the number of modes required for AO is
either one or two. In the latter case there is a switching point in the (normalized) workload do-
main, characterized in terms of a free boundary problem. Our policies are defined by identifying
pairs of elementary policies and switching between them at this switching point. They provide
the first example in the heavy traffic literature where weak limits under an AO policy are given
by a diffusion process where both the drift and diffusion coefficients are discontinuous.

MSC 2020 classification: 60K25 ; 68M20 ; 93E20 ; 60F17 ; 90B36

Keywords: parallel server systems; decomposable service rates; extended heavy traffic condi-
tion; dynamic graph of basic activities; switched control systems; diffusion with discontinuous
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1 Introduction

1.1 Background

Parallel server systems (PSS) are queueing control problems in which a number of servers offer
service to customers of different classes, and choices as to which customer class each server is
dedicated to are made dynamically. Since its introduction in [9], its study in heavy traffic has
attracted much attention due to its simple structure, its practical significance, and the theoretical
challenges it poses. The problem formulation in [9] includes a key assumption, referred to as the
heavy traffic condition (HTC), which states that an underlying ‘static allocation’ linear program
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(LP) satisfies a critical load condition and that it has a unique solution. Whereas critical load is
universally considered a defining condition of any notion of heavy traffic, uniqueness of solutions
has been assumed mainly because it simplifies the mathematical treatment. The extended HTC
(EHTC), which merely states that the LP is at criticality but does not require uniqueness, has
recently been introduced in [1] in order to address a considerably broader notion of heavy traffic.
The main result of [1] is a lower bound on the asymptotically achievable cost in a general PSS
under the EHTC. This paper focuses on the 2-class, 2-server PSS referred to in this introduction
as the 2× 2 PSS, which is the simplest case in which the EHTC is strictly broader than the HTC.
The goal is to complement the results of [1] in this case by constructing policies that asymptotically
achieve the lower bound, which hence are asymptotically optimal (AO) in heavy traffic.

The structure of the 2 × 2 PSS is as follows. Each of the two servers is capable of serving
each of the two classes. The classes (respectively, servers) are usually indexed using the symbol
i (respectively, k), and activities, namely class-server pairs, by j = (i, k). Arriving customers
await service in class-based queues, and upon receiving a single service, leave the system. The
control decisions consist of routing (determining which server serves each customer) and sequencing
(determining the order in which they are served). The rates of arrivals of customers of the two
classes are denoted by λni , i = 1, 2, and the rates of service at each of the four activities are
denoted by µnik, where n denotes the usual heavy traffic parameter. These rates are assumed to be

asymptotic to λin+ λ̂in
1/2 and µikn+ µ̂ikn

1/2, for some given λi, λ̂i, µik, µ̂ik. The cost consists of
an expected infinite horizon discounted linear combination of the two queue lengths, and is rescaled
at the diffusion scale.

Whereas the cost, and consequently the notion of AO, are set up at the diffusion scale, the
underlying LP alluded to above addresses the behavior of the PSS at the fluid, or law-of-large-
numbers (LLN) scale. Posed in terms of the first order parameters, λi, µik, it is concerned with the
mean fraction of time devoted by each server to each class. When the LP has a unique solution, at
least one activity is non-basic, in the sense that the fraction allocated to it is zero. The so called
graph of basic activities (GBA), formed by the activities with positive allocation fraction, is static.
In this case, the critical load condition dictates that any policy not adhering to this solution, in the
sense of effort allocation, causes the total queue length to blow up, and in particular cannot be AO.
Under policies that adhere to this solution, the LLN assures that the aforementioned fractions of
effort converge to those given by the LP solution (a necessary, but certainly not sufficient condition
for AO). When there are multiple LP solutions, a result from [1] states that for the 2 × 2 PSS,
the space of solutions, denoted by SLP, forms a line segment ch(ξ∗,1, ξ∗,2) in the space of 2 × 2
matrices (where ch denotes the convex hull). In each of the two extremal solutions, ξ∗,1, ξ∗,2 there
is again at least one non-basic activity. We refer to these two extreme points as control modes,
or simply modes. For similar reasons, any policy that does not lead to an unbounded cost should
keep the system critically loaded at all times, and thus, asymptotically, the fractions of effort will
vary dynamically within SLP. In the control literature, a control process that takes values only at
the vertices of the action space is called a bang-bang control. The analogue of this notion in our
setting is a policy for which the limiting fractions of effort take values only in {ξ∗,1, ξ∗,2}, switching
between the two extremal solutions. Some of the policies introduced in this paper are designed to
act that way.

Contrary to the setting where the HTC holds, it is impossible to construct an AO policy based
only on the first order data under the EHTC. A second order approximation of the PSS, which is
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often referred to as a Brownian control problem (BCP), is required. The BCP represents a diffusion
limit of the PSS, in which Brownian motion (BM) replaces stochastic fluctuations associated with
cumulative arrival and service processes. Closely related to the BCP is another diffusion control
problem, called a workload control problem (WCP). Obtained by a certain projection of the BCP,
it is a control problem in which the process is one-dimensional, representing the total workload
asymptotics. The structure of the WCP obtained is quite simple to describe. The state process
is a reflected diffusion on R+, with controlled drift and diffusion coefficients, b = b(ξ), σ = σ(ξ),
where the control process, ξ = ξt takes values in SLP and ξ 7→ (b(ξ), σ(ξ)2) is an affine map. The
cost is given as an expected discounted version of the state process itself. By a standard argument
based on the Hamilton-Jacobi-Bellman (HJB) equation, there exists an optimal bang-bang control
for the WCP. There can therefore be two possibilities for the WCP solution: the single mode case,
where one of the modes is always used, and the dual mode case, where both modes are used by
the optimal control in different parts of the state space. Note that in this case the GBA can be
changed dynamically. The HJB equation also reveals the structure of the feedback function from
state to control. This particular HJB equation was solved in [16]. It was shown that in the dual
mode case there is a switching point z∗ ∈ (0,∞), such that one of the modes is used when the
state is below z∗ and the other otherwise. The HJB equation can be viewed, in this case, as an
equation involving a free boundary, in which the solution is a pair, where one component is the
value function and the other is z∗. The results of [16] also characterize z∗ as the unique solution
to an explicit equation, as well as a solution to the HJB equation.

Our policies are obtained by ‘translating’ the WCP solution. In the case of a single mode, the
prescribed policy corresponds either to a threshold policy of the form that first appeared in [3] (see
below) or a simple priority policy, depending on the mode used and the cost. In the dual mode case,
pairs of elementary policies are identified, which are combined together to form switched control
policies, so that one is active when the normalized workload process is below the switching point
and the other above it. In each case, the policy is designed to meet the target allocation efforts
determined by the corresponding mode, and the set of operational activities is restricted by the
corresponding GBA.

The paper closest to ours is the aforementioned [3], that studies a 2-server, 2-class PSS with 3
activities. This PSS is known as an ‘N’ network, because upon relabeling, the activities are given
by (1, 1), (1, 2) and (2, 2), forming the symbol N. (See Figure 1 (a).) In this network the number of
solutions to the LP cannot exceed 1, and thus the requirement of a unique solution does not pose a
restriction. In an earlier work, [8], it had been observed that when the larger ‘cµ’ value is in class
1, the BCP solution suggests that the queue length of class 1 customers and the idleness process at
server 1 should both converge to zero at the diffusion scale, and that a simple priority policy does
not achieve this. In [3] this was addressed by putting a threshold on class 1 queue length, that when
exceeded, server 2 prioritizes class 1, and otherwise it prioritizes class 2. The size of the threshold
must converge to zero at the diffusion scale so as to achieve the first goal. To achieve AO of a
threshold policy with logarithmic (in n) size threshold, as used in [3], the interarrival and service
times are assumed there to possess exponential moments. (More on the history of the problem and
the works that contributed to its development can be read in [1].)

As already mentioned, one of the policies we implement is a threshold policy similar to the one
used by [3]. However, our assumptions are positioned differently with respect to the threshold–
moment tradeoff, assuming a larger (still o(

√
n)), polynomial size threshold, but requiring only
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a polynomial moment assumption. We assume 2 + ε moment assumptions for all of our policies
except the single-mode threshold policy and the dual-mode policies that employ the threshold
policy when the workload is above z∗. For these, a finite m0-th moment is assumed, where the
number 4 < m0 < 5 is indicated explicitly. Another difference between our results and those of [3]
is that our policies do not use preemption. Although the policy introduced in [3] uses preemption,
it is plausible that an analogous non-preemptive policy is also AO under similar conditions; see
Corollary 2.15 and Remark 2.16 below. In this paper, our choice not to use preemption leads to
non-trivial issues in the dual mode case. Instead of a simple switching between elementary policies
when the workload crosses z∗, it is sometimes the case that one must wait for a particular server
to become available before switching. This is described in §5.1.3.

It is also worth mentioning that we have argued in [1] that the AO of the threshold policy
from [3] extends beyond the HTC to the case of multiple solutions and a single mode (under some
assumptions which include the existence of exponential moments).

Beside the objective to break the uniqueness barrier, an additional source of motivation for
this work stems from the relation between non-uniqueness and service rate decomposability. As
stated in Lemma 2.1, for the 2 × 2 PSS, the LP exhibits multiple solutions if and only if the
service rates decompose as µik = αiβk. Service rates decompose this way when the mean size of
a job is characteristic to the class (and then αi is the reciprocal mean), and each server has its
own processing speed (here given by βk). As the HTC does not hold under decomposability, this
important class of service rates has been left out by earlier work.

1.2 Results

The description of the policies given above is only a sketch. There are nontrivial issues that arise
regarding the need to ‘patch’ 2 policy types, requiring us to slightly modify the policies, where the
details differ from one pairing to another.

The main result states that, under the prescribed policies, the rescaled workload process con-
verges in law to the diffusion process that solves the WCP, and these policies are AO. As far as
convergence is concerned, in addition to the ‘standard’ issues involved in proving state-space col-
lapse, we need to deal with issues related to switching control modes at z∗. Moreover, to obtain
AO from weak convergence, uniform integrability needs to be established, and it is here where the
2 + ε and m0 moment assumptions are used.

An approach to proving convergence to a diffusion with discontinuous coefficients, addressing
especially the technicalities involved with the discontinuity of the diffusion coefficient, was developed
in [11], going beyond the general framework for convergence of semimartingales such as that from
[13]. Whereas the tools from [11] are not directly applicable in our setting, an argument which,
as in [11], shows that the time spent near the discontinuity set is negligible, is also at the basis of
our proof. The paper [11] also gives an example of a queueing model whose scaling limit yields a
diffusion process with discontinuities in both drift and diffusion coefficients. Our dual mode case
provides what seems to be the first example where this occurs under an AO policy of a queueing
control problem (for AO in heavy traffic leading to discontinuity in the drift only, see [2]).
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1.3 Organization of the paper

In §2.1 we describe our model and the control problem associated with it in more detail. The LP
and the extended heavy traffic condition are introduced in §2.2 and preliminary results about the
LP from [1] are stated. In §2.3, the WCP and the associated HJB equation are introduced, and in
Proposition 2.6, it is stated that there exists a unique classical solution to the HJB equation. This
proposition also provides a condition which determines whether an optimal solution to the WCP
must employ a single mode or two modes (not to be confused with the number of modes in the
space of LP solutions, which is always two under multiplicity), and asserts that in the dual mode
case there exists a single switching point z∗ in workload space. We also present in this section the
lower bound from [1] stated in Theorem 2.4. The main result is stated in §2.4. The definitions
of the proposed policies appear first, and then, in Theorem 2.13, the weak convergence and AO
results are stated. Numerical results are presented in §2.5.

In §3 we state and prove some results related to the static allocation LP, providing, in particular,
explicit expressions for the extreme points of the set of optimal solutions. Development of the WCP
is carried out in §4. Preliminary results proved in [1] in a general case are included in this section.
This section also contains proofs of results related to the HJB equation, some of which rely on [16].

The proof of our main result, Theorem 2.13, is the subject of §5. In §5.1, we present the general
scheme for proving Theorem 2.13: the weak convergence result is stated in Theorem 5.1. We then
present four propositions that are used for the proof. Each proposition corresponds to a specific
section and step of the proof. Proposition 5.3, in §5.2.2, proves uniform integrability; state space
collapse is proved in Proposition 5.4 in §5.2.3; a key non idling property is proved in Proposition
5.5 in §5.2.4; and a ‘fast switching’ property, showing the aforementioned property that the process
spends asymptotically negligible time near the discontinuity, is proved in Propostion 5.6 in §5.2.6.
Finally, the appendix contains proofs of several lemmas stated earlier.

1.4 Notation

N, R and R+ are the sets of natural, real and, respectively, nonnegative real numbers. For a, b ∈ R,
a ∨ b and a ∧ b denote the maximum and minimum of a and b, respectively, and a+ = a ∨ 0. For a
set A, 1A denotes its indicator function. For f : R+ → R and t, δ > 0, ‖f‖t = sups∈[0,t] |f(s)| and

wt(f, δ) = sup{|f(s1)− f(s2)| : 0 ≤ s1 ≤ s2 ≤ (s1 + δ) ∧ t}.

For 0 ≤ s ≤ t, the notation f [s, t] stands for f(t) − f(s). For real-valued functions and processes,
the notation X(t) is used interchangeably with Xt. Given a Polish space E, CE [0,∞) and DE [0,∞)
denote the spaces of E-valued, continuous and, respectively, càdlàg functions on [0,∞), equipped
with the topology of convergence u.o.c. and, respectively, the J1 topology. Denote by C+

R [0,∞)
and D+

R [0,∞) the subset of CR[0,∞) and, respectively, DR[0,∞), of non-negative, non-decreasing

functions, and by C0,+
R [0,∞) the subset of C+

R [0,∞) of functions that are null at zero. Write
Xn ⇒ X for convergence in law. A sequence of processes with sample paths in DE [0,∞) is said
to be C-tight if it is tight and the limit of every weakly convergent subsequence has sample paths
in CE [0,∞) a.s. The letter c denotes a deterministic constant whose value may change from one
appearance to another.
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2 Model and main results

The setup and results presented in this section have quite a few ingredients, as already mentioned
in the introduction: the LP and modes, the diffusion scaling, the WCP and HJB equation, the
switching point z∗, threshold and switching policies. Before going into the details we provide a
roadmap. The 2-class, 2-server system, introduced in §2.1, is indexed by n and is observed at the
diffusion scale. The assignment of jobs from the different classes to different servers is regarded as
a control policy. A cost functional is considered, given by the expected discounted weighted sum
of queue lengths, also rescaled at the diffusion scale; see (2.6). The weights of the queue lengths
are given by a vector (h1, h2).

In order to formulate a policy-independent condition for heavy traffic, an LP (2.7) is introduced,
involving first order arrival and service rates, where the variable to be determined is a 2×2 allocation
matrix describing the (first order) fraction of effort each server dedicates to each class. It is assumed
to be at criticality, in the sense that servers are fully occupied but queue lengths stay balanced. In
that regard we adopt the heavy traffic notion of [9] and many other papers that followed, with one
important distinction: We do not assume that there is a unique allocation matrix that maintains
criticality, i.e. there may be multiple LP solutions. When there are multiple solutions, they are
all given as convex combinations of two allocation matrices (Lemma 2.1), which we call modes.
Because earlier work has addressed the unique solution case, we only treat the case of multiple
solutions (Assumption 2.2). A result from [1] states that under this assumption the first order
rates µik are necessarily decomposable as αiβk. Each of the modes induces a so-called graph of
basic activities, as in Figure 1. The parameters αi and the structure of the graphs influence the
type of control policy to be proposed.

The WCP (2.16)–(2.17) is a control problem for a diffusion process in dimension 1, in which
both the drift and the diffusion coefficient are controlled by a control process that takes values
in the space of allocation matrices. The values of these coefficients, evaluated at the two modes,
are denoted bm and, respectively, σm, m = 1, 2. The WCP formally describes the control problem
associated with the PSS at the diffusion limit, and its control process represents the dynamic
selection of the mode at which the PSS operates. The significance of the WCP has two aspects.
First, as was shown in [1], its solution gives a lower bound on the PSS cost asymptotics under any
sequence of control policies (Theorem 2.4). Accordingly, any policy that achieves this bound is AO.
Second, it suggests how AO policies should be structured. In particular: (a) State space collapse
should hold, which in our setting involves two properties that should hold up to a level negligible at
diffusion scale: (i) Both servers should be busy whenever there is any work in the system, and (ii)
all queue length should be kept in the class i that minimizes hiαi. Roughly speaking, (ii) implies
that the class that maximizes hiαi should be prioritized. This type of sequencing policy is known
as a cµ rule. (But, as shown by [8], and [3], something more than a simple priority policy may be
needed here in order to accomplish (i).) (b) When, for either (m,m′) = (1, 2) or (m,m′) = (2, 1),
one has bm ≤ bm′ and σm ≤ σm′ , only mode m should be used. Otherwise both modes should
be used, by dynamically selecting them at different parts of the state space. The partition of the
state space is defined via a switching point z∗: When the diffusion-scaled workload is below z∗, the
mode m with bm ≥ bm′ should be used, otherwise m′. Determining this switching point is done by
solving an HJB equation, (2.18)–(2.19).

The construction of an AO policy must take into account several considerations: Whether to

6



operate in one or two modes, and in the latter case, their ordering in workload space; which class
has high priority; and the structure of the graph of basic activities for each of the modes. Different
types of policies apply in different cases (Definitions 2.9, 2.10, 2.11, 2.12). The main result states
that these policies are AO and that the normalized workload converges weakly to the diffusion
process given by the WCP state process under an optimal control (Theorem 2.13).

2.1 Queueing model, scaling and queueing control problem

The model under consideration is as in [1], specialized to the case of two job classes, two servers
and four activities. We will refer to it as the 2 × 2 PSS when there is need to distinguish it from
the general PSS treated in [1]. The symbol i ∈ {1, 2} is used as a generic index to a class, and
k ∈ {1, 2} to a server. For a general PSS, an activity is a class-server pair (i, k) where server k is
capable of serving class i. In this paper it is assumed that each server is capable of serving each
class, hence there are four activities. They are labeled by (i, k) or sometimes by j = (i, k).

The model consists of a sequence of systems, indexed by n ∈ N, that are all defined on one prob-
ability space (Ω,F ,P). For the nth system, one considers the following processes. The processes
denoted An = (Ani ) and Sn = (Snik) represent arrival and potential service counting processes.
That is, Ani (t) is the number of arrivals of class i jobs until time t, i = 1, 2, and Snik(t) is the
number of service completions of class i jobs by server k, by the time server k has devoted t units
of time to class i, i = 1, 2, k = 1, 2. Next, Xn = (Xn

i ), In = (Ink ), Dn = (Dn
ik) and Tn = (Tnik)

denote queue length, cumulative idleness, departure, and cumulative busyness processes. In other
words, Xn

i (t) is the number of class i customers in the system at time t, Ink (t) is the cumulative
time server k has been idle by time t, Dn

ik(t) is the number of class i departures from server k,
and Tnik(t) is the cumulative time devoted by server k to class i. The process Tnik takes the form

Tik(t) =
∫ t

0 Ξ
n
ik(s)ds, where Ξn

ik(t) is the fraction of effort devoted by server k to class-i jobs at t.
In particular,

∑
iΞ

n
ik(t) ≤ 1 for every k. Thus Ξn is referred to as the allocation process.

The aforementioned arrival and potential service processes are constructed as follows. Arrival
rates λni and service rates µnik are given, satisfying, for some constants λi ∈ (0,∞), µik ∈ (0,∞),

λ̂i ∈ R, µ̂ik ∈ R,

λ̂ni := n−1/2(λni − nλi)→ λ̂i,

µ̂nik := n−1/2(µnik − nµik)→ µ̂ik,

as n→∞. For each i a renewal process Ǎi is given, with interarrival distribution that has mean 1
and squared coefficient of variation 0 < C2

Ai
< ∞. Similarly, for each (i, k), a renewal process Šik

is given with mean 1 interarrival and squared coefficient of variation 0 < C2
Sik

<∞. It is assumed
that An and Sn are given by

Ani (t) = Ǎi(λ
n
i t), Snik(t) = Šik(µ

n
ikt).

It is assumed moreover that the six processes Ǎi, Šik are mutually independent, have strictly
positive inter-arrival distributions and right-continuous sample paths. The (IID) interarrivals of Ǎi
and Šik are denoted by ǎi(l) and ǔik(l), l ∈ N, respectively, and those of the accelerated processes
Ani and Snik are given by

ani (l) =
1

λni
ǎi(l), unik(l) =

1

µnik
ǔik(l). (2.1)
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The system is assumed to start empty, that is, Xn(0) = 0 for all n. Simple relations between the
processes are

Dn
ik(t) = Snik(T

n
ik(t)), (2.2)

Xn
i (t) = Ani (t)−

∑
k

Dn
ik(t), (2.3)

Ink (t) = t−
∑
i

Tnik(t), (2.4)

the sample paths of Xn
i are nonnegative, and those of Ink are in C0,+

R [0,∞). (2.5)

The tuple (Ǎ, Š) is referred to as the stochastic primitives. In our formulation we will consider
Tn as the control process (equivalently, the allocation process Ξn may be regarded the control). In
view of equations (2.2), (2.3), (2.4), given the stochastic primitives, the control uniquely determines
the processes Dn, Xn, In. Let an additional process be defined on the probability space denoted
by Υ = (Υ (l), l ∈ N), taking values in a Polish space Srand and assumed to be independent of the
stochastic primitives, for each n (there is no need to let Υ vary with n, as the primitives are all
defined on the same probability space). It is included in the model in order to allow the construction
of randomized controls; for more details about its potential use see [1, Remark 2.1.ii].

The process Tn is said to be an admissible control for the queueing control problem (QCP) for
the n-th system if for each (i, k), Tnik has sample paths in C0,+

R [0,∞) that are 1-Lipschitz, and the
associated processes Dn, Xn and In given by (2.2), (2.3) and (2.4) satisfy (2.5); furthermore, Tn

is adapted to the filtration {Fnt } defined by Fnt = σ{(An(s), Dn(s), s ∈ [0, t]), Υ}. Denote by An
the collection of all admissible controls for the QCP for the n-th system. As argued in [1, Remark
2.1.i], this definition allows for the control to depend on the history of all processes involved in the
model (in addition to the auxiliary randomness Υ ).

The queue length process normalized at the diffusion scale is defined by X̂n
i (t) = n−1/2Xn

i (t).
The cost of interest for the n-th system is given by

Ĵn(Tn) = E
∫ ∞

0
e−γth(X̂n(t))dt, Tn ∈ An, (2.6)

where γ > 0 and h(x) = h1x1 + h2x2, with constants h1, h2 > 0, and X̂n is the rescaled queue
length process associated with the admissible control Tn. The value for the n-th system is defined
by

V̂ n = inf{Ĵn(Tn) : Tn ∈ An}.
This completes the description of the queueing models and QCP. The complete set of problem data
consists of the stochastic primitives mentioned above and the collection of parameters

(λi), (µik), (λ̂i), (µ̂ik), (CAi), (CSik), γ, (hi).

We sometimes refer to (λi), (µik) as the first order data and to (λ̂i), (µ̂ik), (CAi), (CSik) as the second
order data.
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2.2 The linear program and extended heavy traffic condition

Given the first order data λi > 0, µik > 0, i, k = 1, 2, consider the following linear program (LP)
for the unknowns (ξik) ∈ R2×2

+ and ρ ∈ R.

Linear Program. Minimize ρ subject to

2∑
k=1

ξikµik = λi i = 1, 2,

2∑
i=1

ξik 6 ρ k = 1, 2,

ξik > 0 i, k = 1, 2.

(2.7)

Denote the optimal objective value of (2.7) by ρ∗.

Extended heavy traffic condition. ρ∗ = 1.

The extended heavy traffic condition (EHTC) is broader than the heavy traffic condition that
has been extensively used in the literature, which requires, in addition to ρ∗ = 1, that there be a
unique corresponding ξ.

Under the EHTC, any solution is of the form (ξ, 1). Let SLP denote the subset of R2×2 for
which the set of all solutions is given by SLP × {1}. We say that the EHTC with multiplicity
(EHTCM) holds if the EHTC holds and the LP has multiple solutions (that is, there exist two
distinct pairs (ξ(1), 1) and (ξ(2), 1) satisfying (2.7)). Following [1], we say that the service rates µik
are decomposable if µik = αiβk for all i, k, for some constants αi and βk.

A matrix ξ ∈ R2×2
+ is called column-stochastic if

∑
i ξik = 1 for both k = 1, 2. A column-

stochastic matrix is called a mode if (at least) one of its columns is either (0, 1)T or (1, 0)T . A mode
is said to be degenerate if it has more than one zero entry; otherwise it is said to be nondegenerate.
A pair of nondegenerate modes is said to be a class-switched (server-switched) pair of modes if
the zero entries in the two modes are in distinct rows but the same column (respectively, distinct
columns but the same row). For example, the graphs in Figure 1(a) and (b) correspond to a
class-switched pair of modes, whereas those in Figure 1(a) and (c) correspond to a server-switched
pair.

The following condition will be referred to as the nondegeneracy condition, namely

λi 6= µik for all (i, k) ∈ {1, 2}2. (2.8)

The following is proved in §3.

Lemma 2.1. Let the EHTC hold.

1. For any solution (ξ, 1), ξ is column-stochastic.

2. The LP (2.7) has multiple solutions if and only if (µik) are decomposable.

3. If the LP has multiple solutions then there exists a pair of modes (ξ∗,1, ξ∗,2) such that

SLP = ch({ξ∗,1, ξ∗,2}). (2.9)
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4. If the LP has multiple solutions and the nondegeneracy condition (2.8) holds then both ξ∗,1

and ξ∗,2 of (2.9) are nondegenerate. Moreover, they form either a class-switched or a server-
switched pair.

The main result will be proved under the following.

Assumption 2.2. 1. The EHTCM holds.

2. The nondegeneracy condition (2.8) holds.

Note that the case where the EHTC holds but EHTCM does not hold is already covered in the
work [3], although, as mentioned in the introduction, under different assumptions on preemption
and moment conditions. (See Corollary 2.15 and Remark 2.16 for implications of our results to the
case where uniqueness holds, and more on the relation to [3] in that case.)

In view of Lemma 2.1(2), under Assumption 2.2, the rates (µik) are decomposable. Thus
µik = αiβk, and clearly there is a degree of freedom in choosing (αi) and (βk). In this paper we
will always assume that they are chosen so that

∑
k βk = 1, and it is easy to see that, given (µik),

this normalization uniquely determines these parameters.

It is also guaranteed by the lemma that, under Assumption 2.2, the extreme points of SLP are
two nondegenerate modes ξ∗,1, ξ∗,2 forming a class- or a server-switched pair. Once a labeling of
these modes has been fixed, we will sometimes slightly abuse the terminology by referring to them
as modes 1 and 2 rather than modes ξ∗,1 and ξ∗,2.

In earlier work on PSS, under the assumption that the LP has a unique solution (ξ∗, 1), activities
are categorized as basic or nonbasic according to the positivity of the fraction allocated to them by
ξ∗, that is, an activity (i, k) is basic if ξ∗ik > 0 and nonbasic if ξ∗ik = 0. We extend this terminology
to the case of multiple solutions as follows. For m ∈ {1, 2}, an activity (i, k) is said to be basic
in mode m if the allocation associated to it by this mode does not vanish, namely ξ∗,mik > 0. If
ξ∗,mik = 0 (respectively, ξ∗,mik = 1) it is said to be non-basic (respectively, full) in mode m.

Figure 1 demonstrates the second part of Lemma 2.1(4), namely that a pair of modes can
be class-switched, as in Figure 1(a) and (b), or server-switched, as in Figure 1(a) and (c), but
the LP does not give rise to a pair such as Figure 1(b) and (c). The terms class-switched and
server-switched will sometimes be abbreviated as CS and SS.

A mode is said to be in canonical form if its first column is (1, 0)T . It is clear by the definition
of a mode that it is always possible to relabel the classes and the servers so that a given mode is in
canonical form, and that if the mode is nondegenerate there is only one such relabeling. The graph
of a mode in canonical form is shown in Figure 1(a). Because of its resemblance to the symbol N,
this form is sometimes called an N-system.

If the EHTCM holds but (2.8) does not, that is, there exist i, k such that λi = µik, the situation
is different: at least one of the modes will be degenerate, i.e., have two non-basic activities (see
Lemma 3.1 below). In the terminology of linear programming this corresponds to a case where one
of the basic solutions of the LP (2.7) is degenerate (cf. [7, Definition 3.1]). The degenerate case
is not covered in this paper. The key difficulty in the degenerate case is that, in at least one of
the modes, the servers do not communicate in the graph of basic activities, so the pooling required
to reach the cost lower bound is not possible. (See [1, §2.4] for a more detailed discussion of this
issue.)

10
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Figure 1: The full and non-basic activities are shown in thick and dashed lines, respectively. Graph
(a) corresponds to a mode in canonical form. Graphs (a,b) correspond to a pair of modes where the
non-basic activity switches a class, whereas in (a,c) it switches a server. The pair (b,c), in which
the non-basic activity switches both a class and a server is neither class- nor server-switched.

Under Assumption 2.2, both modes have a single non-basic activity. Then, given a mode, the
graph of basic activities has exactly three edges, and one can speak of the single-activity class (the
one associated with only one nonbasic activity), the dual-activity class, and similarly, the single-
and dual-activity server. These terms allow us to refer to the roles of classes and servers in the
graph without considering a particular labeling. It is also useful to accompany these terms with
matching notation. For a mode ξ, let the single- (respectively, dual-) activity class be denoted
by i1(ξ) (respectively, i2(ξ)), and similarly, let the single- (respectively, dual-) activity server be
denoted by k1(ξ) (respectively, k2(ξ)).

The following example, which corresponds to Examples (A) and (B) in [1], should help to make
the above ideas more concrete.

Example 2.3. Let (µik) be given by

µ11 = 3, µ12 = 4, µ21 = 6, µ22 = 8.

Then µik are decomposable as αiβk, where α1 = 7, α2 = 14, β1 = 3/7, and β2 = 4/7. For (λi),
consider two cases, namely

(A) λ1 = 5, λ2 = 4, (B) λ1 = 3.5, λ2 = 7.

The linear program takes the form: Minimize ρ subject to

3ξ11 + 4ξ12 = λ1,

6ξ21 + 8ξ22 = λ2,

ξ11 + ξ21 ≤ ρ,
ξ12 + ξ22 ≤ ρ,
min ξik ≥ 0.

(2.10)

The solutions to the LP were calculated in [1], and it was found that in both cases ρ∗ = 1, and the
two modes are given by

ξ∗,1 = (1, 1
2 , 0,

1
2)T , ξ∗,2 = (1

3 , 1,
2
3 , 0)T

in Case (A) and
ξ∗,1 = (1, 1

8 , 0,
7
8)T , ξ∗,2 = (0, 7

8 , 1,
1
8)T
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in Case (B). In particular, the system is critically loaded and there are multiple ways to allocate
the effort so as to meet the demand. That is, the EHTCM holds. Figures 2 and 3 depict the graphs
of basic activities corresponding to these modes. The examples differ in the way the two modes are
paired. In Case (A) (resp., (B)), the non-basic activity switches a server (a class). This distinction
is of crucial significance to the way AO policies are designed in this paper.

14

1 2
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1 2
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arrival rates �i 5 4 5 4

class labels i

service rates µik 3 4 8 3 6 4

server labels k

fractions of effort ⇠ik 1 (0) 1
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1
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1
3

2
3 1 (0)

mode 1 mode 2

Fig 1: The two modes in Example (A).
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fractions of effort ⇠ik 1 (0) 1
8
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Fig 2: The two modes in Example (B).

the one for which ⇠j = 0) switches a server between the two modes, whereas it switches a
class in Example (B). Although this distinction has no consequences in this paper, it turns
out to be of crucial significance when it comes to implementing AO policies, as in [? ]. As is
also shown in [? ], it is impossible to have a pairing of modes in which the non-basic activity
switches both a class and a server. Furthermore, the results of [? ], which show that the lower
bound of Theorem 2.6 is tight, cover these two examples.

EXAMPLE (C). Keep µj , j = 1, . . . ,4 as above, but let �1 = 4 and �2 = 6. In this case the
EHTC still holds, with

⇠⇤,1 = (0,1,1,0)T , ⇠⇤,2 = (1, 1
4 ,0, 3

4)T .

This is an example of a degenerate LP as discussed above. Note that the dual solution
is the same as in Examples (A) and (B), and is unique. In particular, this example satisfies
our standing assumption and so the lower bound of Theorem 2.6 is valid. Because of the
LP degeneracy, the results of [? ] do not cover this example, and because, further, there
are multiple solutions to the LP, this example falls into the category of problems to which
Conjecture 2.7 refers, stating that nevertheless this lower bound is tight.

EXAMPLE (D). We next provide an example that goes beyond uniqueness of solutions to
the dual. We consider a 3-class, 3-server system with seven activities. Let

µ11 = 3, µ12 = 4, µ21 = 6, µ22 = 8, µ23 = 6, µ32 = 7, µ33 = 6.

Although the services rates are not decomposable (because µ22

µ23
6= µ32

µ33
), the service rates in

the 2 by 2 subsystem consisting of classes 1 and 2, and servers 1 and 2, are decomposable.

Figure 2: The two modes in Case (A).
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the one for which ⇠j = 0) switches a server between the two modes, whereas it switches a
class in Example (B). Although this distinction has no consequences in this paper, it turns
out to be of crucial significance when it comes to implementing AO policies, as in [? ]. As is
also shown in [? ], it is impossible to have a pairing of modes in which the non-basic activity
switches both a class and a server. Furthermore, the results of [? ], which show that the lower
bound of Theorem 2.6 is tight, cover these two examples.

EXAMPLE (C). Keep µj , j = 1, . . . ,4 as above, but let �1 = 4 and �2 = 6. In this case the
EHTC still holds, with

⇠⇤,1 = (0,1,1,0)T , ⇠⇤,2 = (1, 1
4 ,0, 3

4)T .

This is an example of a degenerate LP as discussed above. Note that the dual solution
is the same as in Examples (A) and (B), and is unique. In particular, this example satisfies
our standing assumption and so the lower bound of Theorem 2.6 is valid. Because of the
LP degeneracy, the results of [? ] do not cover this example, and because, further, there
are multiple solutions to the LP, this example falls into the category of problems to which
Conjecture 2.7 refers, stating that nevertheless this lower bound is tight.

EXAMPLE (D). We next provide an example that goes beyond uniqueness of solutions to
the dual. We consider a 3-class, 3-server system with seven activities. Let

µ11 = 3, µ12 = 4, µ21 = 6, µ22 = 8, µ23 = 6, µ32 = 7, µ33 = 6.

Although the services rates are not decomposable (because µ22

µ23
6= µ32

µ33
), the service rates in

the 2 by 2 subsystem consisting of classes 1 and 2, and servers 1 and 2, are decomposable.

Figure 3: The two modes in Case (B).

2.3 Workload control problem

The WCP was derived and studied in [1] under the EHTC. We describe this problem in the special
case needed here, namely under the setting of a 2×2 PSS and assuming that the EHTCM holds. In
particular, as mentioned above, the parameters (αi), (βk) are uniquely determined by the problem
data. Define the workload process and its scaled version as

Wn(t) =
∑
i

Xn
i (t)

αi
, Ŵn(t) =

∑
i

X̂n
i (t)

αi
. (2.11)

(It follows from [1, Lemma 2.4(2)] that (2.11) above agrees with the definition of Wn and Ŵn given
in [1]). Let the process that appears in the definition of the cost (2.6) be denoted by

Ĥn
t = h(X̂n(t)) = h1X̂

n
1 (t) + h2X̂

n
2 (t). (2.12)
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Throughout, denote by p, q ∈ {1, 2} the two distinct indices for which

hpαp ≥ hqαq, (2.13)

where in the special case h1α1 = h2α2, set p = 1 and q = 2. The policies constructed in this paper
aim at keeping X̂n

p close to zero. Hence we call p the high priority class (HPC) and q the low

priority class (LPC). Next, let σA,i = λ
1/2
i CAi , σS,ik = µ

1/2
ik CSik , and

b(ξ) =
∑
i

λ̂i −
∑

k µ̂ikξik
αi

, σ(ξ)2 =
∑
i

σ2
A,i +

∑
k σ

2
S,ikξik

α2
i

, ξ = (ξik) ∈ SLP. (2.14)

Let also
bm = b(ξ∗,m), σm = σ(ξ∗,m), m = 1, 2. (2.15)

It was shown in [1] that the asymptotics of the pair (Ŵn, Ξn) are governed by a state-control pair
of processes (Z,Ξ), where Z is a one-dimensional controlled diffusion given by

Zt = z +

∫ t

0
b(Ξs)ds+

∫ t

0
σ(Ξs)dBs + Lt, (2.16)

Ξ is a control process, B is a standard BM (SBM), L is a reflection term at zero, and z > 0. A
precise definition is as follows.

A tuple S = (Ω′,F ′, (F ′t),P′, B,Ξ, Z, L) is said to be an admissible control system for the
WCP with initial condition z if (Ω′,F ′, (F ′t),P′) is a filtered probability space, B, Ξ, Z and L are
processes defined on it, B is a SBM and an (F ′t)-martingale, Ξ is (F ′t)-progressively measurable
taking values in R2×2 and satisfying P′(for a.e. t, Ξt ∈ SLP) = 1, Z is continuous nonnegative and
(F ′t)-adapted, L has sample paths in C0,+

R [0,∞) and is (F ′t)-adapted, and equation (2.16) and the
identity

∫
[0,∞) ZtdLt = 0 are satisfied P′-a.s.

Denoting by AWCP(z) the collection of all control systems for the WCP with initial condition
z, the cost and value are defined as

JWCP(z,S) = ES

∫ ∞
0

e−γtZtdt, VWCP(z) = inf{JWCP(z,S) : S ∈ AWCP(z)}. (2.17)

The significance of the WCP lies in the fact that it provides a lower bound on the large n
asymptotics of the n-th system value. More precisely, the main result of [1], when specialized to
the 2× 2 PSS, states the following.

Theorem 2.4 ([1]). Let Assumption 2.2 (multiplicity and nondegeneracy) hold. Then

lim inf
n

V̂ n > V0 := hqαqVWCP(0).

To prove this result one only needs to verify that the assumptions from [1] hold under Assump-
tion 2.2 of this paper. This is done in §3.

Remark 2.5. The general result from [1] does not assume multiplicity and, moreover, uses different
notation based on the formulation of a dual to the LP. In the 2 × 2 setting with multiplicity, the
lower bound from [1] reduces to the above expression given in terms of the parameters (αi) in place
of the dual.
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In view of Theorem 2.4, a sequence Tn ∈ An of admissible controls for the QCP, also referred
to as a sequence of policies, is said to be asymptotically optimal (AO) if

lim sup
n→∞

Ĵn(Tn) 6 V0.

A heuristic discussion of the WCP and Sheng’s toroise–hare problem. The WCP is
important not only because it provides a lower bound on performance, but also because one can
learn from it how to construct a policy for the queueing model that performs near optimality. This
problem has been solved completely. Before presenting its solution we discuss its nature informally.
Assume first that the pairs (b1, σ1) and (b2, σ2) are such that b1 < b2 while σ1 = σ2. Then it is
intuitively clear and can be shown by a simple coupling that JWCP is minimized by always using
mode 1, because it has a smaller drift. Next consider the case where b1 = b2 but σ1 < σ2. Mode 2
has greater variance and thus one expects that the constraining mechanism, causing the diffusion
to bounce back from the boundary, will be more active under mode 2 than under mode 1. Hence
again using mode 1 at all times is optimal. More generally, mode 1 is optimal when b1 ≤ b2 and
σ1 ≤ σ2.

A more interesting case is when b1 < b2 but σ1 > σ2, referred to in [16] as the tortoise–hare
problem. It seems reasonable to use the mode with smaller drift when the diffusion process is far
from the origin, and switch to the mode with smaller variance when it is close to the origin, where
the aforementioned boundary effect is more prominent.

These heuristic arguments were validated rigorously in [16]. In particular, in the case b1 < b2,
σ1 > σ2, it was shown that there exist a point z∗ ∈ (0,∞) such that it is optimal to select mode 2
(resp., 1) when Zt is in [0, z∗) (resp., [z∗,∞)). The identification of z∗ and the proof of the result
were based on an HJB equation. The precise details are as follows.

The HJB equation. The value function can be characterized in terms of an HJB equation (see
[6] for an introduction to the subject). To present this equation, for (v1, v2, ξ) ∈ R2 × SLP, let

H̄(v1, v2, ξ) = b(ξ)v1 +
σ(ξ)2

2
v2, H(v1, v2) = inf

ξ∈SLP

H̄(v1, v2, ξ) = min
ξ∈{ξ∗,1,ξ∗,2}

H̄(v1, v2, ξ),

where the identity on the RHS follows from the fact that both b and σ2 are affine as a function of ξ,
and SLP is the convex hull of {ξ∗,1, ξ∗,2}. A classical solution to the HJB equation is a C2(R+ : R)
function u satisfying

H(u′(z), u′′(z)) + z − γu(z) = 0, z ∈ (0,∞), (2.18)

and the boundary conditions at 0 and ∞,

u′(0) = 0, u(z) < c(1 + z), z ∈ R+, for some constant c. (2.19)

Given a C2 function u, denote Hu
m(z) = H̄(u′(z), u′′(z), ξ∗,m), m = 1, 2, and Hu(z) = minmHu

m(z).

The following two conditions play an important role in what follows. They correspond to the
two cases discussed above, and will be referred to as the single mode case and, respectively, the
dual mode case (not to be confused with uniqueness and multiplicity of the LP solution):

there exist distinct m,m′ ∈ {1, 2} such that bm 6 bm′ and σm 6 σm′ , (2.20)
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there exist distinct m,m′ ∈ {1, 2} such that bm < bm′ and σm > σm′ . (2.21)

The C2 smoothness of the value function is tied to the question of existence of a classical solution
to the HJB equation. Owing to the uniform ellipticity (σ(ξ)2 > 0 at both ξ = ξ∗,1 and ξ∗,2), one
can show that a classical solution uniquely exists [1, Proposition 2.5], a type of result that, in the
general context of optimal switching of a diffusion process, has been called the principle of smooth
fit. The results of [16] alluded to above shed more light on the specific problem at hand, providing
structural properties (parts 2 and 3 of the result below) that are harder to obtain via the general
approach.

Proposition 2.6. 1. There exists a unique classical solution u to (2.18)–(2.19). Moreover,
u = VWCP.

2. If (2.20) holds then, with m as in (2.20),

Hu(z) = Hu
m(z) z ∈ R+. (2.22)

3. Alternatively, if (2.21) holds then there exists z∗ ∈ (0,∞) such that, with the pair (m,m′) of
(2.21),

Hu(z) =

{
Hu
m′(z) z < z∗,

Hu
m(z) z > z∗.

(2.23)

The proof of this result appears in §4. Some details on the construction from [16] (as corrected
in [17]), by which parts 2 and 3 above were proved, appear in Appendix B.

Further terminology is as follows. In the single mode case, the mode ξ∗,m for which m satisfies
(2.20) will be referred to as the active mode and denoted ξA, because the above result indicates
that it is optimal to always select Ξt = ξ∗,m. In the dual mode case, the modes ξ∗,m

′
and ξ∗,m for

which m′ and m satisfy (2.21) will be referred to as ξL, the lower and, respectively, ξH the higher
workload mode, and z∗ as the switching point. These terms refer to the fact that the result suggests
that it is optimal to select Ξt = ξL (respectively, Ξt = ξH) when Zt < z∗ (respectively, Zt > z∗).

Example 2.7. We go back to Example 2.3, focusing on Case (A), adding now information on the
second order data. Assume that the squared coefficients of variation C2

Ai
and C2

Sik
are all 1 except

C2
S11

= 4. Set both λ̂i to 0. As for µ̂ik, consider two cases. In Case (A1), all µ̂ik are set to 0. In
Case (A2), they are all 0 except µ̂11 = 1. For each of the modes, computing the drift and squared
diffusion coefficients via (2.14)–(2.15) gives, in Case (A1),

b1 = 0, σ2
1 =

3

7
, b2 = 0, σ2

2 =
15

49
. (2.24)

In Case (A2),

b1 = −1

7
, σ2

1 =
3

7
, b2 = − 1

21
, σ2

2 =
15

49
. (2.25)

Note that (A1) is a single mode case whereas (A2) is a dual mode case. Roughly speaking, we
may infer that, in the former case, in order to perform near optimality, it is necessary to keep
the proportions of the work allocated to the different activities close to the fractions given by ξA.
That is, the policies should be designed to achieve Ξn ⇒ ξA. As for Case (A2), recall that Z
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approximates Ŵn. Hence in this case it is necessary for the work allocation to vary over time in
such a way that the aforementioned proportions are close to ξL when Ŵn(t) < z∗ and to ξH when
Ŵn(t) > z∗. This is again only a rough statement; a precise formulation of this behavior appears
next.

The controlled diffusion. Controlling (2.16) according to the above description results in two
different diffusion processes. In the single mode case, the optimally controlled process Z is given
by

Z
(1)
t = z + bAt+ σABt + L

(1)
t , (2.26)

with bA = b(ξA) and σA = σ(ξA), which is nothing but a reflecting BM with drift bA and diffusivity
σA. In the dual mode case, consider the SDE

Z
(2)
t = z +

∫ t

0
b∗(Z(2)

s )ds+

∫ t

0
σ∗(Z(2)

s )dBs + L
(2)
t , (2.27)

where, throughout, we denote

b∗ = b ◦ ϕ∗, σ∗ = σ ◦ ϕ∗, ϕ∗(z) = ξL1[0,z∗](z) + ξH1(z∗,∞)(z), z ∈ R+. (2.28)

For this equation, weak existence and uniqueness of solutions hold, as we shall argue in Lemma 4.1.
As a result, there exists a control system for the WCP that behaves exactly as described above,

with Ξt = ξL (respectively, ΞH) when Z
(2)
t ≤ z∗ (> z∗), and moreover, this description uniquely

determines the law of the process Z(2).

As for the asymptotics of the QCP, the preceding discussion, and the fact that the system starts
empty, suggest that in order to achieve the lower bound, the convergence

(X̂n
p , Ŵ

n)⇒ (0, Z(1)), with z = 0, (2.29)

should hold in the single mode case, and

(X̂n
p , Ŵ

n)⇒ (0, Z(2)), with z = 0, (2.30)

in the dual mode case, where Z(1) is given by (2.26), (Z(2), Ξ, L,B) is a weak solution to (2.27),
and z = 0.

2.4 Asymptotic optimality results

This section is devoted to the description of several policies that are shown to be AO under different
conditions. We have already assumed that the interarrival times of the primitive processes possess
finite second moments. Our main results require a stronger assumption.

Assumption 2.8. There exists m > 2 such that

max
i,k

E[ǎi(1)m] ∨ E[ǔik(1)m] <∞.

16



Whereas the assumption m > 2 is required for all our results, some of them will require yet a
stronger moment assumption, namely m > m0, where, throughout, we denote

m0 =
1

2
(5 +

√
17).

Different policies are proposed in different cases. The distinction between the various cases is
based on whether the single-mode condition (2.20) or the dual-mode condition (2.21) holds, and
further, for each of the relevant modes (ξA in the former case and both ξL and ξH in the latter),
whether the HPC is the single- or dual-activity class.

As a rule, all policies we describe are non-preemptive, that is, the processing of a job is not
interrupted once started. A job is said to be in the queue if it is waiting to be served, whereas it
is in the system if it is either in the queue or being processed. (In what is a bit of an abuse of
terminology we use the term queue length to refer to the number in the system.) A server is said to
be available at a time t if either it has just completed a job or has already been idle at that time.

Some of the policies to be described are defined in terms of a sequence of thresholds, Θn, put
on the queue length at one of the two buffers. Under Assumption 2.8, m > 2. Fix ā satisfying

1

2
− ζ̄(m) < ā <

1

2
where ζ̄(m) =

{
m−2
4m , m ∈ (2,m0],
m−2
4m ∧ m2−5m+2

2m(3m−2) = m2−5m+2
2m(3m−2) , m ∈ (m0,∞).

(2.31)

Set the sequence of threshold levels Θn and their normalized version Θ̂n to

Θn = dnāe, Θ̂n = n−1/2Θn. (2.32)

Definition 2.9. (Server dedicated to / prioritizes a class).

1. A server is said to be dedicated to class i at a given time if it acts as follows: if available at
that time, it admits a job from class i provided there is one in the queue, or there is a new
class-i arrival, but does not admit a job from the other class.

2. A server is said to prioritize class i at a given time if it acts as follows: if available at that
time, it admits a job from class i provided there is one in the queue; otherwise it admits a job
from the other class provided there is one in the queue. If the server is idle at that time and
there is a new arrival of any class, it admits this arrival unless the other server is dedicated
to that class and is free at that time (in which case the other server admits it).

Definition 2.10. (P, T1 and T2 rules). Let a mode ξ be given. At any moment in time the
single-activity server is dedicated to the dual-activity class.

1. The servers are said to obey the priority rule, abbreviated P rule, at a given time if the
dual-activity server prioritizes the single-activity class at that time.

2. The servers are said to obey the single-activity class threshold rule, abbreviated T1 rule, at
a given time if in the n-th system, the dual-activity server prioritizes the single-activity class
when the queue length of the single-activity class equals or exceeds Θn at that time, and
otherwise prioritizes the dual-activity class.

17



3. The servers are said to obey the dual-activity class threshold rule, abbreviated T2 rule, at a
given time if in the n-th system, the dual-activity server prioritizes the dual-activity class when
the queue length of the dual-activity class equals or exceeds Θn at that time, and otherwise
prioritizes the single-activity class.

Recall the notation ξA, ξL, ξH and p from §2.3. In the case of a single mode, the following two
policies are proposed. (In Definitions 2.11 and 2.12 below, the text in square brackets is not a part
of the definition, but serves to indicate when each policy is to be applied).

Definition 2.11. (Single mode policies P and T2). Let the single mode condition (2.20) hold.

1. The P policy [to be applied when i1(ξA) = p] is as follows: The servers obey the P rule
corresponding to ξA at all times.

2. The T2 policy [to be applied when i2(ξA) = p] is as follows: The servers obey the T2 rule
corresponding to ξA at all times.

In the dual mode case, servers switch between two rules, depending, roughly speaking, on
whether the rescaled workload is below or above the switching point z∗. This makes the structure
of the policies more complicated. In particular, there is potential loss of capacity in every switching,
especially since our policies are nonpreemptive. Moreover, the number of switchings grows without
bound, as the rescaled workload converges to a diffusion. Therefore one has to be careful about
how to assure that the rule obeyed is updated soon enough after the workload level has crossed
the switching point so as not to compromise optimality. The considerations differ in the different
cases, and give rise to the use of the T1 rule as well as the sampling rules in Definition 2.12 below.
Although it is possible that AO is not too sensitive to these fine details, proving that might be
quite hard.

The precise definition requires the use of a state variable called current mode, that determines
which rule is applicable. This variable is not updated continuously in time about whether Wn >
n1/2z∗ but only at certain sampling times, as detailed below. The four policies used in the dual
mode case are as follows.

Definition 2.12. (Dual mode policies PP, T2T2, T1T2 and T2T1). Let the dual-mode condition
(2.21) hold.

1. The PP policy [applied when i1(ξL) = i1(ξH) = p] is as follows.

(a) The workload is sampled at each service completion of the single activity server. If the
workload is below n1/2z∗, the current mode is set to ξ = ξL; otherwise it is set to ξ = ξH .

(b) The servers always obey the P rule w.r.t. the current mode ξ.

2. The T2T2 policy [applied when i2(ξL) = i2(ξH) = p] is as follows.

(a) The workload is sampled at each service completion of the single activity server. If the
workload is below n1/2z∗, the current mode is set to ξ = ξL; otherwise it is set to ξ = ξH .

(b) The servers always obey the T2 rule w.r.t. the current mode ξ.

3. The T1T2 policy [applied when i1(ξL) = i2(ξH) = p] is as follows.
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(a) The workload is sampled at each arrival and service completion. If the workload is below
n1/2z∗, the current mode is set to ξ = ξL; otherwise it is set to ξ = ξH .

(b) Whenever ξ = ξL, the servers obey the T1 rule w.r.t. ξ; whenever ξ = ξH , they obey the
T2 rule w.r.t. ξ.

4. The T2T1 policy [applied when i2(ξL) = i1(ξH) = p] is as T1T2, except that the roles of T1

and T2 are interchanged.

Our main result states conditions under which each of the six policies just introduced are AO.

Theorem 2.13. Let Assumptions 2.2 and 2.8 hold. In parts 1(b), 2(b) and 2(c) below, assume
moreover that m > m0.

1. Assume that the single-mode condition (2.20) holds.

(a) If i1(ξA) = p then under the P policy (2.29) holds and this policy is AO.

(b) If i2(ξA) = p then under the T2 policy (2.29) holds and this policy is AO.

2. Assume that the dual-mode condition (2.21) holds.

(a) If i1(ξL) = i1(ξH) = p then under the PP policy (2.30) holds and this policy is AO.

(b) If i2(ξL) = i2(ξH) = p then under the T2T2 policy (2.30) holds and this policy is AO.

(c) If i1(ξL) = i2(ξH) = p then under the T1T2 policy (2.30) holds and this policy is AO.

(d) If i2(ξL) = i1(ξH) = p then under the T2T1 policy (2.30) holds and this policy is AO.

The proof of this result is in §5. Table 1 summarizes how to determine which of the above six
case applies, based on the problem data. We discuss some of the fine details of our construction in
the dual mode case in §5.1.3.

Remark 2.14. In §5.1, Theorem 5.1 provides more detailed information than (2.29)–(2.30) on the
weak limit of the processes involved.

Although the main goal of this paper is to address the case where the LP has multiple solutions,
the following result about the case where it has a unique solution is a consequence of our treatment.

Corollary 2.15. Let the ‘standard’ HTC hold; that is, the EHTC with a unique LP solution (ξ∗, 1).
Let also Assumption 2.8 hold. In part (b) below, assume moreover that m > m0.

(a) If i1(ξ∗) = p then under the P policy (2.29) holds and this policy is AO.

(b) If i2(ξ∗) = p then under the T2 policy (2.29) holds and this policy is AO.

Remark 2.16. This result is closely related to the main result of [3], which proved AO of a threshold
policy under the standard HTC. In a remark in [3, page 622] it was conjectured that the threshold
policy without preemption has the same behavior in the heavy traffic limit as the one with preemp-
tion. Corollary 2.15 confirms that AO can indeed be achieved by a non-preemptive threshold policy,
although, strictly speaking, it does not prove the precise conjecture from [3] as our threshold sizes
differ from those of [3].
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Identifying an AO policy assuming LP solution multiplicity

Input: the problem data, (λi), (µik), (λ̂i), (µ̂ik), (σi), (σik), γ, (hi). Output: an AO policy.

1. Find the two modes (i.e., extreme solutions) of the LP (2.7), ξ∗,m, m = 1, 2. In particular,
since the LP is assumed to have multiple solutions, µik are given as αiβk, and the formulas
in Lemma 3.1 express ξ∗,m, m = 1, 2 in terms of αi and βk.

2. Compute the drift–diffusion pairs (bm, σm), m = 1, 2. For this, use formula (2.15).

3. Decide single or dual mode case, and find the active/lower/higher workload modes, as
follows. For (m,m′) = (1, 2) or (2, 1), if bm ≤ bm′ and σm ≤ σm′ then this is the single mode
case, with m the active mode: ξA = ξ∗,m.
Otherwise, this is the dual mode case, and if σm < σm′ then m (resp., m′) is the lower
(higher) workload mode: ξL = ξ∗,m, ξH = ξ∗,m

′
.

4. In the dual mode case, compute the switching point z∗. This is done by numerically
solving the HJB equation (2.18)–(2.19), or alternatively, equation (B.3).

5. Determine high priority class: p = arg maxi hiαi.

6. For ξ = ξA (single mode) or ξ = ξL and ξH (dual mode), denote by i1(ξ) (resp., i2(ξ))
the class that is assigned one (resp., two) server(s) under mode ξ.

7. Given the number of modes, the modes ξA or ξL and ξH , the indices p and i1(ξ), i2(ξ)
for the relevant modes ξ, determine which of the six cases of Theorem 2.13 applies.

Table 1
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Example 2.17. We continue Cases (A1) and (A2) from Example 2.7, specifying now which part
of the main result applies in each case. Recall from Example 2.3 that α1 = 7 and α2 = 14. Recall
from Example 2.7 that Figure 2 depicts the two modes and the corresponding graphs, and that the
drift-diffusion pairs are given by (2.24) and (2.25). Case (A1) is a single mode because b1 = b2,
and the active mode is ξA = ξ∗,2 because σ2 < σ1. As can be seen in Figure 2 (right), this mode has
i1(ξA) = 2. Now assume that the costs are (h1, h2) = (1, 1). Then the class that maximizes hiαi is
p = 2. Thus i1(ξA) = p and Theorem 2.13(1a) holds. If instead (h1, h2) = (3, 1) then p = 1 and
therefore Theorem 2.13(1b) holds.

In Case (A2) we have b1 < b2 but σ2 < σ1, hence this is a dual mode case with ξL = ξ∗,2 and
ξH = ξ∗,1. By Figure 2, i1(ξL) = 2 and i1(ξH) = 2. Again, if (h1, h2) = (1, 1) then p = 2 and we
see that Theorem 2.13(2a) applies, but if (h1, h2) = (3, 1), p = 1 and Theorem 2.13(2b) applies.

2.5 Some numerical results

The dual mode policies that we introduce are admittedly complicated, and the proof of their
asymptotic optimality is quite involved. A natural question thus arise here: Is all of this complexity
worthwhile? What is the gain from it?

From a purely theoretical/mathematical context the answer is simple: If the dual mode policy
has a cost that is strictly below that of both single mode controls then a non-switching policy cannot
be asymptotically optimal. From a practical viewpoint this answer falls short. Implementing the
dual mode policy is clearly more complicated than implementing a single mode policy. A key
question thus arises: Is the gain from using a dual mode policy sufficient to overcome the effort
involved in implementing it? The answer to this question is context dependent, and clearly depends
on the the cost of the effort required to implement the dual mode control, which we do not include
as part of our model. Thus we do not quite answer this question.

We do, however, partially answer the question of how much larger is the cost of single mode
policies over the optimal switching policy. We do this in two numerical examples. All of the
numerical results that we present here are obtained by finding the unique root of equation B.3, and
then using B.1 and B.2. Note that to use B.3, B.1, and B.2, the identity of the 2 modes needs to
be flipped around because in case (A2) we have b1 < b2, and the analysis in Appendix B requires
b1 > b2. The mode identities in our presentation remains as in (A2).

Figure 4: Value functions in Case (A2).
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The first numerical results are for the case (A2) introduced in Example 2.7, with γ = 0.01. In
particular, in Figure 4 we plot 3 curves: V1(z), V2(z) and VWCP (z). Here Vi is the cost function
for using mode i, 1 = 1, 2. (The orange/top curve corresponds to V1, and the green/middle curve
corresponds to V2.) It is clear from Figure 4 that there is a gap between VWCP (z) and both V1(z)
and V2(z). We define the ’gain’ from using the optimal switching policy as

G :=
V1(0) ∧ V2(0)

VWCP (0)
.

Thus G ≥ 1. For case (A2), G = 1.07. If the cost related to implementing the more complicated
switching policy is great enough it may indeed be decided that G = 1.07 is not sufficient to overcome
this cost.

This raises a more general question: Can we place an a priori upper bound on G? It is beyond
the scope of this paper to answer this question in any precise mathematical manner, but we provide
a set of numerical results suggesting that the answer may be no: Given any M <∞, it is possible
to find a set of parameters {(bi, σ2

i ), i = 1, 2)} such that G > M . We examine a set of parameters
loosely related to case (A2). In particular, we fix b2 = −1/21 and σ2

2 = 15/49, which are the
parameters in case (A2), throughout. We also use γ = 0.01. We then take 6 different values for b1,
and set σ2

1 so that
σ2

1

|b1|
=

σ2
2

|b2|
.

In particular, we take the b1 values to be {−3/21,−6/21,−12/21,−24/21,−48/21,−96/21}. Table
2 contains the results of this numerical experiment. Note that G = 1.26 when b1 = −3/21, and
grows to G = 5.01 when b1 = −96/21.

b1 σ2
1 z∗ G VWCP

−3/21 45/49 1.91 1.26 174

−6/21 90/49 1.49 1.56 141

−12/21 180/49 1.13 2.01 109

−24/21 360/49 0.84 2.67 82

−48/21 720/49 0.61 3.63 61

−96/21 1440/49 0.44 5.01 44

Table 2: Gain from using switching policy

In a very real sense the situation presented in Figure 4 is a ’lucky’ one for a system controller
who does not want to go through the trouble of implementing the switching policy, since the loss is
only 7%. The results of Table 2 stand in contrast to that. To see this in graphical form, in Figure
5 we present the same plot as in Figure 4, but corresponding to the parameters in the 3rd row of
Table 2 . (In this case V1 and V2 have switched places: The green/top curve corresponds to V2,
and the orange/middle curve corresponds to V1.)
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Figure 5: Value functions for row 3 of Table 2.

3 The LP under the EHTC

In this section we prove Lemma 2.1. In addition, in a sequence of three lemmas, we provide an
explicit solution to the LP and a criterion for determining whether the two modes are class-switched
or server-switched. Finally, Theorem 2.4 is proved. The section is structured as follows. In §3.1
we first prove Lemma 2.1(1–3) based mostly on results from [1]. Then we state Lemmas 3.1 and
3.2, which provide the LP solution, and Lemma 3.3 which is concerned with how the modes are
paired. Lemma 2.1(4) is then proved based on Lemma 3.3. In §3.2 we prove Lemmas 3.1–3.3 and
Theorem 2.4.

3.1 LP-related lemmas

Proof of Parts 1–3 of Lemma 2.1.

1. Let ξ ∈ SLP. It is impossible that
∑

i ξik < 1 for both k = 1 and 2 as this contradicts the
EHTC ρ∗ = 1. Assume then that, say,

∑
i ξi1 < 1. Then ξ11 < 1. Define

ξ̃ = ξ +

(
ε −cε
0 0

)
,

where c = µ−1
12 µ11. Then for ε > 0 small, ξ̃ satisfies (2.7) with ρ < 1, which again contradicts the

EHTC. This proves Part 1.

2. This follows from [1, Lemma 2.4(4)]. Note that uniqueness of the dual problem, which is a
standing assumption in [1], is not used in the proof of this statement.

3. This statement follows from [1, Lemma 2.3(1)] and [1, Lemma 2.4(4)], where again the
uniqueness of the dual is not used.

The following lemma computes the two modes.

Lemma 3.1. Let the EHTCM hold. Then∑
i

λi
αi

=
∑
k

βk = 1, (3.1)
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where the last equality merely expresses the normalization convention mentioned earlier in §2.2.
Moreover, any ξ ∈ SLP is determined by its entry ξ11 via

ξ =

 ξ11
λ1

α1β2
− β1

β2
ξ11

1− ξ11 1− λ1

α1β2
+
β1

β2
ξ11

 . (3.2)

The two modes ξ∗,1 and ξ∗,2 can be expressed by (3.2) with ξ11 given by

ξ∗,111 = max
(

0,
λ1

α1β1
− β2

β1

)
, ξ∗,211 = min

( λ1

α1β1
, 1
)
. (3.3)

Recall that under the nondegeneracy condition, for any mode there is a unique relabelling of
classes and servers which transforms it to a canonical form. The following result shows that both
modes, once put in canonical form, are given by the same formula.

Lemma 3.2. Let Assumption 2.2 (EHTCM and nondegeneracy) hold. Fix m ∈ {1, 2}. Relabel
classes and servers so that ξ∗,m is in canonical form. Then λ1 > α1β1 and

ξ∗,m =

 1
λ1

α1β2
− β1

β2

0
λ2

α2β2

 . (3.4)

In particular, if ξ, ξ′ ∈ SLP and there are i, k such that ξik = ξ′ik = 0 then ξ = ξ′.

Lemma 2.1(4), which is yet to be proved, states that under the nondegeneracy condition, the
two modes must be either class- or server-switched. The following lemma contains this result,
and in addition provides a criterion for distinguishing between these cases. We will say that the
class-switching condition holds if

max
i

λi
αi

< max
k

βk, (3.5)

and the server-switching condition holds if

max
i

λi
αi

> max
k

βk. (3.6)

Lemma 3.3. Let Assumption 2.2 hold. Then both modes are nondegenerate. Moreover, under the
class-switching condition (3.5), the modes are class-switched (as, for example, in Figure 1(a) and
(b)), and under the server-switching condition (3.6), they are server-switched (as, for example, in
Figure 1(a) and (c)).

Proof of Part 4 of Lemma 2.1. The statement is contained in Lemma 3.3.

Remark 3.4. Note that cases 2(c) and 2(d) of Theorem 2.13 correspond to class-switched modes
(for example, under case 2(c) one has i1(ξL) = i2(ξH) = p hence the non-basic activity must have
switched from class p to class q when moving from ξL to ξH). By Lemma 3.3, this occurs under
(3.5). Also note that in both cases, the proposed policies apply a different rule for the lower and
upper workload modes. On the other hand, cases 2(a) and 2(b) of Theorem 2.13 correspond to
server-switching, and hold under (3.6), and our policies are such that the same rule is used for the
lower and upper workload modes.
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3.2 Proof of Lemmas 3.1–3.3 and Theorem 2.4

Proof of Lemma 3.1. In view of Lemma 2.1(1), every solution ξ is column-stochastic, and,
recalling µik = αiβk, must satisfy

ξ11β1 + ξ12β2 =
λ1

α1
, (3.7)

ξ21β1 + ξ22β2 =
λ2

α2
,

ξ11 + ξ21 = 1,

ξ12 + ξ22 = 1,

ξi,k > 0, i, k ∈ {1, 2}.

Identity (3.1) follows.

Next, because the expression (3.2) is also column-stochastic, proving that any solution ξ is
determined by ξ11 as in (3.2) amounts to proving that ξ12 is given as in (3.2). This follows from
the first line in (3.7).

It remains to prove (3.3). By the expression just obtained for ξ12 it follows that as long as

ξ11 >
λ1

α1β1
− β2

β1
,

we obtain ξ12 6 1. Clearly, in addition, ξ11 > 0 must hold. Similarly, as long as

ξ11 6
λ1

α1β1
,

we obtain ξ12 > 0, and in addition, ξ11 6 1 must hold. As a result, it is necessary that

ξ11 ∈
[

max
(

0,
λ1

α1β1
− β2

β1

)
,min

( λ1

α1β1
, 1
)]
. (3.8)

Moreover, setting ξ11 to each of the two endpoints of the interval indicated in (3.8) and letting ξ
be the corresponding expression from (3.2) gives rise to a solution satisfying all of (3.7), as can
be checked directly. Because by (3.2) a solution ξ is an affine function of its entry ξ11, these two
endpoints correspond to the two extreme points of SLP, that is, to the two modes ξ∗,1, ξ∗,2. This
proves the lemma.

Proof of Lemma 3.2. Note that relations (3.7) are invariant to relabeling of classes and servers.
Hence so is relation (3.2), which was derived solely from (3.7). Let m be given and assume a
relabeling has been performed to put ξ∗,m in canonical form. Then ξ∗,m satisfies (3.2) with its first
column given by (1, 0)T . Consequently ξ∗,m11 = 1. Substituting ξ∗,m11 = 1 into (3.2) proves (3.4).
Because under the nondegeneracy assumption there can be only one zero entry, in (3.4) we have
ξ∗,m12 > 0. Hence λ1 > α1β1. The final assertion follows from (3.4) using again the fact that there
can be at most one zero entry.

The four possible graphs and their relabelings are described in Figure 6. Namely, if (i′, k) is the
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non-basic activity in ξ∗,m, then defining

ξ̃∗,m11 = ξ∗,mik = 1,

ξ̃∗,m22 = ξ∗,mi′k′ ,

ξ̃∗,m21 = ξ∗,mi′k = 0, and

ξ̃∗,m12 = ξ∗,mik′ ,

ξ̃∗,m is obtained from ξ∗,m upon relabeling in the form of an ”N”.

Proof of Lemma 3.3. The nondegeneracy of both modes follows from Lemma 3.2.

Next, let the class switching condition (3.5) hold. Because of (3.1),

max
k

βk > max
i

λi
αi

> min
i

λi
αi

> min
k
βk. (3.9)

Recall from the proof of Lemma 3.1 that the two endpoints of the interval defined in (3.8) correspond
to the two modes. Consider the right endpoint. If the minimum in expression in (3.8) is 1 then
by (3.2), the non-basic activity in that mode is (2, 1), and moreover, λ1

α1
> β1. By (3.1), this gives

λ2
α2
< β2. In view of (3.9) this gives

β2 > max
i

λi
αi
.

Hence the maximum in (3.8) is 0. By (3.2), this shows that the non-basic activity in the other
mode is (1, 1). If, on the other hand, the minimum in (3.8) is λ1

α1β1
then λ1

α1
< β1 and the non-basic

activity in the corresponding mode is (1, 2). Similarly, by (3.9)

min
i

λi
αi

> β2.

This means the maximum in (3.8) is not 0. The non-basic activity in the other mode is then (2, 2).
In both cases, the two modes form a class-switched pair as claimed.

Consider now the server switching condition (3.6). Because of (3.1),

max
i

λi
αi

> max
k

βk > min
k
βk > min

i

λi
αi
. (3.10)

If the minimum in (3.8) is 1 then λ1
α1
> β1 and the non-basic activity in one mode is (2, 1). By (3.10),

λ1
α1

> β2. Hence the maximum in (3.8) is not zero and the non-basic activity in the other mode

is (2, 2). Finally, if the minimum in (3.8) is not 1 then λ1
α1

< β1 and the non-basic activity in one

mode is (1, 2). By (3.10), λ1
α1
< β2. Hence the maximum in (3.8) is zero and the non-basic activity

in the other mode is (1, 1). In both cases, the two of modes forms a server-switched pair.

Proof of Theorem 2.4. This lower bound is precisely the one stated in [1, Theorem 2.6], when
specialized to the 2× 2 PSS. To prove that it is valid we must verify that the standing assumption
of [1], namely [1, Assumption 2.2], holds.

First, [1, Assumption 2.2.1], which states that the EHTC holds, is valid because of our Assump-
tion 2.2.1. Next, [1, Assumption 2.2.2], when translated to the notation of this paper, states that
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Figure 6: Top: Four possible graphs of basic activities. Bottom: Corresponding relabelings for
canonical form.

every ξ ∈ SLP is column-stochastic. This holds by our Lemma 2.1.1. It remains to show that [1,
Assumption 2.2.3], which states that the dual of (2.7) has a unique solution, is satisfied.

To this end we shall adopt in the remainder of this proof some notation and terminology from
[1]. By Lemma 3.2, the non basic activity is different in both modes ξ∗,1, ξ∗,2, for else one would
have ξ∗,1 = ξ∗,2, contradicting the EHTCM. As a result, with the terminology introduced in [1,
Section 2], all the activities are potentially basic. Using strict complementary slackness ((36) in
[15, Chapter 7]) in the same way as in [1, Lemma 2.3.4], any (y, z) solution of the dual satisfies

yi = µjzk, i, k ∈ {1, 2}, j = (i, k).

It follows that y1y2 = µ11µ21z
2
1 = µ12µ22z

2
2 . By positivity of both zk, this gives z1 = cz2 for some

constant c > 0. Moreover, one of the constraints of the dual problem [1, eq. (2.8)] is z1 + z2 = 1.
Therefore (zk) are uniquely determined. As a consequence so are (yi), which shows that the dual
problem has at most 1 solution. The existence of a dual solution follows from the EHTC, as shown
in [1, Lemma 2.4.2]. This completes the verification of [1, Assumption 2.2].

4 The WCP and HJB equation

In this section, Proposition 2.6 is proved. Lemma 4.1, which is used to prove it, contains two
additional results: An identification of optimal control systems for the WCP, and weak uniqueness
of solutions to the SDE (2.27), both needed for the weak convergence proofs in §5.

Proof of Part 1 of Proposition 2.6. This is a special case of [1, Proposition 2.5]. We comment
that the fact that VWCP is a classical solution to (2.18)–(2.19) has been established already in [16].
However, uniqueness of solutions is not covered there.

In what follows, u always denotes the unique solution to (2.18)–(2.19).
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In the following lemma, Parts 1 and 2 are largely based on results from [16]. For completeness,
we have included details on the construction from [16] (as corrected in [17]) in Appendix B.

Lemma 4.1. 1. (Optimality in the single mode case). Assume (2.20) and recall that in this
case ξA = ξ∗,m for m as in (2.20). Then, with u as above, equation (2.22) of Propo-
sition 2.6 holds. Moreover, JWCP(z,S(1)) = VWCP(z) for the admissible control system
S(1) = (Ω,F , {Ft},P, B,Ξ, Z(1), L(1)) where (Z(1), L(1), B) is the RBM from (2.26) (assumed
to be constructed on the original probability space), Ft = σ{Bs : s ∈ [0, t]} and Ξt = ξA.

2. (Optimality in the dual mode case). Assume (2.21) and recall that in this case (ξL, ξH) =
(ξ∗,m

′
, ξ∗,m). Then there exists a switching point z∗ ∈ (0,∞) such that (2.23) of Proposi-

tion 2.6 holds. Moreover, SDE (2.27) possesses a weak solution (Ω′,F ′, {F ′t},P′, B, Z(2), L(2)).
Furthermore, one has JWCP(z,S(2)) = VWCP(z) for the admissible control system defined by

S(2) = (Ω′,F ′, {F ′t},P′, B,Ξ, Z(2), L(2)), where Ξt = ϕ∗(Z(2)
t ).

3. Weak uniqueness holds for solutions to SDE (2.27).

Proof of Parts 2 and 3 of Proposition 2.6. These results are contained in Parts 1 and 2 of
Lemma 4.1.

For Markov control problems, a map from the state space to the control action space is often
called a stationary (feedback) control policy, or a policy for short. For our WCP, a policy is thus
a measurable map ξ̄ : R+ → SLP. This term is used in [16] and we adopt it in the next proof.
Parts 1 and 2 take full advantage of several results from [16], where a classical solution to equation
(2.18)–(2.19) is constructed, and a description of an optimal policy is provided.

Proof of Parts 1 and 2 of Lemma 4.1. The single mode condition (2.20) corresponds to
eq. [41]–[42] on p. 105 of [16, Section 5.3]. The dual mode condition (2.21) corresponds to the
complementary case. It is stated in [16, Theorem 1, Chapter 4] that a policy is optimal if and only
if the cost associated to it is C2 and satisfies [16, eq. (14), Chapter 4], which is the HJB equation
(2.18)–(2.19) in our notation. However, the equation studied there is more general, and in order to
reduce it to our (2.18)–(2.19) one must take the switching costs to vanish (by setting the expression
K = 0), and the reflection-absorption parameter to correspond to reflection only (by setting λ = 1).

Under the single mode condition, the policy constructed has the simple form

ξ̄(z) = ξ∗,m, z ∈ R+,

with the same m as in (2.20). It is shown that it is an optimal policy by computing the cost
associated it and showing that it solves the HJB equation with its boundary conditions. The fact
that (2.22) holds in this case is a direct consequence of the fact that the cost associated to the
single mode policy indeed solves the HJB equation. This completes the proof of part 1.

As for part 2, the claim that the SDE (2.27) possesses a weak solution is proved in [1, Lemma 4.1].
Under the dual mode case, the policy constructed in [16] is

ξ̄z∗(z) = ξ∗,m
′
1z≤z∗ + ξ∗,m1z>z∗ , z ∈ R+, (4.1)

with the same m and m′ as in (2.21). By [16, Theorem 4, Chapter 3], any policy of this form
gives rise to a cost function that is C1 in all of (0,∞), and C2 in (0,∞) \ {z∗}. The value of z∗

which leads to an optimal policy is found by the principle of smooth fit, namely by requiring that
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the second derivative is continuous also at z∗. The equation that states this smoothness condition,
[16, (61), Chapter 5] (as corrected in [17, (3.21)]), turns out to have a unique solution z∗ ∈ (0,∞).
The solution to the HJB equation is then the cost associated to ξ̄z∗ with that value of z∗. The
statement of part 2, by which the corresponding control system is optimal for the WCP, therefore
follows from [16, Theorem 1, Chapter 4]. Once again, the very fact that this function solves the
HJB equation implies that equation (2.23) holds in this case.

Proof of Part 3 of Lemma 4.1. We slightly simplify the notation by writing (2.27)–(2.28) as

Zt = z +

∫ t

0
b∗(Zs)ds+

∫ t

0
σ∗(Zs)dBs + Lt,

where, with a∗(x) = σ∗(x)2, there exist constants b0, b1 ∈ R and a0 > 0, a1 > 0, such that

b∗(x) =

{
b0, x ≤ z∗,
b1, x > z∗,

a∗(x) =

{
a0, x ≤ z∗
a1, x > z∗

.

In the remainder of this proof, a∗ and b∗ are written as a and b. Let A be the operator

Af(x) := b(x)f ′(x) +
1

2
a(x)f ′′(x),

on the domain D(A) := {f ∈ C∞0 [0,∞) : f ′(0) = 0}, where C∞0 [0,∞) denotes the set of compactly
supported members of C∞[0,∞). If f ∈ D(A) and (Z,L,B) is a weak solution to the SDE then
by Ito’s formula, the boundary property of L and the boundary condition f ′(0) = 0, the process
f(Zt) −

∫ t
0 Af(Zs)ds is a martingale. Therefore it follows from the existence result in Part 2

of the lemma that, for every probability distribution ν on [0,∞), there exists a solution of the
D[0,∞)[0,∞) martingale problem for (A, ν). We will use the definition of the stopped martingale
problem of Ethier and Kurtz [5], Chapter 4, Section 6. Then, for every probability distribution ν
on [0,∞), there exists a solution of the stopped martingale problem for

(
A, ν, [0, 2

3 z
∗)
)

and of the
stopped martingale problem for

(
A, ν, (1

3 z
∗,∞)

)
.

Define the operators A0 and A1 in the following way:

A0f(x) := b0f
′(x) +

1

2
a0f

′′(x), on the domain D(A0) := D(A)

A1f(x) := b(x)f ′(x) +
1

2
a(x)f ′′(x), on the domain D(A1) := C∞0 (R).

The D[0,∞)[0,∞) martingale problem for A0 is well posed (for instance by Corollary 8.1.2, Theorem
4.4.1 and Proposition 4.3.1 of [5]). Therefore, for every probability distribution ν on [0,∞), there
exists a unique solution of the stopped martingale problem for

(
A0, ν, [0,

2
3 z
∗)
)

by Theorem 4.6.1
of [5]. Since, for every f ∈ D(A0) = D(A),

A0f
∣∣
[0, 2

3
z∗]

= Af
∣∣
[0, 2

3
z∗]
,

every solution of the stopped martingale problem for
(
A, ν, [0, 2

3 z
∗)
)

is also a solution of the stopped
martingale problem for

(
A0, ν, [0,

2
3 z
∗)
)
, therefore the solution of the stopped martingale problem

for
(
A, ν, [0, 2

3 z
∗)
)

is unique.
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Next, the DR[0,∞) martingale problem for A1 is well posed by Exercise 7.3.3 of [18] (it is shown
there that the CR[0,∞) martingale problem for A1 is well posed, but every solution of the DR[0,∞)
martingale problem for A1 has paths in CR[0,∞) almost surely). Therefore, for every probability
distribution ν on [0,∞), there exists a unique solution of the stopped martingale problem for(
A1, ν, (

1
3 z
∗,∞)

)
by Theorem 4.6.1 of [5]. Since for every f1 = D(A1) there exists f ∈ D(A) such

that
f
∣∣
[ 1
3
z∗,∞)

= f1

∣∣
[ 1
3
z∗,∞)

, Af
∣∣
[ 1
3
z∗,∞)

= A1f1

∣∣
[ 1
3
z∗,∞)

,

every solution of the stopped martingale problem for
(
A, ν, (1

3 z
∗,∞)

)
is also a solution of the

stopped martingale problem for
(
A1, ν, (

1
3 z
∗,∞)

)
, therefore the solution of the stopped martingale

problem for
(
A, ν, (1

3 z
∗,∞)

)
is unique.

Now one can apply Theorem 4.6.2 in [5] with U1 := [0, 2
3 z
∗), Uk := (1

3 z
∗,∞) for k ≥ 2,

to conclude that, for every probability distribution ν on [0,∞), the solution of the D[0,∞)[0,∞)
martingale problem for (A, ν) is unique.

Finally, because, as already mentioned, every solution to the SDE is a solution to the martingale
problem, the weak uniqueness of solutions to the SDE follows.

Remark 4.2. (Symmetry conditions). As Lemma 4.1 states, (2.20) is a necessary and sufficient
condition for the optimal control of the WCP to not switch between modes. It is natural to ask
whether it can be determined if the single or the dual-mode condition holds under various symmetry
conditions. Specifically, consider

µ̂1k

α1
=
µ̂2k

α2
, k = 1, 2, (4.2)

µ̂i1
β1

=
µ̂i2
β2
, i = 1, 2, (4.3)

CSi1 = CSi2 , i = 1, 2. (4.4)

As it turns out, each of the above three conditions is sufficient for (2.20). This is proved in
Lemma C.1 in the appendix. As a result, each of these conditions is sufficient for non-switching.
These conditions can arise naturally, and occur in certain cases in the literature.

5 Asymptotic optimality

In this section we prove Theorem 2.13. Toward this, an important intermediate goal is to establish
a weak convergence result, stated in Theorem 5.1. The proofs of both theorems rely on four main
steps stated in Propositions 5.3–5.6.

5.1 Weak convergence

5.1.1 Statement of weak convergence result

We will adopt the following convention regarding the six cases listed in Theorem 2.13. When a
statement is said to hold in a certain case of Theorem 2.13, it is meant that the assumptions as
well as the policy specified in this case are in force. For example, saying that a certain statement
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holds in case 1(a) of Theorem 2.13 means that it holds when the single-mode condition (2.20) and
the condition i1(ξA) = p hold, and the P policy is applied, and moreover, the weaker moment
assumption m > 2 is assumed (but m > m0 in case 1(b), for example). When a claim is stated
without specifying a case, it is meant that it holds in each one of the six.

In addition to the rescaled processes already defined, the weak convergence results will be
concerned with additional rescaled processes, namely

Âni (t) = n−1/2(Ani (t)− λni t), Ŝnik(t) = n−1/2(Snik(t)− µnikt), (5.1)

Înk (t) = n1/2Ink (t), L̂n(t) = β1Î
n
1 (t) + β2Î

n
2 (t). (5.2)

With this notation, the balance equation (2.3) for Xn translates under scaling to

X̂n
i (t) = Âni (t) + n−1/2λni t−

∑
k

Ŝnik(T
n
ik(t))−

∑
k

n−1/2µnikT
n
ik(t). (5.3)

= Âni (t)−
∑
k

Ŝnik(T
n
ik(t)) + (n1/2λi + λ̂ni )t−

∑
k

Tnik(t)(n
1/2αiβk + µ̂nik). (5.4)

Thus if we denote

F̂nt =
∑
i

Âni (t)

αi
−
∑
ik

Ŝnik(T
n
ik(t))

αi
+
∑
i

λ̂ni t

αi
−
∑
ik

µ̂nik
αi
Tnik(t), (5.5)

we obtain the following representation for the workload:

Ŵn
t = F̂n(t) + L̂n(t). (5.6)

The convergence of the rescaled primitives is a direct consequence of the central limit theorem for
renewal processes [4, §17]. Namely, the tuple (Âni , Ŝ

n
ik) converges to what we denote by (Ai, Sik),

comprising 6 mutually independent BMs with zero drift and diffusivity given by the constants

λ
1/2
i CAi and µ

1/2
ik CSik , which in §2.3 we have denoted by σA,i and σS,ik, respectively.

Theorem 5.1. Let the assumptions of Theorem 2.13 hold. Then (Tn, Ŵn, L̂n, X̂n)⇒ (T,W,L,X),
where the latter is defined as follows.
1. In cases 1(a)–(b) of Theorem 2.13, (W,L) is the RBM and boundary term given by (2.26) and
initial condition z = 0, and Tt = ξAt for all t.
2. In cases 2(a)–(d) of Theorem 2.13, (W,L) is the (unique in law) weak solution to the SDE
(2.27) with initial condition z = 0, and letting Ξt = ϕ∗(Wt), one has Tt =

∫ t
0 Ξsds for t ≥ 0.

3. In all cases, Xp = 0 and Xq = αqW .

The significance of this result is that it implies that, under each of the proposed policies, limits
of the processes exist and form admissible control systems for the WCP, which are, in view of
Lemma 4.1.1–2, optimal.

We next present a lemma from [1] concerning limits of (Ân, Ŝn, Tn, F̂n) under general sequences
of policies. The Skorohod map, Γ : DR[0,∞) → DR+ [0,∞) × D+

R [0,∞), takes a function ψ to a
pair (ϕ, η), where

ϕ(t) = ψ(t) + η(t), η(t) = sup
06s6t

ψ(s)−, t > 0. (5.7)

The corresponding maps ψ 7→ ϕ and ψ 7→ η are denoted by Γ1 and Γ2, respectively.
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Lemma 5.2. Let {Tn}, Tn ∈ An be any sequence of admissible controls for the QCP for which
lim supn Ĵ

n(Tn) < ∞. Then the following conclusions hold. The sequence (Ân, Ŝn, Tn) is C-tight.
Along any convergent subsequence where (Ân, Ŝn, Tn)⇒ (A,S, T ), one has

(Ân, Ŝn, Tn, F̂n)⇒ (A,S, T, F ),

where F is defined below in (5.8). There exist on (Ω,F) processes (B,Ξ,Z ′, L′) and a filtration
{Ht} such that the tuple S = (Ω,F , {Ht},P, B,Ξ, Z ′, L′) forms an admissible control system for
the WCP with initial condition 0. These processes satisfy the relations

T =

∫ ·
0
Ξsds, (Z ′, L′) = Γ [F ],

Ft =
∑
i

Ai(t) + λ̂it

αi
−
∑
i,k

Sik(Tik(t)) + µ̂ikTik(t)

αi
(5.8)

=

∫ t

0
b(Ξs)ds+

∫ t

0
σ(Ξs)dBs.

Proof. This is the content of [1, Lemmas 5.1 and 5.5].

This lemma is our starting point for proving Theorem 5.1. Whereas it relates limits of processes
associated with the QCP to an admissible control system for the WCP, note that it does not make
any claim regarding X̂n or Ŵn, hence by itself is not sufficient to relate the prelimit cost (defined
in terms of X̂n) to the WCP cost. In particular, the pair (Z ′, L′) need not be the weak limit of
(Ŵn, L̂n). To proceed one must show that under the proposed policies, along the sequence specified
in Lemma 5.2, one has

(Ân, Ŝn, Tn, F̂n, Ŵn, L̂n)⇒ (A,S, T, F,W,L) (5.9)

where (W,L) = (Z ′, L′). Once this is achieved, the lemma guarantees that the weak limit (W,L)
satisfies

Wt =

∫ t

0
b(Ξs)ds+

∫ t

0
σ(Ξs)dBs + Lt,

with
∫

[0,∞)WtdLt = 0, assuring that the limit tuple indeed forms an admissible system for the
WCP. To go from here to the statements made in Theorem 5.1, one further needs to show that
(W,L) are as given in (2.26) or (2.27), and that Xp = 0.

The Propositions presented below address these issues as follows. Propositions 5.3 provides
uniform integrability required to eventually deduce Theorem 2.13 from Theorem 5.1, and in addition
ensures that the prelimit cost remains bounded so Lemma 5.2 may be applied. Proposition 5.4 shows
that X̂n

p → 0 in probability. Proposition 5.5 states precisely what is needed to attain (5.9). Finally,
Proposition 5.6 implies that (2.27) holds in the dual mode case.

5.1.2 Main steps toward weak convergence

Throughout what follows, the assumptions of Theorem 2.13 are in force. The four main steps
required to achieve weak convergence, and later, Theorem 2.13, are as follows.
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Proposition 5.3. There exists ε0 > 0 such that

lim sup
n

E
∫ ∞

0
e−γt(Ĥn

t )1+ε0dt <∞.

As already mentioned, this uniform integrability result will allow us to deduce convergence of
the costs, as stated in Theorem 2.13, from the convergence stated in Theorem 5.1. Moreover,
because it also implies boundedness of the cost under the proposed policies, it enables us to use
Lemma 5.2. The proof is given in §5.2.2.

Proposition 5.4. For every t0 > 0, as n→∞,

P
(
‖X̂n

p ‖t0 > 2Θ̂n
)
→ 0.

The above type of result is often referred to as state-space collapse (SSC), as it asserts that
asymptotically all workload is kept in one buffer, a property crucially used in establishing the
one-dimensional state space description of the limiting dynamics, as well as asymptotic optimality,
since all workload is held in the ‘less expensive’ class. It is proved in §5.2.3.

Proposition 5.5. Consider a subsequence as in Lemma 5.2, where (Ân, Ŝn, Tn) ⇒ (A,S, T ).
Then along this sequence one has (Ân, Ŝn, Tn, F̂n, Ŵn, L̂n) ⇒ (A,S, T, F,W,L), where F is given
by (5.8), and (W,L) = Γ (F ). In particular, (Ŵn, L̂n) is a C-tight sequence, and the conclusions of
Lemma 5.2 hold with (W,L) = (Z ′, L′).

The proof appears in §§5.2.4–5.2.5.

Finally, the policies P and T2 that are proposed under the single mode condition do not use
the non-basic activity of the active mode ξA. For the four policies employed under the dual-mode
condition, we need the following control over the use of the non-basic activities corresponding to
ξL and ξH .

Proposition 5.6. Consider the same subsequence as in Proposition 5.5 and cases 2(a)–(d) of
Theorem 2.13. If (il, kl) (resp. (ih, kh)) denotes the non-basic activity in ξL (resp. ξH), then for
any t0 > 0 and ε > 0,∫ t0

0
1Ŵn

t 6z∗−εdT
n
ilkl(t)→ 0,

∫ t0

0
1Ŵn

t >z∗+εdT
n
ihkh(t)→ 0, (5.10)

in probability, as n→∞.

To explain the role of this proposition, recall that if ξ ∈ SLP then the condition ξik = 0 for some
activity (i, k) not only implies that ξ is one is the modes ξ∗,1 or ξ∗,2 but also identifies which one
by Lemma 3.2. Since any limit T of Tn is given as

∫ ·
0 Ξsds, Ξt ∈ SLP, this proposition implies that

when workload is either below or above the switching point, the resource allocation asymptotically
follows the respective mode of operation ξL or ξH . This is very close to stating that the pair (W,L)
follows the SDE (2.27), and indeed is the basis for proving this fact. The proof of this proposition
appears in §5.2.6.
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5.1.3 Considerations for the construction of dual-mode policies

As noted above, two of the key results that we need to prove Theorem 2.13 are state-space collapse
(Proposition 5.4), and a boundary property stating that there is asymptotically no idleness of either
server when there is work in the system (Proposition 5.5). The proofs of these results differ by
case/policy, and, for dual-mode policies, rely on the rules used as well as the way that workload is
sampled. Here we provide a brief description of the reasons underlying the policy definitions that
we have used.

• A difficulty arises in the proof of Proposition 5.4 in case 2(a), where the policy switches
between two P rules. Only the dual activity server in the current mode processes the HPC
and the identity of the dual activity server changes when switching modes. At each switching
time, if the server processing the HPC in the new mode is busy with low priority jobs and the
service of the high priority job at the other server ends, no server will process high priority
jobs for a time O(n−1). In principle, this time could accumulate to let the number of high
priority jobs increase to a non-negligible value. In order to prevent this, we designed switching
between P rules to only occur at the time of service completion at the single activity server.
When switching, this server becomes dual activity and gives priority to the HPC (which is
the single activity class in P).

In case 2(a), there is always at least one server processing the HPC, regardless of
switching between modes.

• Similarly, in order to prove Proposition 5.5 in case 2(b), we need to show that the number
of HPC is not zero when there are low priority jobs in the system. To make sure that the
high priority class does not receive too much service, switching between two T2 rules only
occurs at the time of service completion at the single activity server. When switching, the
single activity server becomes dual activity and now gives priority to the low priority jobs if
the number of HPC jobs is low.

In case 2(b), as long as the number of HPC jobs is below the threshold there is
at most one server working on HPC jobs, regardless of switching between modes.

• In case 2(c) it should be noted that in the lower mode the system looks similar to case 1(a),
so one could consider using a P rule. Doing so, however, would cause difficulty in proving
Proposition 5.5 for this case. Using a P rule keeps the number of HPC jobs O(1). At the
moment of switching into the T2 rule this can lead to the new single activity server, which
is dedicated to HPC, incurring idle time when there is work in the system. To avoid this
situation the T1 rule was used instead of P, guaranteeing that, at a switching time, there
will not be too few HPC jobs in the system. A similar argument applies to case 2(d).

5.1.4 Proof of weak convergence

Here we prove Theorem 5.1 based on the four propositions.

Proof of Theorem 5.1. First, by Proposition 5.3 one has that lim supn Ĵ
n(Tn) < ∞ for each

one of the relevant policies Tn. As a result, the assumptions of Lemma 5.2 and Proposition
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5.5 are valid. To summarize the conclusions from these results, fix a subsequence along which
(Ân, Ŝn, Tn) ⇒ (A,S, T ). Then there exists a tuple ({Ht}, F,W,L,Ξ,B) such that, along this
sequence,

(Ân, Ŝn, F̂n, Tn, Ŵn, L̂n)⇒ (A,S, F, T,W,L),

where F is given in terms of A, S, T by (5.8), and W and L are given by (W,L) = Γ (F ). Moreover,
S = (Ω,F , {Ht},P, B,Ξ,W,L) forms an admissible control for initial condition 0, and T =

∫ ·
0 Ξsds.

In particular,

W = F + L =

∫ ·
0
b(Ξs)ds+

∫ ·
0
σ(Ξs)dBs + Lt. (5.11)

Next, by Proposition 5.4, X̂n
p → 0 in probability. Also, by (2.11), X̂n

q = αqŴ
n − αpX̂n

p , and

therefore we now have, along the subsequence, (Ân, Ŝn, F̂n, Tn, Ŵn, L̂n, X̂n)⇒ (A,S, F, T,W,L,X),
where we denote

Xp = 0, Xq = αqW. (5.12)

Note that the control system S thus constructed may depend on the subsequence. However,
consider the following.

Claim. In cases 1(a)–(b) of Theorem 2.13, (W,L) is the RBM and its boundary term given by
(2.26), and Tt = ξAt for all t. In cases 2(a)–(d) of Theorem 2.13, (W,L) is a weak solution to the
SDE (2.27), and moreover, Ξt = ϕ∗(Wt) for a.e. t.

Suppose the above claim holds true. Then the law of (W,L) is uniquely determined: in case 1
as a RBM; in case 2 as a weak solution to (2.27), for which weak uniqueness holds by Lemma 4.1.3.
In particular, this law does not depend on the subsequence. Moreover, since by this claim and
(5.12), the pair of processes (T,X) is uniquely determined by W (away from a P-null set), it follows
that the law of (T,W,L,X) does not depend on the subsequence. This yields the convergence
(Tn, Ŵn, L̂n, X̂n)⇒ (T,W,L,X) along the full sequence and completes the proof of the result. In
what follows, the claim is proved.

Consider first the single mode case, namely cases 1(a)–(b) of Theorem 2.13. The policies
employed are P and T2, and both do not use the non-basic activity of the active mode ξA. In
other words, if we denote this activity by (ia, ka) then under these policies, Tniaka = 0 for all n. As
a consequence, the limit process T must satisfy Tiaka(t) = 0 a.s., hence Ξiaka(t) = 0 for a.e. t, a.s.
By the uniqueness statement made in Lemma 3.2, whenever ξ̃ ∈ SLP and ξ̃iaka = 0, one must have
ξ̃ = ξA. It follows that Ξt = ξA for a.e. t, and hence Tt = ξAt. As a consequence, (5.11) holds as
Wt = b(ξA)t+ σ(ξA)Bt + Lt. That is, the pair (W,L) satisfies (2.26). This proves the first part of
the claim.

Next consider the dual mode, namely, cases 2(a)–(d) of Theorem 2.13. First, we will show based
on Proposition 5.6 that, for every ε > 0 and t0 > 0,∫ t0

0
1{Wt<z∗−ε}dTilkl(t) = 0,

∫ t0

0
1{Wt>z∗+ε}dTihkh(t) = 0 (5.13)

holds a.s. Let g be a continuous function such that

1w<z∗−ε 6 g(w) 6 1w<z∗− ε
2
, w ∈ R+. (5.14)
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By the continuous mapping theorem, we have along the subsequence (g(Ŵn), Tn)⇒ (g(W ), T ). In
addition, Tn is continuous with finite variation over compacts. By Theorem 2.2 of [12],∫ ·

0
g(Ŵn

t )dTnilkl(t)⇒
∫ ·

0
g(Wt)dTilkl(t). (5.15)

By Proposition 5.6,
∫ t0

0 1{Ŵn
t <z

∗− ε
2
}dT

n
ilkl

(t)→ 0 in probability. Hence the LHS in (5.15) converges

to zero in probability. Thus the RHS in (5.15) equals zero a.s., and therefore by the first inequality
in (5.14), the first part of (5.13) is proved. The second part of (5.13) is proved analogously.

Next, clearly Ξilkl(t)1{Ξt=ξL} = 0. Hence by (5.13),
∫ t0

0 1{Wt<z∗−ε}1{Ξt 6=ξL}Ξilkl(t)dt = 0.

Arguing again by the uniqueness statement in Lemma 3.2, one has Ξilkl(t) > 0 whenever Ξt 6= ξL.
It follows that, a.s.,∫ t0

0
1{Wt<z∗−ε}1{Ξt 6=ξL}dt = 0,

∫ t0

0
1{Wt>z∗+ε}1{Ξt 6=ξH}dt = 0, (5.16)

where the second equality is proved analogously to the first one. Going back to (5.11), note that by
(5.16) one has both

∫ t0
0 b(Ξs)1{Wt<z∗−ε}1{Ξt 6=ξL}ds = 0 and

∫ t0
0 σ(Ξs)1{Wt<z∗−ε}1{Ξt 6=ξL}dBs = 0.

A similar statement hold for {Wt > z∗ + ε} and ξH . Hence by (5.11) and the definition (2.28) of
the functions b∗ and σ∗, it follows that

Wt =

∫ t

0
1|Ws−z∗|>εb

∗(Ws)ds+

∫ t

0
1|Ws−z∗|>εσ

∗(Ws)dBs

+

∫ t

0
1|Ws−z∗|<εb(Ξs)ds+

∫ t

0
1|Ws−z∗|<εσ(Ξs)dBs + Lt,

for t ≤ t0. Because t0 is arbitrary, this is true for all t. Hence, denoting δεt = 1|Wt−z∗|<ε and using
the boundedness of b(·),

Ut :=

∣∣∣∣Wt −
∫ t

0
b∗(Ws)ds−

∫ t

0
σ∗(Ws)dBs − Lt

∣∣∣∣ ≤ γεt + |γ̃εt |+ |γ̌εt |,

where

γεt = c

∫ t

0
δεsds, γ̃εt =

∫ t

0
δεsσ(Ξs)dBs, γ̌εt =

∫ t

0
δεsσ
∗(Ws)dBs.

Notice that Ut does not depend on ε, so if we manage to prove that the RHS converges to zero in
probability as ε ↓ 0, it follows that, for every t, Ut = 0 a.s. Hence by continuity of this process,
Ut = 0 for all t, a.s. That is, the processes (W,L,B) satisfy (2.27) a.s.

To this end, apply the occupation times formula, [14, Corollary VI.1.6], by which for any
continuous semimartingale Y , one has, a.s.,∫ t

0
1{Ys=0}d〈Y, Y 〉s =

∫ ∞
−∞

1y=0L
y
t (Y )dy,

with Ly(Y ) the local time of Y at y. Consider the above with Yt = Wt − z∗. Clearly the RHS in
the above display is zero. Moreover, 〈Y, Y 〉t =

∫ t
0 σ(Ξs)

2ds, and since σ is bounded away from zero,
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we obtain that
∫ t

0 1{Ws=z∗}ds = 0 a.s. For fixed ω, one has for all t, 1{|Wt−z∗|<ε} → 1{Wt=z∗} as
ε ↓ 0. Hence, by dominated convergence, γεt → 0 a.s. as ε ↓ 0.

Next, for the stochastic integral γ̃ε we have

E(γ̃ε)2 = E
∫ t

0
(δεsσ(Ξs))

2ds ≤ cE
∫ t

0
δεsds = cE(γεt ).

By local boundedness of γε and its a.s. convergence to 0 as ε ↓ 0, it follows that γ̃εt → 0 in
probability. A similar argument holds for γ̌εt . We conclude that (W,L,B) satisfies (2.27). Finally,
by (5.16) and the fact

∫ t
0 1{Ws=z∗}ds = 0 a.s. just proved, one has Ξt = ϕ∗(Wt) for a.e. t, a.s.,

which completes the proof of the claim, and also of the result.

5.1.5 Proof of Theorem 2.13 and Corollary 2.15

As a consequence of Theorem 5.1 and Proposition 5.3 we have the following.

Proof of Theorem 2.13. The weak convergence statements asserted in the theorem are already
established in Theorem 5.1. For the AO results we need to show that in each of the six cases
Ĵn(Tn) → V0 = hqαqVWCP(0). Combining Theorem 5.1 with the identification of an optimal
control for the WCP given in Lemma 4.1 shows that X̂n ⇒ X where Xp = 0 and Xq = αqW , W
is given by (2.26) or (2.27) in the respective cases, and moreover

V0 = hqαqE
∫ ∞

0
e−γtWtdt.

The convergence stated above implies

Ĥn
t = h · X̂n

t ⇒ hqαqWt. (5.17)

By (2.6), Ĵn(Tn) = E
∫∞

0 e−γtĤn
t dt. Hence the convergence Ĵn(Tn) → V0 will follow from (5.17)

once uniform integrability is established. Arguing along the lines of [3] (pp. 640–643), introduce
the measure dm = γe−γtdt on (R+,R+) and invoke the Skorohod representation theorem to obtain
from (5.17) that Ĥn → hqαqW (m× P)-a.e. Accordingly, uniform integrability of Hn w.r.t. m× P
suffices to obtain Ĵn(Tn)→ V0. However, this is ensured by Proposition 5.3, for

lim sup
n

∫
[0,∞)×Ω

(Ĥn)1+ε0d(m× P) = γ lim sup
n

E
∫ ∞

0
e−γt(Ĥn

t )1+ε0dt <∞,

and the result is proved.

Proof of Corollary 2.15. As far as the proof of the weak convergence (2.29) and AO are
concerned, there is no difference between the setting of Theorem 2.13(1), where the LP has multiple
solutions but the single mode condition holds, and the case where it has a single solution. Therefore
this result is a corollary of Theorem 2.13(1).

5.2 Proof of Propositions 5.3–5.6

In §5.2.1, we provide several useful estimates. Then, Propositions 5.3, 5.4, 5.5 and 5.6 are proved
in §5.2.2, §5.2.3, §§5.2.4–5.2.5, and §5.2.6, respectively.
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5.2.1 Auxiliary lemmas

Two estimates on the rescaled primitives, Âni and Ŝnik, are provided in (5.18) and Lemma 5.7, and
a certain estimate on the maximum service duration is given in Lemma 5.9.

Because the assumptions on Ani and Snik are similar, the estimates are stated for Âni but apply

also for Ŝnik. Recall that ǎi(l) are interarrival times of Ai and thus ani (l) := (λni )−1ǎi(l) are the
interarrival times of Ani . Recall E[ǎi(1)m] < ∞ for a constant m > 2. The first estimate is [10,
Theorem 4] which states that for any 2 ≤ κ ≤m,

E[‖Âni ‖κt ] ≤ c(1 + t)κ/2 (5.18)

for a constant c that does not depend on n or t. The next useful estimate is as follows.

Lemma 5.7. Let ν1, ν2 ∈ (0, 1) be such that ν1 6 ν2+ 1
2 and assume that h0 := (m2 −1)ν1−mν2 > 0

(note, in particular, that for every ν1 ∈ (0, 1
2 ] there exists ν2 > 0 satisfying these conditions). Fix

c1 > 0. Then for any h < h0,

P (wt0(Âni , n
−ν1) > c1n

−ν2) 6 cn−h(1 + t0)m/2, n ∈ N, t0 ≥ 1,

where c = c(c1, ν1, ν2,m) does not depend on n or t0.

The proof appears in Appendix A.

Remark 5.8. We sometimes use the balance equation in the following form, which follows from
(5.4), namely

X̂n
i (t) = f̂ni (t) + n1/2

∫ t

0

(
λi −

∑
k

µikΞ
n
ik(s)

)
ds (5.19)

where
f̂ni (t) := Âni (t)−

∑
k

Ŝnik(T
n
ik(t)) + tλ̂ni −

∑
k

Tnik(t)µ̂
n
ik.

Note that F̂n of (5.5) is given by F̂n(t) =
∑

i α
−1
i f̂ni (t). Then using the 1-Lipschitz property of

the trajectories of Tnik, it is easy to see that both estimates above imply some estimates for f̂ni . In

particular, by (5.18), E‖f̂ni ‖κt ≤ c(1 + t)κ. Moreover, under the assumptions of Lemma 5.7 and the
additional assumption that ν2 < ν1, the conclusion of the lemma holds for f̂ni and F̂n.

Next, we give an estimate on the maximal service duration and interarrival time up to a given
time. The time in service by t of a given job is defined as the time that the job has spent in service
up to time t. Let TIS(n, i, k, l, t) denote the time in service by t of the lth job in activity (i, k).
If service to job l has completed by time t then clearly TIS(n, i, k, l, t) = unik(l), but if it is still in
service, TIS(n, i, k, l, t) < unik(l). Of course, TIS(n, i, k, l, t) = 0 for jobs for which service has not
started by t. For t > 0 and a real-valued path ϕ, denote

Λ(ϕ, t) = sup{t2 − t1 : 0 ≤ t1 ≤ t2 ≤ t, ϕt2 = ϕt1}.
Then, for activity (i, k), the maximal time in service by time t, namely supl TIS(n, i, k, l), is bounded
above by Λ(Snik, t). We will need an upper bound on the service time as well as the interarrival
times, and to this end define

enmax(t) = max
i,k

Λ(Snik, t) ∨max
i
Λ(Ani , t). (5.20)

This process also bounds from above all service durations completed by time t.
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Lemma 5.9. One has E[(enmax)2] ≤ cn−1(1 + t) for a constant c that does not depend on n or t.
Moreover, for any t <∞ and c1 > 0, P

(
enmax(t) > c1n

ā−1
)
→ 0, as n→ +∞.

The proof appears in Appendix A.

5.2.2 Uniform integrability

Here we prove Proposition 5.3. We sometimes need to refer to the variable keeping track of the
current mode, which in the various policies is defined in slightly different ways according to different
sampling times. Denote

MODEn(t) =

{
ξL if the current mode is lower workload,

ξH if the current mode is higher workload.

Proof of Proposition 5.3. The proof has three parts; Part 1 appears below, while Parts 2 and
3 are defferred to Appendix A. Fix any one of the sequences of policies Tn ∈ An for which we
attempt to prove AO.

Part 1. This part is concerned with the case where, whenever the workload in the system is
sufficiently large, policy P is active. This covers case 1(a) of Theorem 2.13, where the system has
a single mode and the fixed priority policy P is applied, as well as case 2(a) where the dual mode
policy PP is applied. In this case we will prove that the statement of the lemma holds with ε0 = 1,
and specifically that, under the given sequence, E[(Ĥn

t )2] is bounded by a polynomial in t for all n.
By (2.11), this is equivalent to the same property holding for E[(Ŵn

t )2].

To prove the result in this case, assume that in the single (resp., dual) mode case, the active
mode ξA (resp., the high workload mode ξH) is in canonical form. Thus, provided that the workload
in the system exceeds z∗ (when applicable), class 1 (resp., 2) is the dual (single) activity class, and
server 1 (resp., 2) is the single (dual) activity server. In addition, p = 2: class 2 is the HPC. First
we provide a bound on the second moment of X̂n

2 . In the dual mode case, fix K large enough so
that X̂n

2 (t) ≥ K implies Ŵn
t ≥ z∗+ 1; in the single mode case let K = 1. Given t > 0, consider the

event X̂n
2 (t) > K. Let τ = τn(t) be defined by

τ = sup{s ∈ [0, t] : X̂n
2 (s) ≤ K}.

Because the system starts empty, 0 ≤ τ ≤ t, and because the jumps of the normalized queue length
are of size n−1/2, X̂n

2 (τ) ≤ K + 1. Thus

X̂n
2 (t) ≤ X̂n

2 (t)− X̂n
2 (τ) +K + 1.

By (5.3), denoting Cn(t) =
∑

i ‖Âni ‖t +
∑

ik ‖Ŝnik‖t,

X̂n
2 (t)− X̂n

2 (τ) ≤ 2Cn(t) + n−1/2λn2 (t− τ)− n−1/2µn22(Tn22(t)− Tn22(τ)).

Because X̂n
2 ≥ K in [τ, t], the priority policy corresponding to a mode given in canonical form

(either ξA or ξH) is in force after an initial time before the current mode updates and there are
class 2 jobs to serve. We can bound the time until server 2 prioritizes class 2 and starts serving it
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at full rate in [τ, t] by enmax(t). If there currently is a class 2 job being served by server 2, server 2
only serves class 2 jobs for the whole period and

Tn22(t)− Tn22(τ) = t− τ.

If there currently is a class 1 job being served by server 2, because service is non-preemptive, server
2 has to finish this job. If at that time the current mode is ξH (resp. ξA in the single mode case),
server 2 prioritizes class 2 from that point on. If at that time the current mode is ξL the workload
is then sampled because a service finished at the single activity server. The current mode changes
to ξH and stays until t. In both cases we get

Tn22(t)− Tn22(τ) ≥ t− τ − enmax.

Also, in the case under consideration one has µ22 > λ2. Hence for all sufficiently large n,
µn22 > λn22. Moreover, c1 := supn n

−1µn22 <∞. Hence

X̂n
2 (t) ≤ 2Cn(t) + c1n

1/2enmax(t) +K + 1.

The above inequality holds also on the complementary event, namely when X̂n
2 (t) ≤ K. Thus using

(5.18) and Lemma 5.9 we obtain
E[‖X̂n

2 ‖2t ] ≤ c(1 + t). (5.21)

In the next step we bound Ŵn
t . Let K̃ be a constant that is sufficiently large to ensure that

X̂n
1 (t) ≥ K̃ implies Ŵn(t) ≥ z∗ + 1 (where again, K̃ = 1 in the single mode case). Given t > 0,

consider the event X̂n
1 (t) > K̃ and let σ = σn(t) be

σ = sup{s ∈ [0, t] : X̂n
1 (s) ≤ K̃}.

Then clearly σ ∈ [0, t]. Because during [σ, t] there are at least two jobs of class 1 in the system,
both servers are never idle during [σ, t]. Since one has X̂n

1 (σ) ≤ K̃ + n−1/2, it follows that Ŵn
σ ≤

c(1 + K̃ + X̂n
2 (σ)). Hence

Ŵn
t ≤ Ŵn

t − Ŵn
σ + c(1 + K̃ + ‖X̂n

2 ‖t).

By (5.6) and the nonidling of both servers during [σ, t], by which L̂n remains flat during this interval,
we have Ŵn

t − Ŵn
σ = F̂nt − F̂nσ . Thus by (5.5), for a constant c (that may depend on K̃),

Ŵn
t ≤ c(Cn(t) + t+ 1 + ‖X̂n

2 ‖t).

Clearly, the above bound is valid also in the complementary event, X̂n
1 (t) ≤ K̃. We can therefore

apply (5.18) and (5.21), to obtain E[(Ŵn
t )2] ≤ c(1 + t) for some constant c, for all n and t.

Consequently the same holds for the second moment of Ĥn
t , and the result follows. This completes

Part 1 of the proof. The remaining parts appear in Appendix A.

5.2.3 State space collapse

We now prove Proposition 5.4. Assume that either the active mode ξA or the lower workload mode
ξL (whichever is applicable) is in canonical form. Let

τ = τnc = inf
{
t > 0 : X̂n

p (t) > 2Θ̂n
}
.
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This random time is used outside this proof with the notation τnc , but in this proof the shorter
notation τ is used. Then

P
(

sup
t6t0

X̂n
p (t) > 2Θ̂n

)
≤ P (τ 6 t0) .

We will prove the lemma by showing that the RHS above converges to zero as n → ∞. On the
event {τ 6 t0}, define

σ = σn = sup

{
t 6 τ : X̂n

p (t) 6
3Θ̂n

2

}
.

The proof relies on the fact that, under our policies, when the number of HPC jobs is above Θn, it
is served at a rate that is enough to deplete the queue in all cases. The first step toward this goal
is the following.

Lemma 5.10. There exist constants c1, c2 > 0 such that, on {τ 6 t0},∫ τ

σ

(
λp −

∑
k

µpkΞ
n
pk(t)

)
dt 6 −c1(τ − σ) + c2e

n
max, (5.22)

with enmax defined in (5.20).

Proof. First, by definition of σ, and τ , and the fact that jumps of X̂n are of size n−1/2 < Θ̂n/2
for large n, we obtain

inf
t∈[σ,τ ]

X̂n
p (t) > Θ̂n.

We address here one case only; the proof under the remaining cases is defferred to the appendix.

• Case 1(a): In this case, we use the P policy, which is single mode. Because the active mode
is in canonical form and i1(ξA) = p, p = 2 and server 2 prioritizes class 2. It is possible that
server 2 is busy with the “wrong” class of job at time σ but as soon as that job finishes, server
2 will only serve the class 2 jobs in the system:∫ τ

σ
Ξn

22(t)dt > τ − σ − enmax.

Thus, ∫ τ

σ

(
λ2 −

∑
k

µ2kΞ
n
2k(t)

)
dt 6 (τ − σ)(λ2 − µ22) + µ22e

n
max.

To show that λ2 − µ22 < 0, note that since the active mode is in canonical form, λ1
α1

> β1,

which implies λ2
α2
< β2 by (3.1).

The remaining cases appear in Appendix A.

Now that Lemma 5.10 has been proved in all cases, the proof of Proposition 5.4 does not need
to differentiate between them.

Proof of Proposition 5.4. Let ν2 = 1/2 − ā 6 1/4 and ν1 ∈ (ν2, 1/2). Recall that Θ̂n =
n−1/2dnāe, as defined in (2.32), so that Θ̂n = n−1/2dn1/2−ν2e > n−ν2 . Notice that, as required in
Lemma 5.7, ν1 6 ν2 + 1

2 . Let us introduce the event

Ω1 =

{
τ 6 t0, X̂

n
p (τ)− X̂n

p (σ) >
Θ̂n

4
, inf
t∈[σ,τ ]

X̂n
p (t) > Θ̂n

}
.
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For n large enough one has X̂n
p (σ) < 7

4Θ̂
n. Consequently {τ ≤ t0} = Ω1. We obtain

P (τ 6 t0) = P (Ω1) = P
(
Ω1 ∩ {τ − σ 6 n−ν1}

)
+ P

(
Ω1 ∩ {τ − σ > n−ν1}

)
. (5.23)

Picking up on (5.19), by Lemma 5.10

X̂n
p (τ)− X̂n

p (σ) = f̂np (τ)− f̂np (σ) +
√
n

∫ τ

σ

(
λp −

∑
k

µpkΞ
n
pk(t)

)
dt

6 f̂np (τ)− f̂np (σ)− c√n(τ − σ) + c
√
nenmax.

Notice that on the event {τ − σ 6 n−ν1 , τ 6 t0},

X̂n
p (τ)− X̂n

p (σ) 6 wt0(f̂np , n
−ν1) + c

√
nenmax.

Thus

P
(
Ω1 ∩ {τ − σ 6 n−ν1}

)
6 P

(
wt0(f̂np , n

−ν1) + enmax

√
n >

n−ν2

2

)
6 P

(
wt0(f̂np , n

−ν1) >
n−ν2

4

)
+ P

(
cenmax

√
n >

n−ν2

4

)
.

Recall that ν1 ∈ (ν2, 1/2), so n−ν1 < n−ν2 . By Lemma 5.7 and Remark 5.8, the first term converges
to zero. By lemma 5.9 and ν2 = 1/2− ā,

P
(
enmax >

c

4
n−ν2−1/2

)
= P

(
enmax >

c

4
nā−1

)
→ 0.

For the second term in (5.23), notice that on {τ − σ > n−ν1 , τ 6 t0},

X̂n
p (τ)− X̂n

p (σ) 6 2‖f̂np (t)‖t0 + enmax

√
n− c√nn−ν1 ,

and

X̂n
p (τ)− X̂n

p (σ) >
Θ̂n

2
− n−1/2.

Hence

P
(
Ω1 ∩ {τ − σ > n−ν1}

)
6 P

(
2‖f̂np ‖t0 + enmax

√
n > c

√
nn−ν1 +

Θ̂n

2
− n−1/2

)
.

By Lemma 5.9, enmax is smaller than nā−1 = o(n−1/2). By Remark 5.8, 2‖f̂np ‖t0 is a tight sequence
of RVs (for t0 fixed). Because ν1 < 1/2,

√
nn−ν1 → +∞. The claim follows.

5.2.4 Boundary behavior

The goal of this section and the following one is to prove Proposition 5.5. The key is the follows
lemma, which states, roughly speaking, that L̂n is approximately the boundary term corresponding
to F̂n.

Let c3 = 3
α1∧α2

.
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Lemma 5.11. Fix t0 > 0. With

R̄nt =

∫ t

0
1Ŵn

s >c3Θ̂n
dL̂ns , (5.24)

R̄nt0 → 0 in probability as n→∞.

This lemma is proved in the next subsection. Let us show how Proposition 5.5 now follows.

Proof of Proposition 5.5. In addition to R̄n just introduced, we shall need the following defini-
tions:

Znt = max(Ŵn
t − c3Θ̂

n, 0),

R̃nt =

∫ t

0
1Ŵn

s <c3Θ̂
ndL̂

n
s ,

∆n
t = Znt − Ŵn

t .

By (5.6) and definition of the new processes, one has

Znt = F̂nt +∆n
t + R̄nt + R̃nt .

Consider the pair (Zn, R̃n). The first component is nonnegative. The second is nonnegative,
nondecreasing, and moreover,∫

[0,∞)
Znt dR̃

n
t =

∫
[0,∞)

max(Ŵn
t − c3Θ̂

n, 0)1Ŵn
t <c3Θ̂

ndL̂
n
t = 0.

Hence by Skorohod’s Lemma, (Zn, R̃n) = Γ (F̂n +∆n + R̄n). Hence

Ŵn = Γ1(F̂n +∆n + R̄n)−∆n, L̂n = Γ2(F̂n +∆n + R̄n) + R̄n. (5.25)

Recall that we are considering a subsequence along which (according to the assumptions and to
Lemma 5.2), (Ân, Ŝn, Tn, F̂n) ⇒ (A,S, T, F ), with F as in (5.8). Moreover, by the definition of
Zn and ∆n, we have 0 ≤ −∆n

t ≤ c3Θ̂
n, whereas by Lemma 5.11, R̄n → 0 in probability. By the

continuity of the map Γ we therefore conclude from (5.25) that, on the same subsequence,

(Ân, Ŝn, Tn, F̂n, Ŵn, L̂n)⇒ (A,S, T, F,W,L),

where (W,L) = Γ (F ). This completes the proof.

5.2.5 Proof of Lemma 5.11

We first explain how the proof changes between the cases.

• Under the P policy, both servers can process the low priority jobs. This means that idling
can only occur if the low priority class has few jobs and in that case the total number of jobs
is also low by Proposition 5.4.
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• Under the T2 rule, no server can incur idleness when the high priority class is above the
threshold. In addition, the high priority class takes a small time to reach above Θn and does
not empty below two jobs after that time with high probability unless the total workload
is close to 0 (Lemma 5.13). This means that neither server will idle except when there are
almost no jobs in the system.

• Under the PP policy, Proposition 5.4 is still enough to prove Lemma 5.11 in the same way
as in the single mode case P.

• Under the T2T2 policy, Lemma 5.12 and 5.13 hold. Because of that, Lemma 5.11 holds for
the same reason as in the non switching case T2.

• When using a P rule, the high priority class could become zero with a lot of LPC jobs in the
system, and switching to the T2 rule could lead to idleness even though there are a lot of
low priority jobs (approximately αqz

∗). Thus we introduce the T1 rule in place of the P rule
in this case. This ensures that the number of high priority jobs does not decrease too much
during the corresponding period.

In some cases, some idleness can occur when the high priority class starts with too few jobs but
in those cases, it takes a small time to leave such states.

In cases 1(a) and 2(a), Lemma 5.11 is a direct consequence of the state space collapse. Let us
introduce two random times and a lemma that we will use in cases 1(b), 2(b)–(d). Fix t0 > 0. Let

ρn = inf
{
t > 0 : X̂n

p (t) > Θ̂n
}
∧ t0,

τnr = inf
{
t > ρn : X̂n

p (t) = 2n−1/2, and X̂n
q (t) > Θ̂n

}
.

Lemma 5.12. If any of the following conditions hold, we have

R̄nρn → 0 in probability. (5.26)

• Case 1(b), (2.20) and i2(ξA) = p.

• Case 2(b), (2.21) and i2(ξL) = i2(ξH) = p.

• Cases 2(c) and 2(d), (2.21) and i1(ξL) = i2(ξH).

Lemma 5.13. Under the same assumptions as the previous lemma,

P (τnr 6 t0)→ 0. (5.27)

The proofs of Lemmas 5.12 and 5.13 appear in Appendix A.

Remark 5.14. The above two lemmas do not address cases 1(a) and 2(a). The reason for this is
that in these cases we can directly prove Lemma 5.11 when using a P or PP policy.

Proof of Lemma 5.11. Here we only treat one case, deferring the remaining cases to the appendix.

• Case 1(a), P policy:
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In this case p = 2, and no server can be idle when X1 > 2. Thus∫ t0

0
1X̂n

1 (t)>2n−1/2dL̂
n
t = 0. (5.28)

For any δ > 0,

P
(
R̄nt0 > δ

)
6 P

(∫ t0

0
(1X̂n

2 (t)>2Θ̂n + 1X̂n
1 (t)>2n−1/2)dL̂nt > δ

)
= P

(∫ t0

0
1X̂n

2 (t)>2Θ̂ndL̂
n
t > δ

)
6 P

(
1supt6t0 X̂

n
2 (t)>2Θ̂nL̂

n(t0) > δ
)

6 P
(

sup
t6t0

X̂n
2 (t) > 2Θ̂n

)
= P (τnc 6 t0) .

By Proposition 5.4,
P (τnc 6 t0)→ 0. (5.29)

The treatment of the remaining cases appears in Appendix A.

5.2.6 Fast switching

Proof of Proposition 5.6. Fix t0 and ε > 0. Assume that ξL is in canonical form. Then
(il, kl) = (2, 1). Let

τf = inf

{
t > 0 :

∫ t

0
1Ŵn

t 6z∗−εdT
n
21(t) > 0

}
,

tmin = sup
{
t 6 τf : Ŵn

t > z∗
}
,

tmax = inf
{
t > tmin : Ŵn

t 6 z∗ − ε
}
,

τ1 = inf
{
t > tmin : MODEn(t) = ξL

}
,

where the dependence on n is suppressed. The first statement of the lemma will be proved once we
show P (τf 6 t0)→ 0. We omit the proof of the second statement, which is similar. To this end, let

κn = inf{s > 0 s.t. ∃t 6 t0, Ŵ
n
t−s > z∗, Ŵn

t 6 z∗ − ε}.

If supt6t0 Ŵ
n
t 6 z∗, the current mode never changes so the single activity server is dedicated to

only one class for the whole period and the non-basic activity is never used. Thus,

{τf 6 t0} ⊂ {tmax 6 t0} .

Note that we have used the fact that, for all of our policies, jobs are never routed to a non basic
activity of the current mode.
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The remainder of the argument is based on the following fact, which must be argued separately
for each case. This is concerned with the difference τ1 − tmin, which while case dependent, can in
all cases be shown to satisfy

lim
n→+∞

P (τ1 − tmin > enmax) = 0. (5.30)

By Proposition 5.5, Ŵn is C-tight. Hence for any constant c > 0, P
(
cκn 6 nā−1

)
→ 0. On the

other hand, by Lemma 5.9, P
(
enmax > nā−1

)
→ 0. Thus

P (enmax > cκn)→ 0. (5.31)

In order for
∫ t0

0 1Wn
t 6z∗−εdTn21(t) to become positive, tmax must be smaller than t0 and

tmax − τ1 < enmax.

It is not possible for tmax − τ1 > enmax to occur on {τf 6 t0}. If that were the case, server 1 would
necessarily finish service of the job it was in the process of serving at time τ1 before the workload
has time to reach z∗ − ε. When MODEn(t) = ξL in canonical form, server 1 can only take new
class 1 jobs regardless of the rule. Even if class 1 has no job in the queue, the non basic activity is
not used after the possible residual job that was in service at time τ1. In addition, by definition of
tmin, this is the last time the mode switches from upper to lower workload before τf . This would
prevent

∫ τf
0 1Ŵn

t 6z∗−εdT
n
21(t) from becoming positive and is also the reason why tmax needs to be

smaller than t0 for τf to be smaller than t0.

By definition of tmax and κn,

P (tmax 6 t0, tmax − tmin < κn) = 0.

We next show that
lim

n→+∞
P (tmax 6 t0, τ1 > tmax) = 0. (5.32)

We have

P (tmax 6 t0, τ1 > tmax) = P (tmax 6 t0, τ1 > tmax, tmax − tmin > κn)

6 P (τ1 > tmin + κn)

6 P (τ1 > tmin + κn, enmax 6 κn) + P (τ1 > tmin + κn, enmax > κn)

6 P (τ1 > tmin + enmax) + P (enmax > κn) .

Both terms converge to zero, the first by (5.30), and the second by (5.31).

We can now prove the lemma based on (5.32), (5.30) and (5.31). We have

P (τf 6 t0) = P (τf 6 t0, tmax 6 t0)

= P (τf 6 t0, tmax 6 t0, τ1 > tmax) + P (τf 6 t0, tmax 6 t0, τ1 6 tmax, tmax − τ1 < enmax)

6 P (tmax 6 t0, τ1 > tmax) + P (tmax 6 t0, tmax − tmin 6 2enmax) + P (τ1 − tmin > enmax)

6 P (tmax 6 t0, τ1 > tmax) + P (κn 6 2enmax) + P (tmax 6 t0, tmax − tmin < κn)

+ P (τ1 − tmin > enmax) .

The first term goes to zero by (5.32), the second by (5.31), the third is zero, and the fourth goes
to zero by (5.30). This completes the proof.
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It remains to prove (5.30). As noted above, the proof differs by case.

Case 2(a): The current mode changes to ξL after the first service completion of a job at the
single activity server for ξH (which is server 2) at or after tmin. Note that tmin must correspond
to a service completion. If tmin corresponds to a service completion at server 2, the τ1 = tmin. If
tmin corresponds to a service completion at server 1, then the mode will not cange, and τ1 will
correspond to the next service completion at server 2. This will occur before tmin + enmax if server
2 is busy (serving class 1) at tmin. Note that, on {τnc > t0}, X̂n

2 (tmin) < 2Θ̂n, so that

Xn
1 (tmin) > α1(Wn

tmin
− 2α−1

2 Θn) > α1(n1/2z∗ − 1− 2α−1
2 Θn) > 2,

so server 2 is busy at tmin. Thus

P (τ1 − tmin > enmax) 6 P (τnc 6 t0) ,

which converges to zero by Proposition 5.4. This proves (5.30).

Case 2(b): The current mode changes after the first service completion of a job at the single
activity server (which is server 2) at or after tmin. Server 2 is dedicated to HPC jobs. Under
{τnr > t0, ρ

n 6 tmin}, there are at least 2 HPC jobs in the system at time tmin so the single activity
server cannot be idling at that time. Thus

P (τ1 − tmin > enmax) 6 P (τnr 6 t0) + P (ρn > tmin) .

By Lemma 5.13, P (τnr 6 t0) converges to zero. In addition,

P (ρn > tmin) = P (ρn > tmin, tmin > τ̃) + P (ρn > tmin, tmin 6 τ̃)

6 P (ρn > τ̃) + P (tmin 6 τ̃)

6 P (ρn > τ̃, τnc > t0) + P (ρn > τ̃, τnc < t0) + P
(
X̂n

2 (tmin) < α2z
∗/2
)

6 P (ρn > τ̃, τnc > t0) + 2P (τnc < t0) .

where τ̃ is defined in the proof of Lemma 5.12. Both terms converge to zero, the first by Lemma
5.13, and the second by Proposition 5.4. This proves (5.30).

Cases 2(c) and 2(d): The current mode changes after the first service completion or arrival
of a low or high priority job after tmin so under {tmax 6 t0},

τ1 − tmin 6 enmax.

Thus (5.30) follows from Lemma 5.9.

A Proofs of lemmas

Proof of Lemma 5.7. In this proof, m is written as m. Note first that it suffices to prove

P(wt0(Ân, n−ν1) > n−ν2) 6 cn−h0(1 + t0)m/2, n ∈ N, (A.1)

where c = c(ν1, ν2,m) does not depend on n or t0. Indeed, if c1 > 1, the result follows directly
from (A.1). If c1 ∈ (0, 1), let ν̄2 > ν2 be such that it satisfies all hypotheses of the lemma. Namely
ν̄2 ∈ (0, 1), ν1 ≤ ν̄2 + 1

2 , h̄0 := (m2 − 1)ν1−mν̄2 > 0. Then by (A.1), for n such that c1n
−ν2 > n−ν̄2 ,

P(wt0(Ân, n−ν1) > c1n
−ν2) 6 c(1 + t0)

m
2 n−h̄0 .
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Moreover, h̄0 can be made arbitrarily close to h0 by choosing ν̄2 close to ν2. This shows that the
desired inequality holds for all large n, and by making c = c(c1, ν1, ν2,m) larger, for all n ∈ N.

We now prove (A.1). As before, c denotes a positive constant whose value may change from
line to line; here it may depend on (ν1, ν2,m) but not on n, t0. By (5.1),

Ân(t)− Ân(s) = n−1/2(An(t)−An(s))− n−1/2λn(t− s).

Thus
P(wt0(Ân, n−ν1) > n−ν2) 6 P(An(t0) > 2λnt0) + P(Ωn

+) + P(Ωn
−), (A.2)

where

Ωn
+ = {An(t0) 6 2λnt0,∃s, t ∈ [0, t0], 0 6 t− s 6 n−ν1 , An(t)−An(s) > n

1
2
−ν2 + λn(t− s)},

Ωn
− = {An(t0) 6 2λnt0, ∃s, t ∈ [0, t0], 0 6 t− s 6 n−ν1 , An(t)−An(s) 6 −n 1

2
−ν2 + λn(t− s)}.

Consider the event Ωn
+. Because an(l) are the interarrival times of An, on this event there must

exist l0 6 2λnt0 and R 6 n−ν1 such that

l0+n
1
2−ν2+λnR∑
l=l0

an(l) 6 R.

Recall that Eǎ(l) = 1. Letting ān(l) = an(l)− (λn)−1, we have Eān(l) = 0. Then taking r = λnR,
using λn 6 c1n where c1 = sup λn

n <∞, we have

P(Ωn
+) 6 P(∃j 6 2λnt0,∃r 6 n−ν1λn,

l0+n
1
2−ν2+r∑

l=l0+1

an(l) 6 (λn)−1r)

6 P(∃j 6 2c1nt0,∃r 6 c1n
1−ν1 ,

l0+n
1
2−ν2+r∑

l=l0+1

ān(l) 6 −(λn)−1n
1
2
−ν2).

Let Mn
l1 =

∑l1

l=1 ā
n(l), l1 = 0, 1, 2, . . ., and note that it is a martingale. For a real-valued function

X on Z+ let

osc(X, l1, l2) = max{|X(l3)−X(l4)| : l3, l4 ∈ [l1, l2]}, 0 ≤ l1 ≤ l2.

Then using 1
2 − ν2 6 1− ν1 and denoting ρ = [c1n

1−ν1 ],

P(Ωn
+) 6 P(∃j 6 2c1nt0, osc(Mn, l0, l0 + 2c1n

1−ν1) > c−1
1 n−

1
2
−ν2)

6 P(∃j ∈ [0, 2c1nt0] ∩ {0, ρ, 2ρ, . . .}, osc(Mn, l0, l0 + ρ) > c−1
1 n−

1
2
−ν2/3)

6 1− (1− P(‖Mn‖ρ > c−1
1 n−

1
2
−ν2/6))ct0n

ν1
.

Because n−1λn → λ > 0, we have the lower bound λn > cn for some c > 0 and all large n. Hence
Burkholder’s inequality shows that

E(‖Mn‖ρ)m 6 cE(ρ|ān(1)|2)
m
2 6 cn(1−ν1)m

2 (λn)−m 6 cn−(1+ν1)m
2 .
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Hence for any a > 0, P(‖Mn‖ρ > a) 6 ca−mn−(1+ν1)m
2 , and therefore

P(Ωn
+) 6 1− (1− cn−(ν1−2ν2)m

2 )ct0n
ν1
.

Note that ν1 > 2ν2 by the assumption h0 > 0. Now, if ε ∈ (0, 1
2) and a > 0 then, with c2 = 2 log 2,

1− (1− ε)a 6 1− e−c2aε 6 c2aε. This gives

P(Ωn
+) 6 cn−(ν1−2ν2)m

2 t0n
ν1 = ct0n

−h0 .

By a similar argument, the same estimate holds for P(Ωn
−). An application of (5.18) gives

P(An(t0) > 2λnt0) 6 P(‖Ân‖t0 > cn1/2) 6 c
E(‖Ân‖mt0 )

nm/2
6 cn−

m
2 (1 + t0)

m
2 .

Hence by (A.2),
P(wt0(Ân, n−ν1) > n−ν2) 6 ct0n

−h0 + c(1 + t0)
m
2 n−

m
2 .

It follows from ν1, ν2 ∈ (0, 1) that h0 <
m
2 . The result follows.

Proof of Lemma 5.9. Fix i, k. Denote Y n
t = Λ(Snik, t). For any u > 0, if Y n

t ≥ u then there must

exist 0 ≤ t1 < t2 ≤ t with t2 − t1 = u and Snik(t2−) = Snik(t1), hence by the definition (5.1) of Ŝnik,

Ŝnik(t1)− Ŝnik(t2−) = n−1/2µnik(t2 − t1) ≥ c2n
1/2u,

for some constant c2 that depends only on the sequence {µnik}. Hence Y n
t ≤ 2c−1

2 n−1/2‖Ŝnik‖t. The
first result now follows from (5.18) with κ = 2.

To prove the second statement we will proceed in two steps. First, we will show that the number
of interarrival times involved in the maximum is at most cn with probability going to 1, then show
that the maximum over cn variables has the right order of magnitude.

To simplify the notation, fix (i, k) and remove them from the notation of Snik, u
n
ik, µ̂

n
ik, etc. The

claim will be proved for enmax(t) defined as in (5.20) but without maximizing over (i, k); clearly, this
is sufficient. Note that

Sn(t) = sup

{
s > 0 :

s∑
l=1

un(l) 6 t

}
.

Let

Kn = inf

{
s > 0 :

s∑
l=1

un(l) > t0

}
.

Then

enmax(t0) 6 sup

{
un(s) :

s−1∑
l=1

un(l) 6 t0

}
6 sup {un(s) : s 6 Kn} .
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For any c2 > 0,

P (Kn > c2n) 6 P

 c2n∑
p=1

un(p) 6 t0


= P

 c2n∑
p=1

ǔ(p) 6 µnt0


= P

 1

c2n

c2n∑
p=1

ǔ(p) 6
µt0
c2

+
µ̂nt0
c2

n−1/2

 .

If c2 > µt0, by the law of large numbers, the RHS converges to 0 as n→∞. Next, by independence
of service times, for any c > 0,

Un := P
(

max
l6c2n

un(l) > cnā−1

)
= 1− P

(
un(1) 6 cnā−1

)c2n .
Using 1− (1− x)n 6 c3nx, letting c4 = c2c3 and denoting ε̄ = m− 2 > 0, we obtain

Un 6 c4nP
(
un(1) > cnā−1

)
6 c4nP

(
ǔ(1) > cµnnā−1

)
= c4nP

(
(ǔ(1))2+ε̄ >

(
cµnnā−1

)2+ε̄
)

6 c4n
E
[
(ǔ(1))2+ε̄

]
(cµnnā−1)2+ε̄ ,

where the last inequality uses Assumption 2.8. Next, by the definition in (2.31) of ā we have that
ā > 1

2 − ε̄
4(ε̄+2) , hence

(2 + ε̄)(1 + ā− 1) = ā(2 + ε̄)

> (2 + ε̄)(
1

4
+

1

4 + 2ε̄
)

=
1

2
+
ε̄

4
+

2 + ε̄

4 + 2ε̄
= 1 +

ε̄

4
.

Thus

n
E
[
(ǔ(1))2+ε̄

]
(cµnnā−1)2+ε̄ = O(n−

ε̄
4 ).

Hence for any c > 0 there exists c2 such that

P
(
enmax > cnā−1

)
6 P (Kn > c2n) + P

(
enmax > cnā−1, Kn 6 c2n

)
6 P (Kn > c2n) + P

(
max
l6c2n

un(l) > cnā−1

)
,

and both terms have been shown to converge to zero.
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Proof of Proposition 5.3 (continued from §5.2.2). Part 1 of the proof of this proposition
appears in §5.2.2; here we provide the remaining parts.

Part 2. Consider the case where T1 is applicable when the workload is sufficiently large. This
covers case 2(d) of Theorem 2.13, in which the policy T2T1 applies (none of our proposed policies
implement T1 as a single mode policy). The proof given in Part 1 is applicable, for the following
reasons. In the first step, during the analyzed time interval [τ, t], one has X̂2 ≥ K > Θ̂n, and
therefore there is no difference between how P and T1 behave during this interval. In addition, the
workload is sampled at each arrival/service, which means that

Tn22(t)− Tn22(τ) ≥ t− τ − enmax.

In the second step, the argument given for nonidling of both servers during [σ, t] again holds here
similarly to Part 1, upon noticing that, since σ corresponds to an arrival, it is a sampling time, and
so the current mode is either already the high mode or switches to the high mode at that time. (It
is possible that, if σ is a mode switching time, then server 1 was idle just before σ. But, if so, it
starts to serve class 1 at σ.) The remaining details need no adaptation.

Part 3. Finally, consider the policies which employ T2 for high workload levels, namely the
policies T2, T2T2 and T1T2, covering all remaining cases of Theorem 2.13. In these cases the
stronger moment assumption is in force, and the goal is to prove that there exists ε0 > 0 such
that E[(Ŵn

t )1+ε0 ] ≤ pol(t) for all n and t, for some polynomial pol. As before, let ξA or ξH be in
canonical form, in the single and, respectively, dual mode case. Fix a constant K > z∗ in the dual
mode case and K = 1 in the single mode case. Given t consider the event Ŵn

t > K. Let

τ1 = τn1 = sup{s ∈ [0, t] : Ŵn
s ≤ K}.

Then Ŵn
τ1 ≤ K + 1, and moreover Ŵn ≥ K during [τ1, t]. Although this lower bound on the

workload is sufficiently large to guarantee that Ŵn corresponds to the higher workload mode, it is
possible that at time τ1 the current mode variable still equals the lower workload mode. We argue
that the time it takes to switch to the upper workload mode is bounded by 2enmax in both T1T2

and T2T2. In the former case, the current mode switches as soon as a there is a new arrival or
departure. In the latter case, one possibly has to complete the service of a job at server 2, which
is server k1(ξL). It is possible that there are no jobs allowed to be routed to server 2 at time τ1.
Wait for an arrival of class 1 job, and service completion of this job at server 2. At this time it is
guaranteed that mode has switched to ξH if it was not ξH earlier. Thus if we let

τ2 = inf{s ≥ τ1 : MODEn(s) = ξH} ∧ t,

we have τ2 − τ1 ≤ 2enmax ∧ t.
According to the rules of T2, server 2 must be busy throughout the interval [τ2, t]. Thus

În2 (t) = În2 (τ2). Hence by (5.6), and using Înk [a, b] ≤ n1/2(b− a) (by (5.2)), we have

Ŵn
t = Ŵn

τ1 + F̂n[τ1, t] + L̂n[τ1, t]

= Ŵn
τ1 + F̂n[τ1, t] + β1Î

n
1 [τ1, t] + β2Î

n
2 [τ1, t]

≤ K + 1 + 2‖F̂n‖t + cn1/2enmax + β1Î
n
1 [τ2, t]

holds on the event Ŵn
t > K. On the complementary event, Ŵn

t ≤ K. Use (5.5) and (5.18)
to obtain the bound E[‖F̂n‖1+ε0

t ] ≤ {E[‖F̂n‖2t ]}(1+ε0)/2 ≤ c(1 + t)(1+ε0)/2. Use Lemma 5.9 to
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bound the second moment of n1/2enmax by c(1 + t). By Minkowski’s inequality and the inequality
(a+ b)1+ε0 ≤ 4a1+ε0 + 4b1+ε0 which holds for a, b ≥ 0, ε0 ∈ (0, 1), this yields

E[(Ŵn
t )1+ε0 ] ≤ c(1 + t)(1+ε0)/2 + cE[1{Ŵn

t >K}Î
n
1 [τ2, t]

1+ε0 ].

Hence it suffices to bound the last term above by a polynomial in t.

To this end, let τ3 = inf{s ≥ τ2 : X̂n
1 (s) ≥ Θ̂n} ∧ t. Then

E[1{Ŵn
t >K}Î

n
1 [τ2, t]

1+ε0 ] ≤ 4∆n
1 + 4∆n

2 , where

∆n
1 = E[1{Ŵn

t >K}Î
n
1 [τ2, τ3]1+ε0 ]

∆n
2 = E[1{Ŵn

t >K,τ3<t}Î
n
1 [τ3, t]

1+ε0 ].

To bound ∆n
1 , consider the event {Ŵn

t > K, τ3 > τ2}. On it, during the interval [τ2, τ3], one has
X̂n

1 < Θ̂n, hence by the rules of T2, server 2 prioritizes class 2, except possibly it completes a service
that started when X̂n

1 > Θ̂n. Moreover, Ŵn ≥ K during the same interval, by which we know that
there are multiple class-2 jobs in the system, and thus server 2 gives no service to class 1, with
the only exception of service to a job that started when X̂n

1 > Θ̂n. Hence the departure process
associated with activity (1, 2) increases by at most 1 during this interval, that is, 0 ≤ Dn

12[τ2, τ3] ≤ 1.
Recalling the definition of Ŝn in (5.1), this can be expressed as 0 ≤ en1 [τ2, s] ≤ n−1/2, s ∈ [τ2, τ3],
where

en1 (s) := n−1/2Dn
12(s) = Ŝn12(Tn12(s)) + n−1/2µn12T

n
12(s).

Using this in (5.4) gives, for s ∈ [τ2, τ3],

X̂n
1 (s) = X̂n

1 (τ2) + f̂n1 [τ2, s]− en1 [τ2, s] + n1/2λ1(s− τ2)− n1/2µ11T
n
11[τ2, s],

where
f̂n1 (s) = Ân1 (s)− Ŝn11(Tn11(s)) + (λ̂n1s− µ̂n11T

n
11(s)).

Next, by (2.4),
Tn11[τ2, s] = (s− τ2)− In1 [τ2, s]− Tn21[τ2, s].

However, activity (2, 1) is not in use by T2. Denoting c1 = λ1 − µ11 and g(s) = c1s, this yields

X̂n
1 (s) = X̂n

1 (τ2) + f̂n1 [τ2, s]− en1 [τ2, s] + n1/2g[τ2, s] + µ11Î
n
1 [τ2, s], s ∈ [τ2, τ3]. (A.3)

Because T2 is used after the update of modes, it must be true that c1 = λ1 − µ11 > 0.

We use the following property of the Skorohod map. Let η = Γ2[ψ]. Then by (5.7), η(s) =
sup0≤θ≤s[ψ(θ)−]. Assume that ψ = ψ1 + ψ2 where ψ2 ≥ 0. Then

η(s) = Γ2[ψ1 + ψ2](s) = sup
θ∈[0,s]

[(ψ1(θ) + ψ2(θ))−]

≤ sup
θ∈[0,s]

[ψ1(θ)−]

≤ ‖ψ1‖s.

This property is used as follows. On the interval [τ2, τ3], În1 can increase only at times when X̂n
1 = 0;

and the latter process is nonnegative. This shows that µ11Î
n
1 serves as the Skorohod term in (A.3)
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on that interval, and thus by the non-negativity of X̂n
1 (τ2) and c1, and the bound |en1 [τ2, s]| ≤ n−1/2,

this shows that

µ11Î
n
1 [τ2, τ3] ≤ sup

θ∈[τ2,τ3]
|f̂n1 [τ2, θ]|+ sup

θ∈[τ2,τ3]
|en1 [τ2, θ]| ≤ 2‖f̂n1 ‖t + n−1/2.

Hence ∆n
1 ≤ c{E[‖f̂n1 ‖2t ]}(1+ε0)/2 + 1 ≤ c(1 + t).

Next we bound ∆n
2 . To this end, consider the event Ωn := {Ŵn

t > K, τ3 < t, În1 (t) > În1 (τ3)}.
Because by its definition, În1 (t) ≤ n1/2t, we have

∆n
2 ≤ P(Ωn)(n1/2t)1+ε0 .

On the event Ωn let

τ5 = inf{s > τ3 : X̂n
1 (s) = 0}, τ4 = sup{s < τ5 : X̂n

1 (s) ≥ Θ̂n}.

Then on Ωn it must hold that τ3 ≤ τ4 < τ5 ≤ t. The arguments which lead to (A.3) are valid for
the time interval [τ4, τ5]. As a result,

X̂n
1 [τ4, τ5] = f̂n1 [τ4, τ5]− en1 [τ4, τ5] + n1/2g[τ4, τ5] + µ11Î

n
1 [τ4, τ5],

with |en1 [τ4, s]| ≤ n−1/2 for all s ∈ [τ4, τ5]. Now, În1 remains flat on the interval [τ4, τ5], and moreover,
X̂n

1 (τ4) = Θ̂n − n−1/2 and X̂n
1 (τ5) = 0. This gives

f̂n1 [τ4, τ5] + n1/2g[τ4, τ5] ≤ −Θ̂n + 2n−1/2.

Given any δ > 0, using the nonnegativity of the second term on the LHS, in the case that τ5− τ4 ≤
n−δ one must have f̂n1 [τ4, τ5] ≤ −Θ̂n/2. On the other hand, in the case τ5 − τ4 > n−δ one must
have f̂n1 [τ4, τ5] + c1n

1/2n−δ < 0. As a result,

P(Ωn) ≤ pn1 + pn2 := P(wt(f̂
n
1 , n

−δ) ≥ Θ̂n/2) + P(2‖f̂n1 ‖t > c1n
1
2
−δ).

We have by (2.32) Θ̂n = n−
1
2 dnāe, where we recall that ā < 1

2 . Thus by Lemma 5.7, with ν1 = δ,
ν2 = 1

2 − ā, one has, for any ε1 > 0,

pn1 ≤ c(1 + t)
m
2 n−h0+ε1

where

h0 = (
m

2
− 1)δ −m(

1

2
− ā), δ ≤ 1− ā.

Next, by (5.18) and Chebychev’s inequality,

pn2 ≤ c(1 + t)
m
2 n−

m
2

+δm.

As a result, we have
∆n

2 ≤ c(nζ1(δ,ε0,ε1) + nζ2(δ,ε0))(1 + t)
m
2

+1+ε0 ,

where

ζ1(δ, ε0, ε1) = −
(m

2
− 1
)
δ + m

(1

2
− ā
)

+
1

2
+
ε0

2
+ ε1, ζ2(δ, ε0) = −m

2
+ δm +

1

2
+
ε0

2
.
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By our assumptions, we have m > m0 = 1
2(5 +

√
17) and ā > 1

2 − m2−5m+2
2m(3m−2) . Using this, a

calculation shows that with the choice δ = m/(3m−2) ∈ (1/3, 1/2), one has ζ1(δ, 0, 0)∨ζ2(δ, 0) < 0.
It follows that there exist ε0 > 0 and ε1 > 0 for which ζ1(δ, ε0, ε1) ∨ ζ2(δ, ε0) < 0. Therefore
∆n

2 ≤ c(1 + t)
m
2

+1+ε0 and the proof is complete.

Proof of Lemma 5.10 (continued from §5.2.3). The proof of the lemma in Case 1(a) appears
in §5.2.3; here we cover the remaining cases.

• Case 1(b): In this case, we use the T2 policy which is single mode. Between σ and τ ,
X̂n
p (t) > Θ̂n. Thus, both servers give priority to the HPC at all time in [σ, τ ]. It is possible

that the dual activity server is occupied with the low priority class at σ but as soon as the
current job is served, the high priority class gets priority on one server and dedication by the
other server. By definition of enmax, we have for any k ∈ {1, 2},∫ τ

σ
Ξn
pk(t)dt > τ − σ − enmax1k=k2(ξA).

Thus ∫ τ

σ

(
λp −

∑
k

µpkΞ
n
pk(t)

)
dt 6 (τ − σ)(λp −

∑
k

µpk) + µpk2(ξA)e
n
max.

Finally, λp −
∑

k µpk < 0 by (3.1) and mini λi > 0.

• Case 2(a): In this case, we use the PP policy, which only changes mode at the completion
of a service at the single activity server. This is precisely the server that gives priority to the
high priority class after switching mode because we are in a SS case. Since there are always
HPC jobs to serve between σ and τ , we claim that excluding an initial period, at any given
time the HPC is being served by at least one server, as discussed in Section 5.1.3. We now
discuss how long this initial period can be.

The only way some service is lost is if there were no high priority jobs at some point in
the system, both servers become busy with low priority jobs and σ occurs before the service
completion of those jobs. After completion of those two jobs, the HPC keeps priority on at
least one server regardless of switching of the current mode. For the initial jobs, with respect
to MODEn(σ) either the service ends first at the dual activity server or the service ends first
at the single activity server.

In the first case, a service of the HPC job starts at the dual activity server because it has
priority there until either τ is reached or a mode switch occurs. In the second case the available
server is currently dedicated to the LPC. Since this corresponds to a service completion at the
single activity server, the workload is sampled and there could also be a switching of modes.
If the mode changes then this server becomes dual activity and the HPC has priority there.
If there is no mode switch, the service of another LPC job starts. LPC jobs are served at this
server until the mode switches.

Thus, if the service ends at the dual activity server before the mode switches then an HPC
job will start there. If the mode switches before the service ends at the current dual activity
server, then the current single activity server becomes dual activity and an HPC job begins
service there.
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In either case the the HPC is served by at least one server after that time because it has
priority on the dual activity server, and the dual activity server is always available when
switching modes. In addition, the time it takes for the HPC to begin service is smaller than
the service of the job present at the dual activity server at time σ, which is smaller than enmax.
Hence ∫ τ

σ

(
µp1Ξ

n
p1(t) + µp2Ξ

n
p2(t)

)
dt > min

k
µpk(τ − σ)−max

k
µpke

n
max.

This yields ∫ τ

σ

(
λp −

∑
k

µpkΞ
n
pk(t)

)
dt 6 (τ − σ)(λp −min

k
µpk) + max

k
µpke

n
max.

In addition, λp −mink µpk < 0. Putting ξL in canonical form forces in this case λ1
α1
> β1 and

p = 2 because i1(ξL) = p. In addition, by (3.6), either λ1
α1

> β1 ∨ β2 or λ2
α2

> β1 ∨ β2. Thus
λ1
α1
> maxk βk, which implies λ2

α2
< mink βk by (3.1).

• Case 2(b): In this case, we use the T2T2 policy. Since the number of HPC jobs stays above
Θn throughout the period [σ, τ ], both servers only take new jobs from the HPC regardless
of the mode. Similarly to 1(b), there is at most one job served at either activity before the
HPC gets served. Hence, for any k ∈ {1, 2},∫ τ

σ
Ξn
pk(t)dt > τ − σ − enmax.

Thus ∫ τ

σ

(
λp −

∑
k

µpkΞ
n
pk(t)

)
dt 6 (τ − σ)(λp −

∑
k

µpk) +
∑
k

µpke
n
max.

We obtain the result similarly as before because λp −
∑

k µpk < 0.

• Cases 2(c) and 2(d): the HPC is single activity in one mode and dual activity in the other.
Recall that this case is CS. This means the dual activity server stays the same regardless of
switching modes. When a T1 rule is applied, the dual activity server prioritizes the single
activity class as long as there are more than Θn jobs of this class. The HPC is single activity
when we apply the T1 rule. Similarly, under a T2 rule, the dual activity server prioritizes
the dual activity class as long as there are more than Θn jobs of this class and the HPC is
dual activity when we apply the T2 rule. Once again put ξL in canonical form, server 2 is the
dual activity server in both modes. Regardless of which rule is used, as long as the number
of HPC jobs is above Θn, server 2 only takes new jobs from the HPC. As before, we have to
exclude a residual service of a low priority job that started before σ. Hence∫ τ

σ
Ξn
p2(t)dt > τ − σ − enmax.

It remains to show that the activity processing HPC jobs throughout the period is enough
to deplete them. Because of the canonical form of ξL, λ1

α1
> β1 and thus by (3.5), λ1

α1
< β2.

Moreover, λ2
α2
< β2 by (3.1). Whichever the HPC is, server 2 has enough capacity to deplete

it. In other words, λp − µp2 < 0 and∫ τ

σ

(
λp −

∑
k

µpkΞ
n
pk(t)

)
dt 6 (τ − σ)(λp − µp2) + µp2e

n
max.
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Proof of Lemma 5.12. The proof follows reasoning similar to the proof of Proposition 5.4. Fix
δ. Let us introduce

σnr = sup

{
t 6 τnr : X̂n

p (t) > Θ̂n, or X̂n
q (t) 6

Θ̂n

2

}
.

In cases 2(b), (c) and (d), introduce

τ̃n = inf

{
t > 0 : X̂n

q (t) >
z∗αq

2

}
,

σ̃n = sup

{
t 6 τ̃n : X̂n

q (t) 6
z∗αq

4

}
.

To simplify, we write throughout this proof

ρn = ρ, τnr = τ , τ̃n = τ̃ , σ̃n = σ̃ and σnr = σ.

We briefly describe the interaction between the times we just introduced. Under the state space
collapse, τ̃ has to occur before the first time the current mode switches. The times σ and σ̃ allow
us to have some knowledge about the state of queue lengths, uniformly over an interval. The first
step of the proof of (5.26) is establishing that

P (τnc > t0, τ̃ 6 ρ)→ 0 (A.4)

holds in cases 2(b), (c) and (d). In those cases, under the event {τnc > t0}∩ {τ̃ > ρ}, for any t 6 ρ,

MODEn(t) = MODEn(0) = ξL. (A.5)

In addition, in case 1(b), for any t 6 ρ

MODEn(t) = ξA, (A.6)

which means (A.4) is not needed in this case.

We now proceed with the proof of (A.4). On {τnc > t0, τ̃ 6 ρ}, the following hold:

1. The number of HPC job is below Θ̂n and there are LPC jobs in the system during [σ̃, τ̃ ]:

sup
t∈[σ̃,τ̃ ]

X̂n
p (t) < Θ̂n and inf

t∈[σ̃,τ̃ ]
X̂n
q (t) > 0.

2. The current mode is the same as in the initial state: for any t ∈ [σ̃, τ̃ ],

MODEn(t) = MODEn(0) = ξL.

3. In addition, the number of LPC jobs must have grown during that time:

X̂n
q (τ̃)− X̂n

q (σ̃) >
z∗αq

4
.

56



1. comes from the definition of ρ, σ̃ and τ̃ . 2. comes from the fact that the number of HPC jobs is
bounded by 2Θn under {τnc > t0} and the number of LPC jobs is bounded by

z∗αq
2 before τ̃ and the

workload cannot cross above z∗. 3. comes from the definition of τ̃ and σ̃. Because of 2., only the
rule in the lower workload mode is in use. When using a T1 rule, both servers take new jobs from
the LPC because of 1. and λq −

∑
k µqk < 0. When using a T2 rule, again because of 1., the dual

activity server takes new jobs from the LPC. Since ξL is in canonical form λ1
α1
> β1, k2(ξL) = 2 and

q = 2 because of the T2 rule. This means that λ2
α2

< β2 and thus λq − µqk2(ξL) < 0. Hence, with
(5.19), regardless of the case there exists c > 0 such that

X̂n
q (τ̃) 6 X̂n

q (σ̃) + f̂nq [σ̃, τ̃ ]− c√n(τ̃ − σ̃) +
∑
k

µqke
n
max.

From this, we obtain two bounds:

X̂n
q (τ̃)− X̂n

q (σ̃) 6 wt0(f̂nq , τ̃ − σ̃)− c√n(τ̃ − σ̃) +
∑
k

µqke
n
max

X̂n
q (τ̃)− X̂n

q (σ̃) 6 2‖f̂nq ‖t0 − c
√
n(τ̃ − σ̃) +

∑
k

µqke
n
max

We now prove (A.4): let rn = log(n+1)√
n

. Because of 3.,

P (τnc > t0, τ̃ 6 ρ) 6 P

(
τ̃ 6 ρ, f̂nq [σ̃, τ̃ ]− c√n(τ̃ − σ̃) +

∑
k

µqke
n
max >

z∗αq
4

)

6 P

(
wt0(f̂nq , τ̃ − σ̃)− c√n(τ̃ − σ̃) +

∑
k

µqke
n
max >

z∗αq
4

, τ̃ − σ̃ 6 rn

)

+ P

(
2‖f̂nq ‖t0 − c

√
n(τ̃ − σ̃) +

∑
k

µqke
n
max >

z∗αq
4

, τ̃ − σ̃ > rn

)

6 P

(
wt0(f̂nq , rn) +

∑
k

µqke
n
max >

z∗αq
4

)
+ P

(
2‖f̂nq ‖t0 +

∑
k

µqke
n
max > c log(n+ 1)

)
.

By Lemma 5.9, enmax is smaller than nā−1 = o(1). By Remark 5.8, f̂nq are C-tight and ‖f̂nq ‖t0 are
tight RVs. Both terms must then converge to zero. This concludes the proof of (A.4) in all relevant
cases for this lemma.

Case 2(c), T1 rule:

By splitting the integral that defines R̄n, and using (5.24) and (A.5),

R̄nρ 6
∫ ρ

0
1Ŵn

t >c3Θ̂n, τnc >t0, τ̃>ρ
dL̂nt +

∫ ρ

0
1τnc <t0 + 1τ̃6ρ, τnc >t0dL̂

n
t

6
∫ ρ

0
1X̂n

q (t)>Θ̂n,MODEn(t)=ξLdL̂
n
t +

∫ ρ

0
1τnc <t0 + 1τ̃6ρ, τnc >t0dL̂

n
t

The first term is zero by definition of the T1 rule because q is the dual activity class. The second
term goes to zero by Proposition 5.4 and (A.4). This concludes the proof of (5.26) in case 2(c).
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Case 1(b), 2(b) and 2(d), T2 rule:
We now deal with all cases that use a T2 rule in lower workload at the same time thanks to
(A.5)/(A.6). Recall that p = 1 = i2(ξL) and k1(ξL) = 1. By splitting the integral, we obtain

R̄nρ =

∫ ρ

0
1Ŵn

t >c3Θ̂n, τnc >t0
dL̂nt +

∫ ρ

0
1Ŵn

t >c3Θ̂n, τnc <t0
dL̂nt .

By (5.2), L̂n =
∑

k βkÎ
n
k . By definition of the T2 rule, as long as there are at least 2 customers in

the system, the dual activity server cannot idle. With ξL in canonical form, server 2 is the dual
activity server, so under the event {τnc > t0} ∩ {τ̃ > ρ},∫ ρ

0
1Ŵn

t >2(α1∧α2)−1n−1/2, τnc >t0, τ̃>ρ
dÎn2 (t) = 0.

Since
∫ ρ

0 1Ŵn
t >c3Θ̂n, τnc <t0

dL̂nt ⇒ 0 by Proposition 5.4, we are left to deal with∫ ρ

0
1Ŵn

t >c3Θ̂n, τnc >t0, τ̃>ρ
dL̂nt = β1

∫ ρ

0
1Ŵn

t >c3Θ̂n, τnc >t0, τ̃>ρ
dÎn1 (t).

We introduce the following times:

τ̄n = inf

{
t > 0 :

∫ t

0
1Ŵn

t >c3Θ̂n
dL̂nt >

δ

2

}
,

and
σ̄n = sup

{
t 6 τ̄n : X̂n

2 (t) = 0
}
.

We want to show that
P (ρ > τ̄)→ 0.

On the event {ρ > τ̄}, we have :

• First, by definition of σ̄,
inf

t∈(σ̄,τ̄)
X̂n

2 (t) > 0.

• Second, by definition of ρ,
sup
t∈[0,τ̄ ]

X̂n
1 (t) < Θ̂n.

• Finally, by definition of σ̄,
X̂n

2 (σ̄) 6 n−1/2.

In order for server 1 to be idle at time τ̄ (so that dÎn1 (τ̄) > 0), it is necessary that X̂n
1 (τ̄) = 0.

This means that in order to also have Ŵn
τ̄ > c3Θ̂

n, we need to have X̂n
2 (τ̄) > 2Θ̂n, or

X̂n
2 (τ̄)− X̂n

2 (σ̄) > 2Θ̂n − n−1/2 > Θ̂n. (A.7)
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We can now give the balance equation for X̂n
2 between σ̄ and τ̄ under the T2 rule. Under the

T2 rule, server 2 prioritizes class 2 for the whole period because the number of HPC jobs remains
below Θ̂n. Since λ1 > µ11 we obtain λ2 < µ22 from (3.1). By the same reasoning as (A.3) there
exists c2 > 0 such that

X̂n
2 [σ̄, τ̄ ] 6 f̂n2 [σ̄, τ̄ ]− c2

√
n(τ̄ − σ̄) +

√
nenmax

∑
k

µ2k. (A.8)

Combining (A.7) and (A.8) we obtain (on {ρ > τ̄})

f̂n2 [σ̄, τ̄ ]− c2

√
n(τ̄ − σ̄) +

√
nenmax

∑
k

µ2k > Θ̂n.

As in the proof of Proposition 5.4, we distinguish between two cases: τ̄ − σ̄ smaller or larger than
n−ν1 . On τ̄ − σ̄ 6 n−ν1 , f̂n2 [σ̄, τ̄ ] 6 wt0(f̂n2 , n

−ν1), so that

P

(
f̂n2 [σ̄, τ̄ ]− c2

√
n(τ̄ − σ̄) +

√
nenmax

∑
k

µ2k > Θ̂n, τ̄ − σ̄ 6 n−ν1

)

6 P
(
wt0(f̂n2 , n

−ν1) > Θ̂n/2
)

+ P

(
√
nenmax

∑
k

µ2k > Θ̂n/2

)
.

On τ̄ − σ̄ > n−ν1 , f̂n2 [σ̄, τ̄ ] 6 2‖f̂n2 ‖t0 and c2
√
n(τ̄ − σ̄) > c2n

1
2
−ν1 , so that

P

(
f̂n2 [σ̄, τ̄ ]− c2

√
n(τ̄ − σ̄) +

√
nenmax

∑
k

µ2k > Θ̂n, τ̄ − σ̄ > n−ν1

)
6

P
(

2‖f̂n2 ‖t0 > c2n
1
2
−ν1/2

)
+ P

(
√
nenmax

∑
k

µ2k > c2n
1
2
−ν1/2

)
.

To summarize,

P (ρ > τ̄) 6 P (τnc 6 t0) + P (τnc > t0, τ̃ < ρ) + P
(
τnc > t0, τ̃ > ρ, τ̄ 6 ρ, τ̄ − σ̄ 6 n−ν1

)
+ P

(
τnc > t0, τ̃ > ρ, τ̄ 6 ρ, τ̄ − σ̄ > n−ν1

)
6 P (τnc 6 t0) + P (τnc > t0, τ̃ < ρ) + P

(
wt0(f̂n2 , n

−ν1) > Θ̂n/2
)

+ P

(
√
nenmax

∑
k

µ2k > Θ̂n/2

)

+ P
(

2‖f̂n2 ‖t0 > c2n
1
2
−ν1/2

)
+ P

(
√
nenmax

∑
k

µ2k > c2n
1
2
−ν1/2

)
.

All terms converge to zero. The first two have already been treated in Proposition 5.4 and (A.4)
respectively. The third term converges by Lemma 5.7, the fourth and sixth by Lemma 5.9, and the
fifth by tightness of f̂n2 .

This completes the proof of (5.26) and Lemma 5.12 in all of the relevant cases.

Proof of Lemma 5.13.
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Case 1(b), T2 policy:

We begin the proof by a full analysis in the case where a T2 policy is used, and then explain
how to deal with the other cases. In this case, with the active mode in canonical form, p = 1.
Recall the definition of the random time τ :

τ = inf
{
t > ρ : X̂n

1 (t) = 2n−1/2, and X̂n
2 (t) > Θ̂n

}
,

and

σ = sup

{
t 6 τn : X̂n

1 (t) > Θ̂n, or X̂n
2 (t) 6

Θ̂n

2

}
.

For any t ∈ [σ, τ ],

• X̂n
1 (t) < Θ̂n,

• and X̂n
2 (t) > Θ̂n

2 .

In this case, only server 1 processes class 1 jobs and does so at most at full rate. Indeed, only
server 1 gives priority to class 1 jobs and the other server is busy with class 2 jobs present in the
system. Similarly, only server 2 processes class 2 jobs and does so at full rate since there are always
class 2 jobs and the number of HPC jobs is below Θn between σ and τ . Similarly to Lemma 5.10,
enmax is such that for any s, t ∈ [σ, τ ], s 6 t, including a service that could start before σ at the
wrong activity (server 2 in this case),∫ t

s

(
λ1 −

∑
k

µ1kΞ
n
1k(s)

)
ds > (λ1 − µ11)(t− s)− µ12e

n
max,

and excluding a service of a HPC job by server 2 starting before σ,∫ t

s

(
λ2 −

∑
k

µ2kΞ
n
2k(s)

)
ds 6 (λ2 − µ22)(t− s) + µ22e

n
max.

With the active mode in canonical form, we have λ1 > µ11. By (3.1), this means λ2 < µ22. Thus
λ1 − µ11 > 0 and λ2 − µ22 < 0.

There are two possibilities for the state of the system at time σ: we have either

• X̂n
1 (σ) = Θ̂n − n−1/2,

• or X̂n
2 (σ) ∈ [ Θ̂

n

2 + 1
2n
−1/2, Θ̂

n

2 + n−1/2].

We will decompose the event Ωn := {τ 6 t0} in two events:

Ωn = Ωn
1 ∪ Ωn

2 ,

with
Ωn

1 := Ωn ∩
{
X̂n

1 (σ) = Θ̂n − n−1/2
}
,
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and

Ωn
2 := Ωn ∩

{
X̂n

2 (σ) ∈ [
Θ̂n

2
+

1

2
n−1/2,

Θ̂n

2
+ n−1/2]

}
.

To lighten notation, introduce also

Ω̃n :=

{
τ 6 t0, sup

t∈[σ,τ ]
X̂n

1 (t) < Θ̂n, inf
t∈[σ,τ ]

X̂n
2 (t) >

Θ̂n

2

}
.

Similarly to Proposition 5.4, let ν2 = 1/2 − ā 6 1/4 and ν1 ∈ (ν2, 1/2) so that Θ̂n =
n−1/2dn1/2−ν2e > n−ν2 . Then

P (Ωn
1 ) = P

(
X̂n

1 (σ) = Θ̂n − n−1/2, X̂n
1 (τ) 6 2n−1/2, Ω̃n

)
6 P

(
X̂n

1 (τ)− X̂n
1 (σ) 6 −Θ̂

n

2
, Ω̃n

)

= P

(
X̂n

1 (τ)− X̂n
1 (σ) 6 −Θ̂

n

2
, Ω̃n, τ − σ 6 n−ν1

)

+ P

(
X̂n

1 (τ)− X̂n
1 (σ) 6 −Θ̂

n

2
, Ω̃n, τ − σ > n−ν1

)
.

On Ω̃n, we also have

X̂n
1 (τ)− X̂n

1 (σ) = f̂n1 (τ)− f̂n1 (σ) +
√
n

∫ τ

σ

(
λ1 −

∑
k

µ1kΞ
n
1k(t)

)
dt

> f̂n1 (τ)− f̂n1 (σ) + (λ1 − µ11)
√
n(τ − σ)− µ12e

n
max

√
n.

On the event
{

Ω̃n, τ − σ > n−ν1

}
, the reasoning is very similar to the proof of Proposition 5.4:

P

(
X̂n

1 (τ)− X̂n
1 (σ) 6 −Θ̂

n

2
, Ω̃n, τ − σ > n−ν1

)

6 P
(

2 sup
t6t0

∣∣∣f̂n1 (t)
∣∣∣+ µ12

√
nenmax > (λ1 − µ11)

√
nn−ν1/2

)
. (A.9)

The last probability goes to zero by tightness of f̂n1 , ν1 < 1/2 and Lemma 5.9. When τ − σ 6 n−ν1

the situation is again the same as in the proof of Proposition 5.4:

P

(
X̂n

1 (τ)− X̂n
1 (σ) 6 −Θ̂

n

2
, Ω̃n, τ − σ 6 n−ν1

)

6 P
(
wt0(f̂n1 , n

−ν1) + µ12e
n
max

√
n >

n−ν2

2

)
. (A.10)
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The right hand side also converges to zero by Lemmas 5.7, Remark 5.8 and Lemma 5.9, similarly
to the proof of Proposition 5.4.

The second event Ωn
2 is treated similarly:

P (Ωn
2 ) 6 P

(
X̂n

2 (σ) ∈ [
Θ̂n

2
+

1

2
n−1/2,

Θ̂n

2
+ n−1/2], X̂n

2 (τ) > Θ̂n, Ω̃n

)

6 P

(
X̂n

2 (τ)− X̂n
2 (σ) >

Θ̂n

3
, Ω̃n

)

= P

(
X̂n

2 (τ)− X̂n
2 (σ) >

Θ̂n

3
, Ω̃n, τ − σ 6 n−ν1

)

+ P

(
X̂n

2 (τ)− X̂n
2 (σ) >

Θ̂n

3
, Ω̃n, τ − σ > n−ν1

)
.

On this event, we also have

X̂n
2 (τ)− X̂n

2 (σ) = f̂n2 (τ)− f̂n2 (σ) +
√
n

∫ τ

σ

(
λ2 −

∑
k

µ2kΞ
n
2k(t)

)
dt

6 f̂n2 (τ)− f̂n2 (σ) + (λ2 − µ22)
√
n(τ − σ) + µ22e

n
max

√
n.

On the event {τ − σ > n−ν1}, similar to the treatment of Ωn
1 :

P

(
X̂n

2 (τ)− X̂n
2 (σ) >

Θ̂n

3
, Ω̃n, τ − σ > n−ν1

)

6 P
(

2 sup
t6t0
|f̂n2 (t)|+ µ22

√
nenmax > −(λ2 − µ22)

√
nn−ν1/3

)
. (A.11)

The last probability goes to zero by tightness of f̂n2 , ν1 < 1/2 and Lemma 5.9. When τ − σ 6 n−ν1

the situation is also the same as for Ωn
1 :

P

(
X̂n

2 (τ)− X̂n
2 (σ) >

Θ̂n

3
, Ω̃n, τ − σ 6 n−ν1

)

6 P
(
wt0(f̂n2 , n

−ν1) + µ22e
n
max

√
n >

n−ν2

3

)
. (A.12)

The right hand side also converges to zero by Lemma 5.7 similarly to the Ωn
1 case. This concludes

the proof in case 1(b).

We now present the changes required to adapt the proof to the other cases described in the
lemma:

Case 2(b), T2T2 policy:
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This case involves switching between two T2 rules: i2(ξL) = i2(ξH) = p. Because ξL is in
canonical form, p = 1. In this case, mode switching only occurs at a service completion at the
single activity server that is dedicated to HPC jobs. There could be either type of job being served
at either server immediately before time σ. We will see that after those jobs exit the system, there
is at least one server processing the LPC and at most one processing the HPC. If the first job to
finish is from the dual activity server, the service of a low priority job starts because there are
fewer than Θn HPC jobs. This server will continue to take LPC jobs until the minimum between
the next mode switching time and τ . If the first job to finish at or after σ is at the single activity
server, either the current mode switches or the service of an HPC job starts. If there is no mode
switch then this server will continue to take HPC jobs until the minimum between the next mode
switching time and τ . When the dual activity server completes its job it will, as noted before, serve
LPC jobs. If there is a mode switch then the formerly single activity server becomes dual activity,
and (because there are fewer than Θn HPC jobs) begins service on an LPC job. When the formerly
dual activity server completes its job, it becomes single activity and serves HPC. This continues
until the minimum between the next mode switching time and τ .

After the two jobs present at σ, there cannot be a time where both servers are occupied with
HPC jobs. This is because the HPC is only processed by the server dedicated to it and there can be
no residual service of an HPC job at the single activity server whenever the current mode switches.
Similarly, after both initial jobs have been processed, there is always at least one server occupied
with LPC jobs. This is because one server gives priority to the LPC and the service of a LPC job
starts whenever the current mode switches.

Keeping the definition of τ , σ, just as in the single mode case, for any t, s ∈ [σ, τ ], includ-
ing/excluding a service that could start before σ at the wrong activity, there is always at most one
server processing HPC jobs and at least one server processing LPC jobs between σ and τ . Thus,∫ t

s

(
λ1 −

∑
k

µ1kΞ
n
1k(s)

)
ds > (λ1 −max

k
µ1k)(t− s)−

∑
k

µ1ke
n
max,

and ∫ t

s

(
λ2 −

∑
k

µ2kΞ
n
2k(s)

)
ds 6 (λ2 −min

k
µ2k)(t− s) +

∑
k

µ2ke
n
max.

With one mode in canonical form we have λ1
α1
> β1. In addition, by Lemma 3.3, in case 2(b), (3.6)

holds and thus λ1
α1
> maxk βk, which also means λ2

α2
< mink βk by (3.1).

The rest of the proof is the same as in the single mode case, obtaining (A.9), (A.10), (A.11)
and (A.12). This concludes the proof in case 2(b).

Case 2(c), T1T2 policy:

With ξL in canonical form, we have p = 2, so τ and σ are defined as

τ = inf
{
t > ρ : X̂n

2 (t) = 2n−1/2, and X̂n
1 (t) > Θ̂n

}
,

and

σ = sup

{
t 6 τn : X̂n

2 (t) > Θ̂n, or X̂n
1 (t) 6

Θ̂n

2

}
.
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In this case, in the upper workload mode only the single activity server is allowed to begin
service of the HPC between σ and τ , while in the lower workload mode neither server can begin
service of HPC between σ and τ . Between those times, there are always low priority class jobs to
serve, and the number of HPC jobs stays below Θn. The most service the HPC can get between
σ and τ occurs if there are no switches and the current mode is always upper workload. In this
mode, the single activity server (server 1) is dedicated to service of the HPC. Hence, including a
service that could start before σ at the wrong activity,∫ t

s

(
λ2 −

∑
k

µ2kΞ
n
2k(s)

)
ds > (λ2 − µ21)(t− s)− µ21e

n
max.

Between σ and τ , server 2 gives priority to class 1 regardless of switches. Excluding a service of a
HPC job that could have started before σ,∫ t

s

(
λ1 −

∑
k

µ1kΞ
n
1k(s)

)
ds 6 (λ1 − µ12)(t− s)− µ12e

n
max.

Because we have one mode in canonical form, λ1
α1

> β1. In addition, by Lemma 3.3 in case 2(c),

(3.5) holds, which means that λ1
α1
< β2. Finally λ2

α2
> β1 by the previous observation and (3.1).

The rest of the proof is the same as in the single mode case, obtaining (A.9), (A.10), (A.11)
and (A.12).

Case 2(d), T2T1policy:

This case is handled the same way as 2(c), by interchanging the roles of upper workload and
lower workload mode.

Proof of Lemma 5.11 (continued from §5.2.5).

• Case 1(b), T2 policy:

In this case, we already know by Lemma 5.12 that P
(
R̄nρ > δ

2

)
→ 0. We need to show the same

thing for the time after ρ:

P
(∫ t0

ρ
1Ŵn

t >c3Θ̂n
dL̂nt >

δ

2

)
→ 0.

First, by putting ξA in canonical form, p = 1. When Xn
1 (t) is above the threshold, both servers

can serve class 1 jobs (high priority class) so almost surely,∫ t0

ρ
1X̂n

1 (t)>Θ̂ndL̂
n
t = 0. (A.13)

Similarly, ∫ t0

ρ
1X̂n

2 (t)>2n−1/2dÎ
n
2 (t) = 0, (A.14)

and ∫ t0

ρ
12n−1/26X̂n

1 (t)6Θ̂ndÎ
n
1 (t) = 0. (A.15)
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Notice now that because of the three identities,

P
(∫ t0

ρ
1Wn

t >c3ΘndL̂
n
t >

δ

2

)
6 P

(∫ t0

ρ

(
1X̂n

1 (t)>Θ̂n + 1X̂n
1 (t)6Θ̂n,X̂n

2 >Θ̂n

)
dL̂nt >

δ

2

)
= P

(
β1

∫ t0

ρ
1X̂n

1 (t)6Θ̂n,X̂n
2 >Θ̂ndÎ

n
1 (t) >

δ

2

)
= P

(
β1

∫ t0

ρ
1X̂n

1 (t)62n−1/2,X̂n
2 >Θ̂ndÎ

n
1 (t) >

δ

2

)
By Lemma 5.13,

P
(∫ t0

ρ
1X̂n

1 (t)62n−1/2,X̂n
2 >Θ̂ndÎ

n
1 (t) >

δ

2

)
6 P (τnr 6 t0)→ 0. (A.16)

• Case 2(a), PP policy:

In this case, p = 2. The reasoning in case 1(a) is still valid when switching between two P rules
because (5.28) and (5.29) still hold.

• Case 2(b), T2T2 policy:

The result in this case has a proof very similar to case 1(b) because Lemmas 5.12 and 5.13 are still
valid in this case. We already know by Lemma 5.12 that

P
(∫ ρ

0
1Ŵn

t >c3Θ̂n
dL̂nt >

δ

2

)
→ 0.

We need to show the same thing for the time after ρ:

P
(∫ t0

ρ
1Ŵn

t >c3Θ̂n
dL̂nt >

δ

2

)
→ 0.

First, by putting ξL in canonical form p = 1.

The idea is to split the integrals between the times MODE(t) = ξL and the times MODE(t) =
ξH . In this case, we still have (A.13) but this time (A.14) and (A.15) only hold when MODE(t) = ξL.
In the other case, we have ∫ t0

ρ
1X̂n

2 (t)>2n−1/2,MODE(t)=ξHdÎ
n
1 (t) = 0,

∫ t0

ρ
12n−1/26X̂n

1 (t)6Θ̂n,MODE(t)=ξHdÎ
n
2 (t) = 0.

We obtain∫ t0

ρ
1MODE(t)=ξL,Wn

t >c3ΘndL̂
n
t 6 β1

∫ t0

ρ
1MODE(t)=ξL,X̂n

1 (t)62n−1/2,X̂n
2 (t)>Θ̂ndÎ

n
1 (t),
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and ∫ t0

ρ
1MODE(t)=ξH ,Wn

t >c3ΘndL̂
n
t 6 β2

∫ t0

ρ
1MODE(t)=ξH ,X̂n

1 (t)62n−1/2,X̂n
2 (t)>Θ̂ndÎ

n
2 (t).

Finally, we obtain the result, since

P
(∫ t0

ρ
1X̂n

1 (t)62n−1/2,X̂n
2 (t)>Θ̂ndL̂

n
t >

δ

2

)
6 P (τnr 6 t0)→ 0.

• Case 2(c)(d), T1T2/T2T1 policy:

We give the proof in case 2(d) but the reasoning is similar in case 2(c) by interchanging the role of
ξL and ξH . In this case p = 1 with ξL in canonical form. The idea is similar to the 2(b) case. We
already know by Lemma 5.12 that

P
(∫ ρ

0
1Ŵn

t >c3Θ̂n
dL̂nt >

δ

2

)
→ 0.

We need to show the same thing for the time after ρ:

P
(∫ t0

ρ
1Ŵn

t >c3Θ̂n
dL̂nt >

δ

2

)
→ 0.

We will split the integral using 1MODE(t)=ξL +1MODE(t)=ξH . We use a T2 rule when Wn is small
and a T1 rule when Wn is large but that distinction is not important here. In terms of almost sure
non idling properties, we have∫ t0

ρ
1MODE(t)=ξL,X̂n

1 (t)>Θ̂ndL̂
n
t = 0,

∫ t0

ρ
1MODE(t)=ξL,X̂n

2 (t)>2n−1/2dÎ
n
2 (t)(t) = 0,∫ t0

ρ
1MODE(t)=ξL,2n−1/26X̂n

1 (t)6Θ̂ndÎ
n
1 (t) = 0,

∫ t0

ρ
1MODE(t)=ξH ,X̂n

2 >2n−1/2dL̂
n
t = 0.

From these almost sure identities, we obtain

P
(∫ t0

ρ
1Wn

t >c3ΘndL̂
n
t >

δ

2

)
6 P

(∫ t0

ρ
1MODE(t)=ξL,Wn

t >c3ΘndL̂
n
t >

δ

4

)
+ P

(∫ t0

ρ
1MODE(t)=ξH ,Wn

t >c3ΘndL̂
n
t >

δ

4

)
6 P

(
β1

∫ t0

ρ
1MODE(t)=ξL,X̂n

1 (t)62n−1/2,X̂n
2 (t)>Θ̂ndÎ

n
1 (t) >

δ

4

)
+ P

(∫ t0

ρ
1MODE(t)=ξH ,X̂n

2 (t)62n−1/2,X̂n
1 (t)>2Θ̂ndL̂

n
t >

δ

4

)
6 P (τnr 6 t0) + P (τnc 6 t0)

Both probabilities go to zero (by Lemma 5.13 for the first and Proposition 5.4 for the second) so
the result is proved in this case as well.
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As mentionened, the proof is the same in case 2(c): this time, the policy uses a T1 rule when
Wn is small and T2 rule when Wn is large. Keeping ξL in canonical form, p = 2. In addition, in
terms of almost sure non idling properties, we have∫ t0

ρ
1MODE(t)=ξH ,X̂n

2 (t)>Θ̂ndL̂
n
t = 0,

∫ t0

ρ
1MODE(t)=ξH ,X̂n

1 (t)>2n−1/2dÎ
n
2 (t) = 0,∫ t0

ρ
1MODE(t)=ξH ,2n−1/26X̂n

2 (t)6Θ̂ndÎ
n
1 (t) = 0,

∫ t0

ρ
1MODE(t)=ξL,X̂n

1 >2n−1/2dL̂
n
t = 0.

We can obtain the result using the same decomposition.

B Solution of the HJB equation and free boundary point

In this appendix we present the expression found in [17, Section 3, Case 1] for the solution to the
HJB equation. (This solution is a slightly corrected version of the solution presented in [16, Section
5.3].) It includes an equation that uniquely characterizes the free boundary point (or switching
point) z∗ in the dual mode case. It is assumed in [17], without loss of generality, that b1 > b2. We
assume further, for simplicity, (and, again, without loss of generality) that if b1 = b2 then σ1 > σ2.
Note that, with these indexing assumptions, m = 2 in whichever of the complementary conditions
(2.20) or (2.21) that holds. Throughout this section, denote the unique classical solution to (2.18)–
(2.19) by u(x), x ∈ R+, and let x serve as the initial condition for the WCP, which elsewhere in
this paper is denoted by z. Let

β =
b1 +

√
b21 + 2γσ2

1

σ2
1

, ρ =
b2 +

√
b22 + 2γσ2

2

σ2
2

, ν =
b1 −

√
b21 + 2γσ2

1

σ2
1

.

Theorem B.1 ([17, Section 3, Case 1]). Under (2.20), u(x) = x
γ + b2

γ2 + 1
γρe
−ρx, x ∈ R+.

Next, consider condition (2.21). Because b1 and b2 are distinct in this case, we have b1 > b2.
The policy (4.1) from §4 corresponding to switching at z is given in the present notation by ξ̄z(x) =

ξ∗,11x≤z + ξ∗,21x>z. Let S
(2)
z be the admissible control system from Lemma 4.1.2, with a generic

switching point z in place of the specific z∗. Let the corresponding expression JWCP(x,S
(2)
z ), which

is nothing but the cost associated with the switching policy ξ̄z, be denoted by J(x, ξ̄z). Following
is an expression for this cost. For z > 0, let

A(z) =
νβ(e(ν−β)z + e−(ν−β)z − 2)

νβ(e(ν−β)z + e−(ν−β)z − 2) + ρ(e−νz − e−βz)(νeνz − βeβz) ,

C(z) =
(ν − β)(e−νz − e−βz)

νβ(e(ν−β)z + e−(ν−β)z − 2) + ρ(e−νz − e−βz)(νeνz − βeβz) ,

D(z) =
(β − ν)ρ(eβz − eνz)

νβ(e(ν−β)z + e−(ν−β)z − 2) + ρ(e−νz − e−βz)(νeνz − βeβz) ,

F (z) =
e−νz − e−βz + (β − ν)C(z)

νe−βz − βe−νz .
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(F (·) is not to be confused with the process F defined in the body of the paper). Then, for x 6 z,

J(x, ξ̄z) =
x

γ
+
b1
[
(e−νz − e−βz) + (A(z)− 1)(e−νx − e−βx) +D(z)(e−νz−βx − e−βz−νx)

]
γ2(e−νz − e−βz)

+
b2
[
(1−A(z))(e−νx − e−βx)−D(z)(e−νz−βx − e−βz−νx)

]
γ2(e−νz − e−βz)

+
C(z)(e−νx − e−βx)− F (z)(e−νz−βx − e−βz−νx)

γ(e−νz − e−βz) , (B.1)

and for x > z,

J(x, ξ̄z) =
x

γ
+

b1A(z)

γ2eρ(x−z) +
b2
γ2

(1− e−ρ(x−z)A(z)) +
C(z)

γeρ(x−z) . (B.2)

It is here where the principle of smooth fit is applied. For the cost to be C2 (in x), it must satisfy
J ′′(z−, ξ̄z) = J ′′(z+, ξ̄z). Using the expressions (B.1) and (B.2), this condition can be translated
to the following equation

0 =

(
b1 − b2
γ2

)[
(A(z)− 1)(ν2e−νz − β2e−βz)

e−νz − e−βz − ρ2A(z) +
(β2 − ν2)D(z)e−(ν+β)z

e−νz − e−βz

]

+
1

γ

[
C(z)((ν2e−νz − β2e−βz)

e−νz − e−βz − ρ2C(z)− (β2 − ν2)F (z)e−(ν+β)z

e−νz − e−βz

]
. (B.3)

Theorem B.2 ([17, Section 3, Case 1]). Let (2.21) hold. Then (B.3) has a unique solution z∗ ∈
(0,∞). Moreover, u(x) = J(x, ξ̄z

∗
), x ∈ R+.

C Symmetry conditions

The following result is related to Remark 4.2.

Lemma C.1. 1. If either (4.2) or (4.3) holds then b1 = b2. In particular, (2.20) holds.
2. If (4.4) holds then σ1 = σ2. In particular, (2.20) holds.

Proof. 1. Recall the expressions for b1 and b2,

bm = b(ξ∗,m) =
∑
i

λ̂i −
∑

k µ̂ikξ
∗,m
ik

αi
.

The difference between b1 and b2 is thus the difference between γm :=
∑

i,k
µ̂ikξ

∗,m
ik

αi
. For ξ∗,1, we

distinguish these cases: either λ1
α1

> β2 or λ1
α1

< β2. For ξ∗,2, we distinguish these cases: either
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λ1
α1
< β1 or λ1

α1
> β1. We will see that in each of the four cases b1 = b2.

λ1

α1
> β2 : γ1 =

1

α1

[
µ̂12 + µ̂11(

λ1

α1β1
− β2

β1
)

]
+
µ̂21

α2
(1− λ1

α1β1
+
β2

β1
),

λ1

α1
< β2 : γ1 =

µ̂12λ1

α2
1β2

+
1

α2

[
µ̂21 + µ̂22(1− λ1

α1β2
)

]
,

λ1

α1
< β1 : γ2 =

µ̂11λ1

α2
1β1

+
1

α2

[
µ̂22 + µ̂21(1− λ1

α1β1
)

]
,

λ1

α1
> β1 : γ2 =

1

α1

[
µ̂11 + µ̂12(

λ1

α1β2
− β1

β2
)

]
+
µ̂22

α2
(1− λ1

α1β2
+
β1

β2
).

We now take the difference for each pair:

λ1

α1
> β2 &

λ1

α1
< β1 : b1 − b2 =

µ̂12 − µ̂11
β2

β1

α1
−
µ̂22 − µ̂21

β2

β1

α2
,

λ1

α1
> β2 &

λ1

α1
> β1 : b1 − b2 = (1− λ1

α1β1
+
β2

β1
)

[
1

α1
(µ̂12

β1

β2
− µ̂11) +

1

α2
(µ̂21 − µ̂22

β1

β2
)

]
,

λ1

α1
< β2 &

λ1

α1
< β1 : b1 − b2 =

λ1

α2
1

[
µ̂12

β2
− µ̂11

β1

]
+

λ1

α1α2

[
µ̂21

β1
− µ̂22

β2

]
,

λ1

α1
< β2 &

λ1

α1
> β1 : b1 − b2 =

µ̂12
β1

β2
− µ̂11

α1
+
µ̂21 − µ̂22

β1

β2

α2
.

Now, if µ̂i1
β1

=
µ̂i,2
β2

, i = 1, 2, we get

µ̂11
β2

β1
− µ̂12 = µ̂22 − µ̂21

β2

β1
= 0,

and consequently b1 = b2 as claimed. If µ̂1k
α1

= µ̂2k
α2

, k = 1, 2, it is not hard to see that again the
expressions can be rewritten with a different factorization to get b1 = b2.

2. Under (4.4), denote Ci = CSi1 = CSi2 . Then for ξ ∈ SLP,

σ(ξ)2 =
∑
i

σ2
A,i +

∑
k σ

2
Sik
ξik

α2
i

=
∑
i

σ2
A,i +

∑
k C

2
i µikξik

α2
i

=
∑
i

σ2
A,i + C2

i λi

α2
i

,

where the last equality follows from (2.7). Hence σ1 = σ2 as claimed.
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