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Abstract. We consider a load balancing model where a Poisson stream of jobs arrive at a
system of many servers whose service time distribution possesses a finite second moment. A
small fraction of arrivals pass through the power-of-choice algorithm, which assigns a job to
the shortest among ℓ, ℓ ≥ 2, randomly chosen queues, and the remaining jobs are assigned to
queues chosen uniformly at random. The system is analyzed at critical load in an asymptotic
regime where both the number of servers and the usual heavy traffic parameter associated
with individual queue lengths grow to infinity. The first main result is a hydrodynamic limit
stating that the empirical measure of the diffusively normalized queue lengths converges to
a path in measure space whose density is given by the unique solution of a parabolic PDE
with nonlocal coefficients. The PDE has a stationary solution expressed explicitly, which in
particular provides a quantification of the balance achieved by the algorithm. For fixed ℓ,
as the intensity of the load balancing stream varies between its limits, this solution varies
from exponential distribution to a Dirac distribution, demonstrating that the result covers
the whole range from independence to state space collapse.

Further, two forms of an invariance principle are proved, one under a rather general initial
distribution and the other under exchangeability of the initial conditions. In the latter, the
limit of individual normalized queue length is given by a McKean-Vlasov SDE, and propagation
of chaos holds. The McKean-Vlasov limit is closely related to limit results for Brownian
particles on R+ interacting through their rank (with a specific interaction). However, an
entirely different set of tools is required, as the collection of n prelimit particles does not obey
a Markovian evolution on Rn

+.

1. Introduction

This paper is concerned with a load balancing model where a Poisson stream of arrivals
faces a system of n servers working in parallel, with a general common service time distribution
having a finite second moment. Following a setting proposed in [6], motivated by maintaining
low communication overhead, the stream undergoes thinning, where a small fraction of the
arrivals are routed via the join the shortest of ℓ queues (abbreviated JSQ(ℓ)) algorithm, while
the other arrivals undergo uniform routing. Here, JSQ(ℓ), also known as power of choice, is a
randomized load balancing algorithm that assigns a job to the shortest among ℓ, ℓ ≥ 2, queues
chosen uniformly at random, whereas uniform routing refers to assigning a job to a queue
chosen uniformly at random.
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The focus is on the asymptotics as the number of servers, n, becomes large, while individual
queues fluctuate at the diffusion scale. This is achieved by taking n to also serve as the heavy
traffic parameter of individual queue lengths and critically loading the system. More precisely,
it is assumed that the per-server stream of arrivals resulting from the uniform routing is
asymptotic to λn+λ̂n1/2, whereas the processing rate of each server is asymptotic to λn+µ̂n1/2,
where λ > 0, λ̂, µ̂ ∈ R are constants. Moreover, the overall intensity of the load balancing
stream is taken asymptotic to bn3/2, where b > 0 is a constant (see Fig. 1). Note that the
average load on a queue, defined as the rate of arrival of jobs per server divided by a server’s
processing rate, is asymptotic to 1 + ρn−1/2, where ρ = λ−1(λ̂+ b− µ̂). In particular, ρ < 0 is
a stability condition.

Let Xn
i (t), i ∈ [n] := {1, . . . , n} denote the i-th queue length process at the n-th system.

Then the diffusion scaled queue length processes are given by X̂n
i (t) = n−1/2Xn

i (t). Let also
ξ̄nt = n−1

∑
i∈[n] δX̂n

i (t)
denote the empirical distribution of normalized queue lengths at time

t, where δx is the Dirac measure at x ∈ R. In particular, ξ̄nt [0, x] is the fraction of queues i for

which X̂n
i (t) ∈ [0, x]. As argued informally below, taking the load balancing stream intensity

to scale like n3/2 is the only choice that gives interesting limits for ξ̄n.

The parameters b and ℓ determine the volume of communication between the servers and
the dispatcher. They also have dramatic influence on the degree to which the system is load
balanced. One of the goals of this work is to quantify the level of achieved load balancing,
which could be defined, for example, by the expected empirical variance, namely

σn(t)2 :=E
[ 1
n

∑
i∈[n]

X̂n
i (t)

2 −
( 1

n

∑
i∈[n]

X̂n
i (t)

)2]
=E

[ ∫
R+

x2ξ̄nt (dx)−
(∫

R+

xξ̄nt (dx)
)2]

.

(1.1)

Whereas it is difficult to estimate σn(t) for each fixed n, suppose that the limit as n → ∞ of
ξ̄n = {ξ̄nt } exists and is given by a deterministic path ξ = {ξt} in the space of measures on R+.
Suppose, moreover, that ξt has density u(·, t) for every t, i.e., ξt(dx) = u(x, t)dx. This path
could then be regarded as the macroscopic description of the model. Thus one could instead
look at the substitute

(1.2) σmac(t)
2 :=

∫
R+

x2u(x, t)dx−
(∫

R+

xu(x, t)dx
)2

and obtain an approximation to σn(t) for large n.

Assuming ξ̄n0 → ξ0 in probability, ξ0 a Borel probability measure on R+, our first main
result (Theorem 2.6) addresses this by providing a hydrodynamic limit, which shows that ξ̄nt
converges in probability, as a measure-valued process, to a deterministic measure-valued path
given by ξt(dx) = u(x, t)dx, t > 0. Here, the density u is the unique classical solution of the
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Figure 1.
Orders of magnitude of the various streams.
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Figure 2.
(a) Density profile subjected to gravitational field in horizontal direction: Force
acting on an infinitesimal mass is proportional to the (d�1)-st power of mass that
piles “above” (= to the left of) it. Force gets stronger as one moves to the right.
This corresponds to the less interesting “join the longest queue (d)” model.
(b) Density profile subjected to negative gravitational field in horizontal direction:
Force is proportional to the (d�1)-st power of mass “underneath” (= to the right).
Force gets weaker as one moves to the right. This corresponds to JSQ(d).
(c) Force concentrated at the left edge of the profile. Gives rise to a free boundary
problem. Corresponds to JSQ(d) with large d but thin stream.

Figure 1. Orders of magnitude of the various streams.

initial-boundary value problem

(1.3)



ut = −[(bℓvℓ−1 − c1)u]x + auxx (x, t) ∈ (0,∞)2

v(x, t) =

∫ ∞

x
u(y, t)dy (x, t) ∈ (0,∞)2

(c1 − bℓ)u(0, t) + aux(0, t) = 0 t ∈ (0,∞)

u(·, t)dx→ ξ0(dx) weakly as t ↓ 0.

Above, c1 = −λρ + b, and a > 0 is a variance parameter. The first line of (1.3) contains a
non-local drift coefficient that captures the algorithm’s instantaneous effect on the macroscopic
distribution. Its third line is a boundary condition expressing zero flux through the origin (a
Robin boundary condition; see e.g. [37, p. 109]), ensuring that the total mass is preserved. Our
results also shows that σn(t) → σmac(t) for each t > 0 (Proposition 2.7).

When ρ < 0, (1.3) has a unique stationary solution given by

vstat(x) = w(x)−1/(ℓ−1), ustat(x) =
c1
a
(1− α)e

c1
a
(ℓ−1)xw(x)−ℓ/(ℓ−1),

w(x) = (1− α)e
c1
a
(ℓ−1)x + α, α =

b

c1
=

(
1− λ

ρ

b

)−1
∈ (0, 1),

(1.4)

for x ∈ R+ (as stated below in Proposition 2.3). While an explicit expression for the stationary
distribution is interesting by its own right, it also sheds light on the following aspect. If we
fix (ℓ, ρ, λ, a) and let b → 0 and, respectively, b → ∞, then the measure ustat(x)dx converges
weakly to the exponential distribution and to δ0(dx) (details on this calculation are given
in §2.3; graphs of ustat for different values of ℓ and b are shown in Fig. 3). These two limits
indicate that our setting covers the entire range from queues operating independently to a state
space collapse. The latter term is used in the heavy traffic literature to describe a coordination
between the queues to the degree that the queue lengths, when normalized at the diffusion scale,
are asymptotically indistinguishable. In addition, this argument confirms the heuristic that
taking the load balancing intensity to scale like n3/2 is the only choice for obtaining nontrivial
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limits of ξ̄n. (At the same time, it suggests that working with load balancing intensity of a

higher order, the behavior of {Xn
i /η(n)}i∈[n], for a suitable choice of 1 ≪ η(n) ≪ n1/2 may

exhibit interesting behavior; see [19] for estimates on the order of magnitude of Xn
i when all

arrivals are routed via JSQ(ℓ)).

Although we prove that (1.4) is the unique stationary solution of the dynamics given by (1.3),
let us emphasize that in this paper we do not prove that every solution to (1.3) converges to
ustat as t→ ∞, nor that the interchange of the t and n limits is valid. These important aspects
of the model will be the subject of future work.

Our second goal is to provide an invariance principle. This is proved under two different
assumptions about initial conditions. The first such result (Theorem 2.8) assumes that, for a

fixed k, (X̂n
i (0))i∈[k] ⇒ (Xi(0))i∈[k], and states that (X̂n

i )i∈[k] ⇒ (Xi)i∈[k] where the latter is

the solution to the SDE in Rk
+

(1.5) Xi(t) = Xi(0) + b1t+ b0

∫ t

0
v(Xi(s), s)

ℓ−1ds+ σWi(t) + Li(t), i ∈ [k],

in which Li are boundary terms having continuous nondecreasing sample paths, satisfying the
condition

∫
[0,∞)Xi(t)dLi(t) = 0. Here, b0 = bℓ, b1 = −c1 and σ2 = 2a. Alternatively (Theorem

2.9), if the initial queue lengths are assumed exchangeable, then the limit in distribution of
the k-tuple is given by k independent copies of

(1.6) X(t) = X(0) + b1t+ b0

∫ t

0
v(X(s), s)ℓ−1ds+ σW (t) + L(t),

with
∫
[0,∞)X(t)dL(t) = 0. In both cases, the diffusion limits depend on the service time

distribution only through its first two moments.

The second form of the invariance principle, where exchangeability is assumed, combined
with the characterization of the limiting empirical distribution in terms of (1.3), shows that
the pair (X, F̄ ), describing the limiting stochastic dynamics of a rescaled queue length and its
law, satisfies

X(t) = X(0) +

∫ t

0
b(X(s), F̄ (·, s))ds+ σW (t) + L(t),

F̄ (x, t) = P(X(t) > x),

(1.7)

where b(x, F̄ ) = b1+ b0F̄ (x)
ℓ−1. Viewed this way, the result is closely related to the literature

on interacting diffusion models, and in particular to the subject of diffusions interacting through
their ranks, where (1.7) is referred to as a McKean-Vlasov SDE. For background on McKean-
Vlasov limits and propagation of chaos we refer to [22,42].

To explain the relation, consider a parametric regime in which the heavy traffic parameter
is taken to its limit first. In this case, each normalized queue length behaves as a Brownian
particle on R+, with an interaction among the particles caused by the load balancing algorithm.
The algorithm effects the dynamics by selecting a particle with probability depending on its
rank. In the original model, the selected queue increases by one job. In the particle system
this can be imitated by imposing a positive rank-dependent drift. It therefore comes as no
surprise that the McKean-Vlasov SDE (1.7) is a special case of the one that arises in the study
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of rank-dependent diffusions. Indeed, existence and uniqueness of solutions to (1.7), as well as
convergence results, follow from work on interacting diffusions, specifically [29, Sec. 2.4].

Clearly, the above explanation is only heuristic. In the regime under consideration, the
prelimit objects are queue lengths, which do not follow a Markovian evolution when considered
as an n-tuple with state space Rn

+. As the basic assumptions of the interacting diffusion setting
do not hold, the treatment requires a completely different set of tools.

1.1. Motivation and related work.

Motivation: Invariance principle. Invariance principles for queueing models in heavy traf-
fic are diffusion limit results in which the limit processes depend on model ingredients such
as service time and inter-arrival distributions only through their first two moments. Their
significance stems from the fact that they express robustness of performance to underlying
distributions. As far as load balancing algorithms in many-server settings are concerned, in-
variance principles have not been established before and in fact, diffusion limit results have not
been proved beyond the case of exponential service times (for treatments of nonexponential
service in other asymptotic regimes, see below). This is a rather restrictive assumption from a
modeling viewpoint.

Motivation: Non-perfect balancing, sparse messaging. A large body of work on load bal-
ancing has been devoted to subcritically loaded systems, where on average queues are short.
Critically loaded systems have also been studied, where either state space collapse or near op-
timal performance were proved; see references below. The question of quantifying the degree
of balancing achieved by the algorithm, when balancing is far from perfect, does not arise in
such settings, and has not been addressed before except under a fixed number of servers [6]. As
already mentioned, this is one of the aspects of practical significance that motivates this work.
In addition, the practical importance of load balancing algorithms that operate under low
communication volume is widely acknowledged (see e.g. [33]) and provides further motivation
for our setting.

Related asymptotic settings. The literature on load balancing in asymptotic regimes is vast;
see [18] for a recent survey. The present paper is not the first to study diffusion limits in a
regime in which the number of servers scales like n and individual queues are critically loaded,
with each queue length scaling like n1/2. This precise parameterization was considered before
in [9], which studied a multi-agent game rather than a load balancing model.

Closer to the present paper is [19] which studies a system of n exponential servers where
all arrivals are routed via JSQ(ℓ), under critical load. Rather than the empirical measure
of rescaled queue lengths, [19] is concerned with a rescaling of the empirical measure of the
(unscaled) queue lengths, focusing of the short queues, and identifying their dynamics under
the limit.

The asymptotic regime where individual queues undergo heavy traffic scaling and JSQ(ℓ) is
applied on a small fraction of the arrival stream was introduced in the aforementioned [6], in a
setting where the number of servers is fixed. This could model two different scenarios, that are
also relevant for our model. One is where a single stream is split by the dispatcher. Another
is where each server has a dedicated stream due, for example, to geographical or compatibility
constraints, and an additional stream is shared by all servers. Under an exponential service
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assumption, it was proved in [6] that the collection of rescaled queue lengths converges to a
rank-based diffusion.

Asymptotics of JSQ(ℓ). Perhaps the most well known load balancing algorithm is the join-
the-shortest-queue (JSQ), which routes jobs the shortest among all queues. Its variation JSQ(ℓ),
that is typically applied with ℓ much smaller that n, significantly reduces the communication
overhead while maintaining good performance. It was introduced in [44], where under the
exponential service time assumption and subcritical load, the n → ∞ limit of the length of a
typical queue in stationarity was shown to have a doubly exponential tail decay, a dramatic
improvement over routing uniformly at random in which case decay is exponential. Related
results appeared in [34]. The result was extended in [24] where empirical measures were
considered and propagation of chaos was obtained. Functional central limit theorems (CLT)
were obtained in [25] and strong approximation results, including law of large numbers (LLN)
and CLT, in [32]. (These CLT results were not invariance principles and were not concerned
with the asymptotic regime studied in this paper). Results on the mixing rate and the size
of the maximal queue length were obtained in [31], and aspects of stability and performance
under server heterogeneity were investigated in [36]. The paper [35] studied how ℓ(n) should
grow so that JSQ(ℓ(n)) with exponential servers would perform like JSQ, and thus achieve
asymptotic delay optimality.

A series of papers [11, 12, 13] extended [44] to several families of general service time dis-
tributions, based on an approach that first establishes propagation of chaos and then uses it
to compute queue length distribution in equilibrium. Another line of research treating JSQ(ℓ)
with general service times is [2,3] and [1]. In [2,3], the dynamical behavior was studied under
general load and the hydrodynamic limit was shown to be given by an infinite system of cou-
pled PDE. A numerical method was developed to solve these PDE. In [1], an infinite system
of PDE was constructed and shown to constitute the invariant state of the aforementioned
system of PDE under a subcriticality condition. Our setting, where individual queues undergo
heavy traffic scaling, as well as our results, are quite different from both these lines of work.

Asymptotics of JSQ and other load balancing algorithms. JSQ is known to be delay optimal
under exponential service and asymptotically delay optimal in various limiting regimes; see,
for example, [15]. The diffusion limit in heavy traffic of JSQ in a many-server setting was
established in [20], where, assuming exponential servers, a rescaled empirical measure of queue
lengths was shown to converge to a process expressed in terms of a 2d diffusion. Convergence
of the steady state at the same scale was proved in [14], and properties of the diffusion process
were investigated in [7, 8]. Under the regime considered in this line of work, the number of

queues that are of length 0, 1 and 2 is of order n1/2, n and, respectively, n1/2, and only a
negligible fraction exceeds length 2. Thus this regime captures quite a different behavior from
what is described in this paper. The papers [26] and [47] considered JSQ in other diffusive
regimes, namely the so called nondegenerate slowdown regime and, respectively, the super-
Halfin-Whitt regime.

Numerous load balancing algorithms besides JSQ and JSQ(ℓ) have been proposed. Ones
that emphasize sparse communication, where the messaging rate often goes far below that of
JSQ(ℓ), include [4,21,43,46]. Further asymptotic results on load balancing with nonexponential
service times include join-the-idle-queue [21], pull-based load distribution [40,41], zero waiting
algorithms [30], and join-the-shortest-estimated-queue [5].
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Rank-based diffusions. McKean-Vlasov limits of diffusions interacting through their ranks
were addressed in [39]. Observing that in these models the dependence of each particle’s
coefficients on the empirical law is discontinuous, a situation not covered by the classical
treatment such as [22], this paper gave convergence results assuming that the coefficients are
merely measurable. The paper [29] mentioned above addresses a setting of which rank-based
interaction is a special case, and attains convergence results in a stronger topology than weak
convergence.

1.2. Notation. Denote R+ = [0,∞). Let ι : R+ → R+ denote the identity map. In RN ,
denote the Euclidean norm by ∥ · ∥. For (X, dX) a Polish space, let C(R+,X) and D(R+,X)
denote the space of continuous and, respectively, càdlàg paths, endowed with the topology of
uniform convergence on compacts and, respectively, the J1 topology. Denote by M1 the space
of probability measures on R+ equipped with the topology of weak convergence. Denote by C↑

the set of members of C(R+,R+) that are nondecreasing and start at 0. For ξ ∈ D(R+,RN ),
an interval I ⊂ R+, and 0 ≤ δ ≤ T , denote

∆ξ(t) = ξ(t)− ξ(t−) t > 0, ∆ξ(0) = ξ(0),

osc(ξ, I) = sup{∥ξ(s)− ξ(t)∥ : s, t ∈ I},
wT (ξ, δ) = sup{∥ξ(t)− ξ(s)∥ : s, t ∈ [0, T ], |s− t| ≤ δ},

∥ξ∥∗T = sup{∥ξ(t)∥ : t ∈ [0, T ]},
and by |ξ|(t) the total variation of ξ in [0, t].

For D ⊂ RN , denote by Do and D̄ its interior and, respectively, closure. Denote by C(D)
the set of continuous functions f : D → R and by C0(D) the set of f ∈ C(D) whose support
is a compact subset of RN . For k, l ∈ N and an open set D ⊂ R (resp., D ⊂ R× R+), denote
by Ck(D) (resp., Ck,l(D)) the set of functions f : D → R possessing continuous derivatives up
to and including k (resp., (k, l)). For D ⊂ R, Ck(D) denotes the set of functions f : D → R
whose restriction to Do lies in Ck(Do), and whose derivatives up to and including k have
continuous extensions to D. Define Ck,l(D) analogously. For D ∈ R and D ∈ R × R+ denote
C∞(D) =

⋂
k∈NC

k(D) and C∞(D) =
⋂

k,l∈NC
k,l(D), resp. A subscript 0 denotes compact

support, e.g. Ck
0 (D) = Ck(D) ∩ C0(D). A subscript b denotes boundedness, e.g. Ck

b (D) are

functions in Ck(D) whose derivatives of order 0 ≤ l ≤ k are bounded. For f defined on (a
subset of) R, f ′ denotes derivative, and for f defined on (a subset of) R×R+, fx and ft denote
spatial and temporal derivatives, resp.

For an interval I ⊂ R+ and a normed space S, denote by Lp(I;S), 1 ≤ p ≤ ∞, the usual
Lp space defined in terms of the Lebesgue measure on I. Denote by Lp

loc(R+;S) the set of
f : R+ → S such that f ∈ Lp([0, T ];S) for all finite T . Lp(R+;R) is abbreviated to Lp(R+).

For f, g : R+ → R and a measure m on R+, ⟨f,m⟩ =
∫
R+
f(x)m(dx) and ⟨f, g⟩ =∫

R+
f(x)g(x)dx.

If V ∈ Rn then Vi, i ∈ [n] denote its components in the standard basis, and vice versa: Given
Vi, i ∈ [n], V denotes the vector (V1, V2, . . . , Vn). Both these conventions hold also for random
variables Vi and processes Vi(·). Occasionally, with a slight abuse of standard terminology, a
sequence of random elements (random variables or processes) is referred to as tight when their
laws form a tight sequence of probability measures. The term with high probability (w.h.p.)
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means “holds, for each n, on Ωn, where limn P(Ωn) = 1”. Convergence in distribution is
denoted by ⇒. c denotes a positive constant whose value may change from one expression to
another.

Throughout the paper, superscript n attached to scalars, random variables or processes,
denotes dependence on the index n rather than power.

1.3. Paper organization. The load balancing model is presented in §2.1. In §2.2, equation
(2.16) is introduced, which is a PDE closely related to (1.3), and the main results are stated.
A discussion of the results appears in §2.3. An outline of the proof is given in §2.4. §3 is
devoted to developing several tools required for the proof. The first tool, provided in §3.1,
is a crucial PDE uniqueness result for weak solutions of (2.16). Next, in [17], a semimartin-
gale representation for counting processes was introduced, that we find extremely useful. §3.2
presents this representation and, based on it, identifies various martingales that are of impor-
tance to the model. These martingales are key to the proof of convergence provided later in §4.
§3.3 provides various estimates on the rescaled queueing processes. Tightness of the empirical
process ξ̄n is shown in §3.4. With this set of tools, the proof is then carried out in §4, which
starts by writing down an equation for ⟨ϕ, ξ̄n⟩, for ϕ a test function, namely equation (4.38).
Thanks to the uniqueness of solutions to (2.16) and the tightness of ξ̄n, the hydrodynamic can
be established by showing that subsequential limits of ξ̄n form weak solutions to this PDE.
This is achieved by relating limits of the various terms in (4.38) to weak solutions of (2.16),
performed in three steps in §4.1, §4.2 and §4.3 (a detailed description of these steps appears
at the end of §2.4). Finally, all the main results are proved, based on the above, in §4.4.

2. Load balancing in heavy traffic

2.1. The load balancing model.

2.1.1. Arrivals, queue lengths and basic relations. In the model there are n servers and a queue
in front of each. There is a dedicated stream of arrivals into each queue and an additional stream
of arrivals, called the load balancing stream (LBS), that go through the JSQ(ℓ, n) algorithm.
These n+ 1 arrival streams are modeled as mutually independent Poisson processes. Clearly,
this could be recast as a single Poisson stream, out of which n+1 thinned streams are created
by means of random selection.

In what follows, the queueing systems will be indexed by n ∈ N, the number of servers.
The processes Xn

i , E
n
i , D

n
i and Tn

i represent the i-th queue length process, dedicated arrival
process, departure process and busyness process, respectively. Denote by An

0 the LBS arrival
process, and by An

i the process counting LBS arrivals routed to server i. For each i, En
i is a

Poisson process of parameter λn, and An
0 is Poisson of parameter λn0 , all having right-continuous

sample paths. The n+ 1 Poisson processes are mutually independent, for each n. We have

(2.1) Xn
i (t) = Xn

i (0−) + En
i (t) +An

i (t)−Dn
i (t), i ∈ [n], t ∈ R+.

Work conservation is assumed, hence

(2.2) Tn
i (t) =

∫ t

0
1{Xn

i (s)>0}ds.
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2.1.2. The load balancing algorithm. Upon each LBS arrival, ℓ out of the n queues, chosen
uniformly at random, are sampled. The arrival is routed to the queue that is shortest among
the ℓ; if there are ties, the queue with the smaller index is preferred. Given x ∈ Rn, let

(2.3) rank(i;x) = #{j : xj < xi}+#{j ≤ i : xj = xi}.

Then the probability that a LBS arrival is routed to the queue whose rank, defined by (2.3),
is r is given by

(2.4) pn,r =

(
n−r
ℓ−1

)(
n
ℓ

) , r ∈ [n],

with
(
k
j

)
= 0 when j > k. Note that

(2.5) pn,r = 0 for r ≥ n− ℓ+ 2, max
r∈[n]

pn,r = pn,1 =
ℓ

n
.

Thus the randomization mechanism can equivalently be achieved by letting, for each n, θnk ,
k ∈ N be IID random variables with P(θn1 = r) = pn,r, r ∈ [n], and routing the k-th LBS
arrival to the queue whose rank is θnk . That is,

(2.6) An
i (t) =

∫
[0,t]

1{Rn
i (s−)=θn

An
0 (s)

}dA
n
0 (s), Rn

i (t) = rank(i;Xn(t)), i ∈ [n], t ∈ R+.

Of course, this randomization scheme is not used in practice as it requires keeping track of the
queue lengths of the entire system. However, it is convenient for carrying out the analysis.

Remark 2.1. Although we work with the expression (2.4) that corresponds to sampling without
replacement, all our results are valid for sampling with replacement as well. This is stated and
explained in Remark 4.4.

2.1.3. The initial condition. We allow quite a general initial condition, where residual times of
jobs already being processed at time 0 may be dependent and have unspecified distributions.
Denote the (random) set of queues that at time 0 contain no jobs and, respectively, at least
one job, by N n = {i ∈ [n] : Xn

i (0) = 0} and Pn = {i ∈ [n] : Xn
i (0) > 0}. For i ∈ Pn, let

Zn
i (0) denote the initial residual time of the head-of-the-line job in queue i. For i ∈ N n we

add fictitious jobs having zero processing time. To this end, rather than specifying Xn(0) as
the initial queue length, Xn(0−) is specified; and for each i ∈ N n, the queue length is set
to Xn

i (0−) = 1 and the residual processing time to Zn
i (0) = 0. Obviously, this results in

Xn
i (0) = 0. This convention allows us to greatly simplify notation when we later construct

counting processes for service and departure. The initial condition is thus a tuple

In = ({Xn
i (0−), Zn

i (0), i ∈ [n]},N n,Pn),

where (N n,Pn) partitions [n], and

Xn
i (0−) = 1, Zn

i (0) = 0, i ∈ N n,

Xn
i (0−) ≥ 1, Zn

i (0) > 0, i ∈ Pn.
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2.1.4. Service times. Let Φser be a Borel probability measure on [0,∞) with mean 1 and
standard deviation σser ∈ (0,∞), such that Φser({0}) = 0. Let Φn

ser be defined as a scaled
version of Φser uniquely specified via Φn

ser[0, x] = Φser[0, µ
nx], x ∈ R+. Here, µn > 0 is the

service rate in the n-th system. For k ≥ 1, let Zn
i (k) denote the service time of the k-th job

to be served by server i after the head-of-the-line job at time 0− there (for i ∈ N n this means
the k-th job after the fictitious one). For every i, Zn

i = (Zn
i (k), k ≥ 1) is an IID sequence with

common distribution Φn
ser.

Next, the potential service process Sn
i , evaluated at t, gives the number of jobs completed

by server i by the time it has worked t units of time. It is given, with
∑−1

0 = 0, by

Sn
i (t) = max

{
k ∈ Z+ :

k−1∑
j=0

Zn
i (j) ≤ t

}
, t ≥ 0.

The departure processes are given by Dn
i (t) = Sn

i (T
n
i (t)). This is the number of jobs completed

by time t by server i. Note that the first departure counted by Dn
i is the one initially processed

if i ∈ Pn and the fictitious job if i ∈ N n.

2.1.5. Dependence structure. For each n, the 2n+ 3 stochastic elements

(2.7) En
i , i ∈ [n], Zn

i , i ∈ [n], In, An
0 , and {θnk} are mutually independent.

2.1.6. Scaling and critical load condition. The arrival and service rates are assumed to satisfy
the following. There are constants λ > 0 and λ̂ ∈ R such that

(2.8) λ̂n := n−1/2(λn − nλ) → λ̂ as n→ ∞,

a constant b > 0 such that

(2.9) λ̂n0 := n−3/2λn0 → b as n→ ∞,

and constants µ > 0 and µ̂ ∈ R such that

(2.10) µ̂n := n−1/2(µn − nµ) → µ̂ as n→ ∞.

The critical load condition is assumed, namely

(2.11) λ = µ.

Some further notation used throughout is

b̂n1 = λ̂n − µ̂n, b1 = λ̂− µ̂, c1 = −b1, b0 = bℓ, σ2 = λ(1 + σ2ser), a =
σ2

2
.

Note that the average load on a queue, defined as the rate of arrival of work per server,
λn + n−1λn0 , divided by a server’s processing rate, µn, that is,

nλ+ n1/2λ̂+ n1/2b+ o(n1/2)

nµ+ n1/2µ̂+ o(n1/2)
,

is asymptotic to

1 + n−1/2ρ, ρ :=
λ̂+ b− µ̂

λ
.

Hence the load parameter ρ is given by ρ = (b1 + b)/λ.
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Let rescaled versions of the queue length processes and cumulative idle time processes be
defined by

(2.12) X̂n
i (t) = n−1/2Xn

i (t), L̂n
i (t) = n−1/2µn(t− Tn

i (t)),

and denote ξ̄nt = n−1
∑

i∈[n] δX̂n
i (t)

. Further, assume that ξ̄n0− → ξ0 (equivalently ξ̄n0 → ξ0) in

probability, as n → ∞, where ξ0 is a deterministic Borel probability measure on R+. For the
rescaled residual times Zn

i (0), assume that for every ε > 0,

(2.13) lim
n→∞

max
i∈[n]

P(Z̃n
i (0) > ε) = 0 where Z̃n

i (0) := µ̃nZn
i (0), µ̃

n := n−1/2µn,

and

(2.14) sup
n

max
i∈[n]

E[Z̃n
i (0)

2] <∞.

Because µ̃n scales like n1/2, (2.13) and (2.14) impose the condition that Zn
i (0) scale like

o(n−1/2). This is mild compared to the condition on Zn
i (k), k ≥ 1, which have been assumed

to scale like n−1. Finally, assume that

(2.15) sup
n

max
i∈[n]

E[X̂n
i (0−)2] <∞.

Note that, by Fatou’s lemma, this imposes a condition on ξ0, namely ξ0 necessarily satisfies∫
x2ξ0(dx) <∞.

All assumptions made thus far are in force throughout the paper.

2.2. Main results. First we address well-posedness of the relevant PDE, starting with clas-
sical solutions to (1.3).

Theorem 2.2. Within the class of functions u ∈ C2,1((0,∞) × R+;R+) satisfying, for ev-
ery T < ∞, supt∈(0,T ]

∫
R+
xu(x, t)dx < ∞, there exists a unique solution to equation (1.3).

Moreover, for each t > 0, u(·, t) is a probability density.

A function ustat ∈ C2(R+) is said to be a stationary solution associated with (1.3), if it is
a probability density possessing a finite second moment, and, setting ξ0(dx) = ustat(x)dx, the
solution to (1.3) is given by u(x, t) = ustat(x) for all x, t.

Proposition 2.3. Assume ρ < 0. Then there exists a unique stationary solution to (1.3). It
is given by (1.4).

Theorem 2.2 is a consequence of a result stated next, that gives uniqueness of weak solutions
to a class of viscous scalar conservation laws, and provides one of the main tools used in this
paper. This is a parabolic equation of the type

(2.16)


vt = (f(v))x + avxx, (x, t) ∈ R2

+,

v(0, t) = 1, t > 0,

v(·, 0) = v0.

A key point is that this result does not require any regularity assumption in the x variable on
the class of solutions. The definition of a weak solution is as follows.
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Definition 2.4. A function v ∈ L∞
loc(R+;L∞(R+)) ∩ L∞

loc(R+;L1(R+)) is a weak solution of
(2.16) if for any t ∈ (0,∞) and any ϕ ∈ C∞

0 (R+) satisfying ϕ(0) = 0,

⟨v(·, t), ϕ⟩ − ⟨v0, ϕ⟩ = −
∫ t

0
⟨f(v(·, s)), ϕ′⟩ds+ a

∫ t

0
⟨v(·, s), ϕ′′⟩ds+ aϕ′(0)t.(2.17)

The choice of f that will be of interest is f(z) = c1z − bzℓ. In particular, (1.3) is related
(2.16) when the latter takes the special form

(2.18)


vt = (c1v − bvℓ)x + avxx, (x, t) ∈ R2

+,

v(0, t) = 1, t > 0,

v(·, 0) = ξ0(·,∞).

The existence and uniqueness of a classical solution of (2.16) is well known, and there is a vast

literature on weak solutions in the W 1,p
loc sense. However, we found no uniqueness result of a

weak solution as given in Definition 2.4 under the mere assumption v ∈ L∞
loc(R+;L∞(R+)) ∩

L∞
loc(R+;L1(R+)).

Theorem 2.5. Assume f ∈ C∞(R) and v0 ∈ L1(R+) ∩ L∞(R+). Then there exists a unique
weak solution to (2.16) (in particular, to (2.18)) in the sense of Definition 2.4. This solution
is in C∞(R+ × (0,∞)). If v denotes the weak solution to (2.18) then u = −vx is the classical
solution of (1.3).

The following is our first main result, showing that (1.3) provides a macroscopic description
of the model, specifically its hydrodynamic limit.

Theorem 2.6. Let ξ0 be extended to a trajectory ξ = {ξt, t ∈ R+} in M1 by setting

ξt(dx) = u(x, t)dx, t > 0,

where u is the unique solution to (1.3). Then ξ ∈ C(R+,M1), and one has ξ̄n → ξ in probability
in D(R+,M1), as n→ ∞.

Under a slightly stronger moment condition, the above result implies

Proposition 2.7. Assume that, for some ε > 0, Φser possesses a finite 2+ ε moment and that
supnmaxi∈[n]{E[Z̃n

i (0)
2+ε] ∨ E[X̂n

i (0−)2+ε]} < ∞ (compare with (2.14) and (2.15)). Let σmac

from (1.2) be defined with u of (1.3). Then σn(t) → σmac(t) for every t > 0.

Our second main result is the conjunction of following two invariance principles, obtained
under two different assumptions on the initial conditions.

Theorem 2.8. Fix k ∈ N and assume that (X̂n
i (0))i∈[k] ⇒ (Xi(0))i∈[k]. Let v be the weak

solution to (2.18). Then (X̂n
i , L̂

n
i )i∈[k] ⇒ (Xi, Li)i∈[k] in (D(R+,R+) × C(R+,R+))

k, where
the latter tuple is the unique in law solution to the system (1.5), driven by a k-dimensional
standard BM (Wi)i∈[n] independent of (Xi(0))i∈[k].

Theorem 2.9. Assume that, for each n, the random variables Xn
i (0−), i ∈ [n], are exchange-

able (necessitating that the limit law of each Xn
i (0−) is ξ0). Let v be the weak solution to

(2.18). Then for k ∈ N, (X̂n
i , L̂

n
i )i∈[k] ⇒ (Xi, Li)i∈[k] in (D(R+,R+) × C(R+,R+))

k, where
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the latter tuple is given by k independent copies of the unique in law solution (X,L) to (1.6)
driven by a standard BM W independent of X(0), and the latter is distributed according to ξ0.

In view of Theorem 2.6, the SDE in Theorem 2.9 is a McKean-Vlasov SDE, as it can be seen
to take the form (1.7). Note that we do not assume that the entire initial data is exchangeable,
nor that the tie breaking rule is symmetric w.r.t. exchanging i’s. The result implies that these
issues have negligible effect upon taking the limit.

2.3. Discussion. The hydrodynamic limit result establishes that the dynamics of the model
are given at the macroscopic scale by the PDE (1.3). As argued in the introduction, one can
use this to express basic performance criteria in terms of the solution u. In particular, denoting
the macroscopic mean by

mmac(t) :=

∫ ∞

0
xu(x, t)dx,

a first order approximation to the mean queue length is given by mmac(t)n
1/2. Accordingly, the

mean delay is, to first order, given by λ−1mmac(t)n
−1/2. Similarly, the macroscopic standard

deviation, σmac(t) defined in (1.2), may be taken as an index of balance. As a second order
parabolic equation in one spatial variable, there exist standard tools for numerically solving
(1.3) and evaluating these performance criteria. Some examples of solutions are plotted in Fig.
2.

Whereas the macroscopic dynamics can be solved numerically, the macroscopic equilibrium
state has an explicit formula, namely (1.4). As already mentioned, it is beyond the scope of
this paper to show rigorously that all solutions u converge to ustat as t→ ∞, and further, that
the invariant distribution of the stochastic model’s dynamics converges to ustat as n → ∞.
However, even without establishing these results, ustat constitutes a legitimate solution to the
PDE. In particular, a combination of Theorem 2.6 and Proposition 2.3 implies that ξ̄n → ξ
in probability holds provided that ξ0(dx) = ustat(x)dx. Here, ξt = ξ0 for all t. Fig. 3 shows
graphs of ustat for different values of ℓ and b, based on (1.4).

We can also use ustat in place of u(·, t) in the above macroscopic performance criteria, and
define analogously mmac and σmac which are now time independent quantities. Fig. 4 shows
their dependence on ℓ and b.

Let us provide details on the statement made in the introduction regarding the limits, as
b→ 0 and b→ ∞, of the stationary distribution. Fix (ℓ, ρ, λ, a), with ρ < 0. According to the

formula in (1.4), as b → 0, one has α → 0 and c1 → −λρ = λ|ρ|. Hence w(x) → e
λ|ρ|
a

(ℓ−1)x

pointwise, and consequently,

lim
b→0

vstat(x) = e−
λ|ρ|
a

x, x ≥ 0.

As b → ∞, one has c1 → ∞ and, although α → 1, it is obvious that w(x) → ∞ for every
x > 0. This gives

lim
b→∞

vstat(x) = 1{x=0}, x ≥ 0.

In both cases, the limit holds at every continuity point of the limiting CDF, proving that

vstat(dx) = ustat(x)dx → λ|ρ|
a e−

λ|ρ|
a

xdx weakly as b → 0, and ustat(x)dx → δ0(dx) weakly as
b→ ∞. The former is an exponential distribution, which agrees with the limiting distribution
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Figure 2. Solution of (1.3) for initial condition unif[0, 10] (left) and unif[15, 30]
(right) at different time instances, with ρ = −.01, c1 = .21, b = .2, ℓ = 4, a = 1.
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Figure 3. Stationary solution for different values of ℓ, with b = .2 (left), and
for different values of b, with ℓ = 4 (right). In all cases, ρ = −.01, a = 1, λ = 1.
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Figure 4. Stationary mean and standard deviation for 2 ≤ ℓ ≤ 9, with b = 2,
a = 1 (left) and for 0.1 ≤ b ≤ 2, with ℓ = 4, a = 1 (right).

of a single server queue in heavy traffic. This makes perfect sense since in this limit the queues
operate independently. The latter is a distribution that has all its mass at 0, showing that,
by choosing b large, the hydrodynamic limit can be made arbitrarily close to a state space
collapse, where the diffusion-scale processes X̂n

i are asymptotically indistinguishable.
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The nature of the drift in equation (1.3) is akin to the dynamics of a mass distribution
subjected to a gravitational field [45], where the force acting on an infinitesimal mass depends
on the amount of mass that piles above it. Here it is the mass accumulated below it, specifically,
a nonlinear function of v(x, t), that determines the force.

2.4. Outline of the proof. The approach used to proving the hydrodynamic limit result is
based on PDE uniqueness. Thus the first main tool required is the uniqueness of weak solutions
to (2.16). The crux of the argument is as follows. If v1, v2 are two weak solutions then one can
show that w = v1 − v2 satisfies the equality

⟨w(·, t), ψ(·, t)⟩ =
∫ t

0

〈
w(·, s),

[
ψs(·, s)−

[ f(v1)− f(v2)

v1 − v2

]
ψx + ψxx

]〉
ds

for any t > 0 and test function ψ satisfying ψ ∈ C∞
0 (R+ × [0, t]), ψ(0, s) = 0 for s ∈ [0, t]. One

can then find an L∞ approximation of the solution to the linear, backward equation

ψs(·, s)−
[f(v1)− f(v2)

v1 − v2

]
ψx + ψxx = 0

on R+ × [0, t] satisfying ψ(·, t) = ϕ(·), given any smooth ϕ. As a result, ⟨w(·, t), ϕ⟩ = 0 for any
t and any such ϕ, hence w ≡ 0.

Next, ξ̄n is shown to form a tight sequence, and then the next main step is to prove that
limit points satisfy (2.16) in weak sense. Achieving this goal relies on two key elements. One
is a semimartingale decomposition for point processes, introduced in [17]. This decomposition
is particularly convenient in our setting, where the number of point processes involved, given
by the departure processes, grows to infinity. The other is an estimate showing C-tightness of
X̂n

i uniformly in i ∈ [n]. With this toolbox we can then show the following. Let ϕ̃ be a test
function as in Definition 2.4 and ϕ its antiderivative. Then every limit point ξ of ξ̄n satisfies

⟨ϕ, ξt⟩ = ⟨ϕ, ξ0⟩+
∫ t

0
⟨b1ϕ′ + aϕ′′, ξs⟩ds+

b0
ℓ

∫ t

0

∫
R+

ϕ′(x)S(ξs[x,∞), ξs(x,∞))ξs(dx)ds,

(2.19)

where

(2.20) S(a, b) = aℓ−1 + aℓ−2b+ · · ·+ abℓ−2 + bℓ−1, a, b ∈ R.
To see the relation to equation (2.17) required by Definition 2.4, let v(x, t) = ξt(x,∞). Then

⟨ϕ, ξt⟩ =
∫
R+

(v(x, t)−1)ϕ̃(x)dx. Suppose that ξt has no atoms for every t > 0. Then, owing to

the fact that S(a, a) = ℓaℓ−1, (2.19) reduces to (2.17) when f(z) = c1z− bzℓ, which is the case
of interest. However, an a priori proof of the atomless property is not required, as a calculation
via integration by parts shows that (2.19) and (2.17) are equivalent even in presence of atoms.
As a result, the existence of weak limit of ξ̄n satisfying the PDE follows, completing the proof
of the hydrodynamic limit.

Equation (2.16) is well known to have C∞ solutions, and as a consequence of the above
result the relation of the hydrodynamic limit to the PDE (1.3) for the density follows.

Finally, the two invariance principles follow by combining the C-tightness of individual
rescaled queue lengths with the hydrodynamic limit result, where the atomless property, that
by now has been proved, gives a control over the interaction term.
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We now provide some more details on the structure of §§3–4. In §3.1 we prove uniqueness
of weak solutions to (2.16). The aforementioned semimartingale representations are provided
in §3.2. In §3.3 uniform estimates on the rescaled queueing processes are derived, including
C-tightness and second moment. Tightness of ξ̄n is shown in §3.4.

In §4.1 equation (4.38) for ⟨ϕ, ξ̄n⟩ is written and it is shown that its linear term converges to
the linear term in (2.19). In §4.2, the interaction term is shown to converge to that in (2.19).
The reduction, alluded to above, of (2.19) to (2.17), is shown in §4.3. In §4.4, the convergence
of ξ̄n to a solution of (2.17) is deduced from the above steps, and, based on that, the proof of
all main results is then provided.

3. Preliminaries

3.1. PDE uniqueness. Here we prove the uniqueness part of Theorem 2.5, stated as Lemma 3.2
below. In preparation for proving this result, we provide an extension of the class of test func-
tions allowed in Definition 2.4, which is relatively standard but is given for completeness.

Lemma 3.1. If v is a weak solution of (2.16) (in the sense of Definition 2.4) then for any
t ∈ (0,∞) and any ψ ∈ C∞

0 (R+ × [0, t]) satisfying ψ(0, s) = 0, 0 ≤ s ≤ t, one has

⟨v(·, t), ψ(·, t)⟩ − ⟨v0, ψ(·, 0)⟩ =
∫ t

0
⟨v(·, s), ψs(·, s)⟩ds−

∫ t

0
⟨f(v(·, s)), ψx⟩ds

+ a

∫ t

0
⟨v(·, s), ψxx⟩ds+ a

∫ t

0
ψx(0, s)ds.(3.1)

Proof. Observe by (2.17) that for any function ϕ satisfying Definition 2.4 and for any 0 ≤
τ1 < τ2 ≤ t,

(3.2) ⟨v(·, τ2), ϕ⟩ = ⟨v(·, τ1), ϕ⟩ −
∫ τ2

τ1

⟨f(v(·, s)), ϕ′⟩ds+ a

∫ τ2

τ1

(
⟨v(·, s), ϕ′′⟩+ ϕ′(0)

)
ds.

Since v and f(v) are in L∞(R+) uniformly in t, it follows, in particular, that t 7→ ⟨v(·, t), ϕ⟩ is
continuous and, moreover,

(3.3) |⟨v(·, τ2)− v(·, τ1), ϕ⟩| ≤ |τ1 − τ2|K
where K = K(ϕ, v).

Let now ψ ∈ C∞
0 (R+ × [0, t]) be a function that satisfies the conditions of the lemma. Let

N ∈ N. Let tk := tk/N where k = 0, . . . , N . Define ϕk(x) = ψ(tk, x). Then, from (3.2)

⟨v(·, tk+1), ϕk⟩ − ⟨v(·, tk), ϕk⟩ = −
∫ tk+1

tk

⟨f(v(·, s)), ϕ′k⟩ds+ a

∫ tk+1

tk

(
⟨v(·, s), ϕ′′k⟩+ ϕ′k(0)

)
ds.

Summing over k = 0, . . . , N − 1 and using ϕN = ψ(·, t), ϕ0 = ψ(·, 0) we get

(3.4) ⟨v(·, t), ψ(·, t(1− 1/N))⟩ − ⟨v0, ψ(·, 0)⟩ −
N−1∑
k=1

⟨v(·, tk+1), ϕk+1 − ϕk⟩

=
N−1∑
k=0

[
−
∫ tk+1

tk

⟨f(v(·, s)), ϕ′k⟩ds+ a

∫ tk+1

tk

(
⟨v(·, s), ϕ′′k⟩+ ϕ′k(0)

)
ds

]
.
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Evidently, ⟨v(·, t), ψ(·, t(1− 1/N))⟩ → ⟨v(·, t), ψ(·, t)⟩ as N → ∞. Next, by (3.3)

⟨v(·, tk+1), ϕk+1 − ϕk⟩ =
∫ tk+1

tk

⟨v(·, s), ψs(·, s)⟩ds+
∫ tk+1

tk

⟨v(·, tk+1)− v(·, s), ψs(·, s)⟩ds

=

∫ tk+1

tk

⟨v(·, s), ψs(·, s)⟩ds+O(N−2).

Thus
N−1∑
k=1

⟨v(·, tk+1), ϕk+1 − ϕk⟩ →
∫ t

0
⟨v(·, s), ψs(·, s)⟩ds

as N → ∞. Likewise, the right side of (3.4) converges to

−
∫ t

0
⟨f(v(·, s)), ψx⟩ds+ a

∫ t

0
(⟨v(·, s), ψxx⟩+ ψx(0, s))⟩ds.

This proves the lemma. □

Lemma 3.2. Assume f ∈ C∞(R) and v0 ∈ L1(R+)∩L∞(R+). Then there is at most one weak
solution to (2.16) in the sense of Definition 2.4.

Proof. As can be seen by performing a change of variables x 7→ a−1/2x, we may and will
assume w.l.o.g. that a = 1. Suppose v1, v2 are two solutions. The goal is to show that v1 = v2.
Let w = v1 − v2 and note that w ∈ L∞

loc(R+,L∞(R+)) ∩ L∞
loc(R+,L1(R+)). Let

J(x, t) :=


f(v1(x, t))− f(v2(x, t))

v1(x, t)− v2(x, t)
if w(x, t) ̸= 0

f′(v1(x, t)) if w(x, t) = 0.

Then for any test function ψ satisfying the conditions of Lemma 3.1,

(3.5) ⟨w(·, t), ψ(·, t)⟩ =
∫ t

0
⟨w(·, s), [ψs(·, s)− J(·, s)ψx + ψxx]⟩ds.

Fix T . By the assumptions on f and the definition of a solution, J ∈ L∞([0, T ];L∞(R+)).
Moreover, for any x0 > 0, |f′(x) − f′(0)| ≤ cx holds provided that |x| < x0, with c = c(x0).
Hence J − f′(0) ∈ L∞([0, T ];L1(R+)). Let now JN ∈ C∞(R+ × [0, T ]) be a sequence that is
bounded uniformly in L∞(R+ × [0, T ]) and satisfies ∥JN − J∥1 = O(N−1), where we denote

∥ ·∥1 = ∥ ·∥L1(R+×[0,T ]). Given t ∈ (0, T ], let ψ̃N be the classical solution of the backward linear
problem on the time interval [0, t]:

(3.6) ψ̃N
s (·, s)− JN (·, s)ψ̃N

x + ψ̃N
xx = 0, ψ̃N (·, t) = ϕ, ψ̃N (0, s) = 0, 0 ≤ s < t,

where ϕ ∈ C∞
0 (R+). Since ψ̃N and all its derivatives decay to zero as x → ∞, uniformly in

s ∈ [0, t], we may replace them by ψN which satisfy the conditions of Lemma 3.1 and

∥ψN − ψ̃N∥∞ + ∥ψN
x − ψ̃N

x ∥∞ + ∥ψN
xx − ψ̃N

xx∥∞ + ∥ψN
t − ψ̃N

t ∥∞ = O(N−1)
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uniformly on [0, t]. It follows from (3.5) that

⟨w(·, t), ϕ⟩ =
∫ t

0
⟨w(·, s), [ψ̃N

s (·, s)− J(·, s)ψ̃N
x + ψ̃N

xx]⟩ds

=

∫ t

0
⟨w(·, s), [JN (·, s)− J ] ψ̃N

x ⟩ds

=

∫ t

0
⟨w(·, s), [JN (·, s)− J ]ψN

x ⟩ds+O(N−1)

for any such ϕ. Suppose

(3.7) sup
N

sup
s∈[0,t]

∥ψ̃N
x (·, s)∥∞ <∞

if t is small enough. Since w ∈ L∞([0, T ];L∞(R+)) and ∥JN − J∥1 = O(N−1), this implies
⟨w(·, t), ϕ⟩ = O(N−1) for any ϕ ∈ C∞

0 (R+) and any N , hence w(·, t) = 0. As a consequence,
w(·, t) = 0 for all t ∈ [0, t0], some t0 > 0. Moreover, t0 does not depend on the initial condition
v0. Thus, iterating the argument shows that w = 0.

It thus suffices to show (3.7). To this end, denote M := supN ∥JN∥∞ < ∞. Let ψ0 be the
solution of

ψ0
s(·, s) + ψ0

xx = 0, ψ0(·, t) = ϕ, ψ0(0, s) = 0, 0 ≤ s ≤ t.

Let mN (y, τ) := JN (y, τ)ψ̃N
y (y, τ). Since, as mentioned earlier, ∥ψ̃N

y ∥∞ < ∞ for all N , one

also has ∥mN∥∞ <∞ for all N . Moreover, ψ̃N = ψ0 + ψ̂N where ψ̂N is the solution of

ψ̂N
s + ψ̂N

xx = mN , ψ̂N (·, t) = 0, ψ̂N (0, s) = 0, 0 ≤ s ≤ t.

The solution ψ̂N is given by Duhamel’s principle:

ψ̂N (x, s) =
1

2
√
π

∫ t

s
dτ(t−τ)−1/2

[∫ ∞

0
mN (y, t− τ)e

− (x−y)2

4(t−τ) dy −
∫ ∞

0
mN (y, t− τ)e

− (x+y)2

4(t−τ) dy

]
.

Then ψ̂N
x (x, s) = −AN (x, s) +BN (x, s), where

AN (x, s) =
1

4
√
π

∫ t

s
dτ(t− τ)−3/2

∫ ∞

0
mN (y, t− τ)(x− y)e

− (x−y)2

4(t−τ) dy,

BN (x, s) =
1

4
√
π

∫ t

s
dτ(t− τ)−3/2

∫ ∞

0
mN (y, t− τ)(x+ y)e

− (x+y)2

4(t−τ) dy.

Both |AN (x, s)| and |BN (x, s)| are bounded by

∥mN∥∞
4
√
π

∫ t

s
dτ(t− τ)−3/2

∫ ∞

−∞
|x+ y|e−

(x+y)2

4(t−τ) dy.

Changing variables of integration,

|AN (x, s)| ∨ |BN (x, s)| ≤ ∥mN∥∞
2
√
π

∫ t

s
dτ(t− τ)−1/2

∫ ∞

−∞
|z|e− z2

2 dz ≤ C∥mN∥∞t1/2,

for a constant C. Recall that ∥mN∥∞ ≤M∥ψN
x ∥∞ and ψ̃N = ψ0 + ψ̂N . Thus

∥ψ̃N
x (·, s)∥∞ ≤ ∥ψ0

x∥∞ + 2C∥mN∥∞t1/2 ≤ ∥ψ0
x∥∞ + 2CM∥ψN

x (·, s)∥∞t1/2 , 0 < s ≤ t.
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This shows ∥ψ̃N
x (·, s)∥∞ ≤ 2∥ψ0

x∥∞ for 0 ≤ s ≤ (2CM)−2/2 and completes the proof that
v1 = v2. □

3.2. Martingale toolbox. A semimartingale decomposition of counting processes was intro-
duced in [17], which deviates from the classical Doob-Meyer decomposition and is convenient
for our purposes. For the renewal process Sn

i , this decomposition is constructed as follows.
Denote by

Rn
i (t) = inf{s > 0 : Sn

i (t+ s) > Sn
i (t)}, t ≥ 0,

the residual time to the next counting instant (note that it is right-continuous, hence at a time
of counting it already shows the time until the next counting). One has

(3.8) t+Rn
i (t) =

Sn
i (t)∑
k=0

Zn
i (k).

Hence with

M ser,n
i (t) =

Sn
i (t)∑
k=1

ζni (k), ζni (k) = 1− µnZn
i (k), k ≥ 1,

and
∑0

1 = 0, one has the Daley-Miyazawa semimartingale representation,

(3.9) Sn
i (t) = µn(t− Zn

i (0) +Rn
i (t)) +M ser,n

i (t), t ≥ 0.

Denoting F ser,n
i (t) = σ{Sn

i (s), R
n
i (s), s ≤ t}, the first term on the right is adapted to the

filtration {F ser,n
i (t)} while M ser,n

i a martingale on it. A form of this decomposition that will
be useful here is based on a filtration Fn

t that, for each t, contains all relevant information
about the system by time t. It will be obtained once a time change transformation of (3.9) is
performed, to represent Dn

i (t) = Sn
i (T

n
i (t)).

To this end, some further notation is required. In addition to the delayed renewal processes
Sn
i it will also be useful to introduce the corresponding non-delayed renewal processes

S0,n
i (t) = max

{
k ∈ Z+ :

k−1∑
j=1

Zn
i (j) ≤ t

}
, t ≥ 0.

Note that S0,n
i (0) = 1 and that these processes are IID (unlike Sn

i ). Additional rescaled
processes are denoted as follows
(3.10)

Ên
i (t) = n−1/2(En

i (t)− λnt), Ŝn
i (t) = n−1/2(Sn

i (t)− µnt), Ŝ0,n
i (t) = n−1/2(S0,n

i (t)− µnt),

(3.11) Ân
0 (t) = n−1/2(An

0 (t)− λn0 t), Ân
i (t) = n−1/2An

i (t).

Next, let

R̃n
i (t) = n−1/2µnRn

i (t) = µ̃nRn
i (t), M̂ ser,n

i (t) = n−1/2M ser,n
i (t),

and

(3.12) Mdep,n
i (t) =

Dn
i (t)∑
k=1

ζni (k), M̂dep,n
i (t) = n−1/2Mdep,n

i (t).
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Then, by (3.9),

(3.13) Dn
i (t) = µn(Tn

i (t)− Zn
i (0) +Rn

i (T
n
i (t))) +Mdep,n

i (t),

and

(3.14) Ŝn
i (T

n
i (t)) = −Z̃n

i (0) + R̃n
i (T

n
i (t)) + M̂dep,n

i (t).

The tuple

Sn(t) = (En
i (t), A

n
i (t), D

n
i (t), X

n
i (t), T

n
i (t), R

n
i (T

n
i (t)), i ∈ [n], An

0 (t), θ
n
An

0 (t)
)

is referred to as the state of the system at time t. Denote the corresponding filtration by

Fn
t = σ{In,Sn(s), s ∈ [0, t]}.

Note that at times t when server i is active, Rn
i (T

n
i (t)) is the residual time till the completion

of service of the job being processed by that server, whereas at times when the server is idle,
Rn

i (T
n
i (t)) gives the service duration of the job that will be processed next by this server.

Lemma 3.3. i. The processes M̂dep,n
i , Ên

i , and Ân
0 are {Fn

t }-martingales, with optional
quadratic variations given by

[M̂dep,n
i ](t) = n−1

Dn
i (t)∑
k=1

ζni (k)
2, [Ên

i ](t) = n−1En
i (t), [Ân

0 ](t) = n−1An
0 (t),

and one has

(3.15) E{[M̂dep,n
i ](t)} = n−1σ2serE{Dn

i (t)} <∞.

ii. For distinct i, j ∈ [n],

(3.16) E{[M̂dep,n
i , M̂dep,n

j ](t)} = 0.

iii. The process

M̂A,n
i (t) = Ân

i (t)− ĈA,n
i (t), where ĈA,n

i (t) = λn0n
−1/2

∫ t

0
pn,Rn

i (s)
ds,

is an {Fn
t }-martingale, whose optional quadratic variation is [M̂A,n

i ](t) = n−1An
i (t).

Proof. i. For adaptedness of M̂dep,n
i it suffices to prove that Zn

i (k)1k≤Dn
i (t)

∈ Fn
t for all k. This

is shown as follows. By (3.8), Tn
i (s) +Rn

i (T
n
i (s)) =

∑Dn
i (s)

k=0 Zn
i (k). Hence {Zn

i (k), k ≤ Dn
i (t)}

can all be recovered from the tuple {Tn
i (s), R

n
i (T

n
i (s)), D

n
i (s)}, as s varies between 0 and t.

Since the latter is {Fn
t }-adapted, this proves the claim.

Next it is shown that M̂dep,n
i (t) ∈ L1(dP). Note first that as a renewal process, Sn

i (t) has
finite expectation for every t. Since Tn

i (t) ≤ t this gives E[Dn
i (t)] <∞. Let

tni (k) = inf{t ≥ 0 : Dn
i (t) ≥ k}, k = 1, 2, . . . .

These are clearly stopping times on {Fn
t }. Hence

(3.17) tni (k) ∈ Fn
tni (k)−

, k ≥ 1,
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where we recall that for a stopping time τ ,

Fn
τ− = Fn

0 ∨ σ{A ∩ {τ < t} : A ∈ Fn
t , t ≥ 0}

(see [27, I.1.11 and I.1.14]). The state of the system up to tni (k)−, namely {Sn(t), t < tni (k)},
can be recovered from the tuple In, (En

i (t), t ∈ R+, i ∈ [n]), (An
0 (t), t ∈ R+), (θ

n
j , j ∈ N),

(Zn
ℓ (j), j ∈ N), ℓ ∈ [n]\{i} and (Zn

i (j), j < k), as follows by the construction of the model. By
our assumptions, Zn

i (k) is independent of this tuple. As a result, it is independent of Fn
tni (k)−

.

It follows from (3.17) that

{Dn
i (t) ≤ k} = {tni (k) ≥ t} ∈ Fn

tni (k)−
.

The structure that we have just proved, where

(3.18) Zn
i (k

′) ∈ Fn
tni (k)−

, k′ < k, whereas Zn
i (k) is independent of Fn

tni (k)−
,

the fact that Dn
i (t) is a stopping time on the discrete parameter filtration {Fn

tni (k)−
, k ∈ N},

E[Dn
i (t)] < ∞, along with the fact that Zn

i (k) are IID with E[Zn
i (k)] < ∞, allows us to use

Wald’s identity, showing

E
[Dn

i (t)∑
k=1

Zn
i (k)

]
= E{Dn

i (t)}E{Zn
i (1)} = E{Dn

i (t)}(µn)−1 <∞.

Since |ζni (k)| ≤ 1 + µnZn
i (k), this shows that E{M̂dep,n

i (t)} <∞.

To show the martingale property, note that by the independence stated in (3.18), we have

(3.19) E[ζni (k)|Fn
tni (k)−

] = 0, k ≥ 1.

Arguing now along the lines of the proof of [17, Lemma 2.1],

M̂dep,n
i (t) = n−1/2

Dn
i (t)∑
k=1

ζni (k) = n−1/2
∞∑
k=1

ζni (k)1{tni (k)≤t}.

Hence for s < t,

E[M̂dep,n
i (t)|Fn

s ]− M̂dep,n
i (s) = n−1/2

∞∑
k=1

E[ζni (k)1{s<tni (k)≤t}|Fn
s ]

= n−1/2
∞∑
k=1

E[E[ζni (k)1{s<tni (k)≤t}|Fn
tni (k)−

] |Fn
s ]

= 0,

where we used (3.17) and (3.19).

For the martingale property of Ên
i one only needs to show that En

i (t)−En
i (s) is independent

of Fn
s when s < t. Again, this follows from the fact that all the processes comprising Sn

u , u ≤ s,
can be recovered from the tuple In, (En

i (u), u ∈ [0, s], i ∈ [n]), (An
0 (u), u ∈ [0, s]), (θnk , k ∈ N),

(Zn
i (k), k ∈ N, i ∈ [n]); but the increment En

i (t)− En
i (s) is independent of this tuple.

A similar proof holds for Ân
0 .

The expressions for the quadratic variation are straightforward.
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To show (3.15) we can use Wald’s identity as before, now with the IID sequence ζni (k)
2,

which now gives

E
[Dn

i (t)∑
k=1

ζni (k)
2
]
= E{Dn

i (t)}E{ζni (1)2},

and (3.15) follows.

ii. Similar to the argument following (3.17), one can recover the state of the system up to
tnijkl−, where

tnijkl = min(tni (k), t
n
j (l)),

namely {Sn(t), t < tnijkl}, from In, (En
i (t), t ∈ R+, i ∈ [n]), (An

0 (t), t ∈ R+), (θnj , j ∈ N),
(Zn

i′ (k), k ∈ N), i′ ∈ [n] \ {i, j}, (Zn
i (k

′), k′ < k) and (Zn
j (l

′), l′ < l). However, by our assump-

tions, the pair (Zn
i (k), Z

n
j (l)) is independent of this tuple, hence it is independent of Fn

tnijkl−
.

Since Zn
i (k) and Z

n
j (l) are mutually independent, this gives

(3.20) E[ζni (k)ζnj (l)|Fn
tnijkl−

] = 0, k, l ≥ 1.

We have

[M̂dep,n
i , M̂dep,n

j ](t) = n−1

Dn
i (t)∑
k=1

ζni (k)

Dn
j (t)∑
l=1

1{tnj (l)=tni (k)}ζ
n
j (l)

= n−1
∞∑
k=1

∞∑
l=1

ζni (k)ζ
n
j (l)1{tnj (l)=tni (k)≤t}.

In view of (3.17), 1{tnj (l)=tni (k)≤t} ∈ Fn
tnijkl−

. Hence by (3.20),

E[ζni (k)ζnj (l)1{tnj (l)=tni (k)≤t}|Fn
tnijkl−

] = 0, k, l ≥ 1,

and (3.16) follows.

iii. Clearly An
i , defined in (2.6) is adapted and An

i (t) is integrable for all t. Hence the same

is true for M̂n
i . Next, let

sn(k) = inf{t ≥ 0 : An
0 (t) ≥ k}, k = 1, 2, . . . .

As in (i), these are stopping times and sn(k) ∈ Fn
sn(k)−. To show the martingale property, we

can write, using
∫ t
0 pn,Rn

i (s−)ds =
∫ t
0 pn,Rn

i (s)
ds,

n1/2M̂A,n
i (t) =

∫
[0,t]

1{Rn
i (s−)=θn

An
0 (s)

}dA
n
0 (s)− λn0

∫ t

0
pn,Rn

i (s)
ds

=

∫
[0,t]

(1{Rn
i (s−)=θn

An
0 (s)

} − pn,Rn
i (s−))dA

n
0 (s) +

∫ t

0
pn,Rn

i (s−)(dA
n
0 (s)− λn0ds)

=:Mn
i,1(t) +Mn

i,2(t).

For Mn
i,1, write

An
i (t) =

An
0 (t)∑
k=1

1{Rn
i (s

n(k)−)=θnk }.
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An argument similar to the one given before shows that θnk is independent of Fn
sn(k)−. Therefore,

for 0 ≤ s < t, we have

E[An
i (t)|Fn

s ]−An
i (s) =

∞∑
k=1

E[1{Rn
i (s

n(k)−)=θnk }1{s<sn(k)≤t}|Fn
s ]

=

∞∑
k=1

E[E[1{Rn
i (s

n(k)−)=θnk }1{s<sn(k)≤t}|Fn
sn(k)−]|Fn

s ]

=

∞∑
k=1

E[pn,Rn
i (s

n(k)−)1{s<sn(k)≤t}|Fn
s ]

= E[Cn
i (t)|Fn

s ]− Cn
i (s),

where

Cn
i (t) =

An
0 (t)∑
k=1

pn,Rn
i (s

n(k)−) =

∫
[0,t]

pn,Rn
i (s−)dA

n
0 (s),

showing that An
i − Cn

i =Mn
i,1 is a martingale.

In the expression for Mn
i,2, the integrand is {Fn

t }-adapted and has LCRL sample paths,

while the integrator is a martingale on the filtration. As a result,Mn
i,2 is a local martingale [38,

Theorem II.20]; using the estimate ∥Mn
i,2∥∗t ≤ An

0 (t) + c shows it is in fact a martingale. As a

result, so is M̂A,n
i . Finally, the expression for the quadratic variation is straightforward. □

We will also need the following simple fact.

Lemma 3.4. Let MN , N ∈ Z+ be a martingale with M0 = 0, for which the increments
∆N =MN −MN−1 satisfy E(|∆N |1{|∆N |>a}) ≤ r̄(a), a ≥ 0, N ∈ N, and r̄(a) → 0 as a→ ∞.

Then N−1E∥M∥∗N < A(N) → 0, where {A(N)} depend only on r̄.

Proof. Let bN = E[∆N1{|∆N |≤a}] and note that bN = −E[∆N1{|∆N |>a}] and consequently
|bN | ≤ r̄(a). Write

MN = PN +QN , PN =

N∑
i=1

{∆i1{|∆i|>a} + bi}, QN =

N∑
i=1

{∆i1{|∆i|≤a} − bi}.

The quadratic variation of the martingale QN is bounded by (a+ r̄(a))2n, giving E[∥Q∥∗N ] ≤
c(a+ r̄(a))n1/2, where c2 is the constant from the Burkholder-Davis-Gundy (BDG) inequality
with p = 2. For PN ,

|PN | ≤
N∑
i=1

|∆i|1{|∆i|>a} +Nr̄(a),

thus E[∥P∥∗N ] ≤ 2Nr̄(a). This gives n−1E[∥M∥∗N ] ≤ c(a+r̄(a))N−1/2+2r̄(a). Taking a = N1/4

completes the proof. □
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3.3. Uniform estimates on individual queue length processes. The goal here is to
calculate the dynamics of the individual rescaled processes and develop estimates showing that
they are C-tight uniformly in i ∈ [n].

In the following lemma, part (i) provides an equation, (3.21), for the dynamics of individual
queue lengths, and part (ii) shows that, at the cost of introducing an error term, one can

replace the term Ŝn
i (T

n
i ) in that equation by a martingale. Both representations (3.21) and

(3.24) are used in this paper, where the former is used for estimates on each X̂n
i that are

uniform in i, and the latter is convenient for representations of ξ̄n, as the martingale terms add
up to a martingale. The last part of the lemma uses (3.21) and gives uniform second moment
and tightness estimates.

Lemma 3.5. i. One has

X̂n
i (t) = X̂n

i (0−) + Ên
i (t) + Ân

i (t)− Ŝn
i (T

n
i (t)) + b̂n1 t+ L̂n

i (t).(3.21)

Moreover, the sample paths of L̂n
i are in C↑ and

(3.22)

∫ ∞

0
X̂n

i (t)dL̂
n
i (t) = 0.

ii. One has

(3.23) X̂n
i (t) = X̂1,n

i (t) + e1,ni (t),

where

(3.24) X̂1,n
i (t) = X̂n

i (0−) + Ên
i (t) + Ân

i (t)− M̂dep,n
i (t) + b̂n1 t+ L̂n

i (t),

e1,ni (t) = Z̃n
i (0)− R̃n

i (T
n
i (t)) = µ̃n(Zn

i (0)−Rn
i (T

n
i (t))).

iii. For Hn
i = Ŝn

i , Ê
n
i , Â

n
i , L̂

n
i and X̂n

i , one has

(3.25) sup
n

sup
i∈[n]

E[(∥Hn
i ∥∗t )2] <∞, t ≥ 0,

and for every t, ε > 0 and η > 0 there is δ > 0 such that

(3.26) lim sup
n

max
i∈[n]

P(wt(H
n
i , δ) > ε) < η.

Proof. i. By (2.1) and (2.12),

n−1/2Xn
i (t) = n−1/2Xn

i (0−) + n−1/2(En
i (t)− λnt) + n−1/2(λn − nλ)t+ n1/2λt

+ n−1/2An
i (t)− n−1/2(Sn

i (T
n
i (t))− µnTn

i (t))− n−1/2µnTn
i (t),

and
−n−1/2µnTn

i (t) = −n−1/2(µn − nµ)t− n1/2µt+ L̂n
i (t).

Using (2.11), (3.10) and (3.11) gives (3.21). The properties of L̂n
i and (3.22) follow from (2.2).

ii. Using (3.14) in (3.21) gives (3.23).

iii. By the central limit theorem for renewal processes [10, §17], and the fact that, by (2.8)

and (2.10), n−1(λn, µn) → (λ, µ), for each i, (Ên
i , Ŝ

0,n
i ) converge in law to (E,S), a pair of

mutually independent BM starting at zero, with zero drift, and diffusion coefficients λ1/2 and
µ1/2σser, respectively (where we recall λ = µ).



INVARIANCE PRINCIPLE FOR LOAD BALANCING 25

We prove that (3.25) and (3.26) hold for Ŝn
i by relating these processes to Ŝ0,n

i , whose laws
do not depend on i. To this end, note that

Sn
i (t) = S0,n

i ((t− Zn
i (0))

+)− 1{t<Zn
i (0)} = S0,n

i (t− Z#,n
i )− 1{t<Zn

i (0)},

where Z#,n
i = Z#,n

i (t) := Zn
i (0) ∧ t. Hence by (3.10),

Ŝn
i (t) = Ŝ0,n

i (t− Z#,n
i )− µ̃nZ#,n

i − n−1/21{t<Zn
i (0)}.

As a result,

(3.27) ∥Ŝn
i ∥∗t ≤ ∥Ŝ0,n

i ∥∗t + µ̃nZn
i (0) + n−1/2 = ∥Ŝ0,n

i ∥∗t + Z̃n
i (0) + n−1/2,

and

wt(Ŝ
n
i , δ) ≤ wt(Ŝ

0,n
i , δ) + µ̃nZn

i (0) = wt(Ŝ
0,n
i , δ) + Z̃n

i (0).

The latter inequality and the fact that the law of Ŝ0,n
i does not depend on i gives

max
i∈[n]

P(wt(Ŝ
n
i , δ) > ε) ≤ P

(
wt(Ŝ

0,n
1 , δ) >

ε

2

)
+max

i∈[n]
P
(
Z̃n
i (0) >

ε

2

)
.

Using (2.13) and the C-tightness of Ŝ0,n
1 , n ∈ N, shows that (3.26) is satisfied by Ŝn

i .

Next, under our second moment assumptions on the inter-renewal times, it is well known
that the rescaled non-delayed renewal processes satisfy

(3.28) sup
n

E[(∥Ŝ0,n
1 ∥∗t )2] <∞,

for every t [28, Appendix 1]. Since the law of Ŝ0,n
i does not depend on i, it follows from (3.27)

and our assumption (2.14) that Ŝn
i satisfy (3.25).

It follows now that Ên
i satisfies both estimates, for the law of En

i is merely a special case of

the law of the non-delayed renewal processes S0,n
i .

As for the processes An
i , recall from Lemma 3.3.iii that M̂A,n

i is a martingale and that

[M̂A,n
i ](t) = n−1An

i (t). One has

E[n−1An
i (t)] = n−1λn0

∫ t

0
E[pn,Rn

i (s)
]ds ≤ cn−1n3/2n−1t,

where we used (2.5) and (2.9). Since this bound does not depend on i, it follows by the BDG
inequality that

(3.29) lim
n

max
i∈[n]

E[(∥M̂A,n
i ∥∗t )2] = 0.

Again by the bound on pn,r, the Lipschitz constant of ĈA,n
i is bounded by cn3/2n−1/2n−1 = c.

It follows that both estimates (3.25) and (3.26) are satisfied by Ân
i .

To treat L̂n
i , recall Skorohod’s lemma [16, §8], stating that for a trajectory y ∈ D(R+,R),

if (x, z) ∈ D(R+,R+)
2 are such that x = y + z, z is nondecreasing and, with the convention

z(0−) = 0,
∫
[0,∞) xdz = 0, then z is given by

z(t) = sup
s∈[0,t]

y−(s), t ≥ 0.
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In particular,

(3.30) z(t) ≤ ∥y∥t, wt(z, δ) ≤ wt(y, δ), t > 0, δ > 0.

In view of (3.21) and (3.22), it follows that

(3.31) L̂n
i (t) ≤ ∥Ûn

i ∥t, wt(L̂
n
i , δ) ≤ wt(Û

n
i , δ),

where

(3.32) Ûn
i (t) = X̂n

i (0−) + Ên
i (t) + Ân

i (t)− Ŝn
i (T

n
i (t)) + b̂n1 t,

and

(3.33) X̂n
i = Ûn

i + L̂n
i .

Because Tn
i are 1-Lipschitz, we have that Ŝn

i (T
n
i (·)) satisfy (3.25) and (3.26). Hence by the

second moment assumption on initial condition (2.15) and the boundedness of b̂n1 , the same

holds for Ûn
i . Finally, by (3.31) and (3.33), this is also true for L̂n

i and X̂n
i . □

3.4. Empirical process tightness.

Lemma 3.6. ξ̄n are C-tight in D(R+,M1).

Proof. Denote by Cε the ε-neighborhood, in R+, of a set C ∈ R+, and let

dL(p, q) = inf{ε > 0 : p(Cε) + ε ≥ q(C) and q(Cε) + ε ≥ p(C) for all C ∈ B(R+)},
p, q ∈ M1, denote the Levy-Prohorov metric, which induces the topology of weak convergence
on M1. Since ξ̄n0 converge in probability, proving C-tightness of ξ̄n amounts to showing that
for every ε > 0 and η > 0 there exists δ > 0 such that

(3.34) lim sup
n

P(wT (ξ̄
n, δ) > ε) < η.

Here and below we use the same notation wT for the metric dL and for the usual metric on R.
We show that (3.34) is a consequence of Lemma 3.5.iii. Fix ε > 0 and η > 0. Given n and

δ > 0, consider the event Ωn
δ = {wT (ξ̄

n, δ) > ε}. On this event there are 0 ≤ s ≤ t ≤ T ,
t− s ≤ δ, and C ∈ B(R+), such that

ξnt (C
ε) + nε < ξns (C) or ξns (C

ε) + nε < ξnt (C).

In both cases, the number of trajectories X̂n
i whose displacement between times s and t exceeds

ε is greater than nε. Therefore

#{i ∈ [n] : wT (X̂
n
i , δ) ≥ ε} > nε.

Hence by Chebychev’s inequality,

P(Ωn
δ ) ≤ (nε)−1nmax

i
P(wT (X̂

n
i , δ) > ε).

In view of (3.26), given any η1 > 0 there is δ > 0 such that for all large n, the maximum over
i in the above display is < η1. Hence, for such δ, the above is ≤ ε−1η1. Choosing η1 such that
ε−1η1 < η and the corresponding δ gives (3.34). □
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4. Proof

In §4.1 we derive an equation for the empirical measure, namely (4.38) below, that is a
precursor to the parabolic PDE. That is, taking limits in (4.38) gives rise to a weak solution
to equation (2.19). Specifically, §4.1 and, respectively, §4.2, show that the linear and nonlinear
terms in (4.38) converge to the corresponding terms in (2.19). In §4.3, (2.17) is obtained from
(2.19). Based on this convergence, the proof of all the main results is then given in §4.4.

4.1. An equation for the empirical process. Fix a test function ϕ̃ as in Definition 2.4,
that is, ϕ̃ ∈ C∞

0 (R+), ϕ̃(0) = 0. Let

(4.35) ϕ(x) =

∫ x

0
ϕ̃(y)dy, x ∈ R+.

Then ϕ ∈ C∞
b (R+) and ϕ(0) = ϕ′(0) = 0. Moreover, ϕ, ϕ′ and ϕ′′ are uniformly continuous

on R+. Apply ϕ to the dynamics (3.24), noting that, unlike Xn
i , X

1,n
i may assume negative

values. On the r.h.s. of (3.24), the terms Ân
i and M̂dep,n

i are piecewise constant. Thus

ϕ(X̂1,n
i (t)) = ϕ(X̂n

i (0−)) +

∫ t

0
ϕ′(X̂1,n

i (s))(dÊn,c
i (s) + b̂n1ds) + e2,ni (t)

+
∑
s≤t

(ϕ(X̂1,n
i (s))− ϕ(X̂1,n

i (s−))),(4.36)

where Ên,c
i is the continuous part of Ên

i ,

e2,ni (t) =

∫ t

0
(ϕ′(X̂1,n

i (s))− ϕ′(X̂n
i (s)))dL̂

n
i (s),

and we have used (3.22) and the continuity of the sample paths of L̂n
i to write∫

ϕ′(X̂n
i (s))dL̂

n
i (s) = ϕ′(0)L̂n

i (t) = 0.

In the last term of (4.36), by Taylor’s expansion, jumps according to Ên
i can be expressed as

ϕ′(X̂1,n
i (s−))∆Ên

i (s) +
1

2
ϕ′′(X̂2,n

i (s))∆Ên
i (s)

2,

where X̂2,n
i (s) is an intermediate value between X̂1,n

i (s−) and X̂1,n
i (s) (we leave unspecified

the value of the processes X̂2,n
i away from times of jumps of X̂1,n

i ). Similarly, jumps according

to M̂dep,n
i are expressed as

−ϕ′(X̂1,n
i (s−))∆M̂dep,n

i (s) +
1

2
ϕ′′(X̂2,n

i (s))∆M̂dep,n
i (s)2,

where again X̂2,n
i (s) are intermediate points, and because, a.s., jumps of Ên

i and M̂dep,n
i do

not occur simultaneously (for the same i), we may express the intermediate values by the same

process. Finally, jumps according to Ân
i – here we only need first order approximation – are

expressed as

ϕ′(X̂2,n
i (s))∆Ân

i (s).
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Note that jumps of Ên
i and Ân

0 are of size n−1/2. Hence in all three cases,

(4.37) |X̂2,n
i (t)− X̂1,n

i (t−)| ≤ |∆X̂1,n
i (t)| ≤ max{|∆M̂dep,n

i (t)|, n−1/2}, t ∈ J n
i ,

where J n
i is the set of jump times of X̂1,n

i .

By (4.36), using Ên
i = Ên,c

i +∆Ên
i and∫ t

0
ϕ′(X̂1,n

i (s))dÊn,c
i (s) =

∫ t

0
ϕ′(X̂1,n

i (s−))dÊn,c
i (s),

we have

⟨ϕ, ξ̄nt ⟩ = ⟨ϕ, ξ̄n0−⟩+
∫ t

0
⟨b1ϕ′ +

σ2

2
ϕ′′, ξ̄ns ⟩ds+ Γn(t) +

6∑
j=1

f j,n(t),(4.38)

where

(4.39) Γn(t) =
b0
n

∑
i

∫ t

0
ϕ′(X̂n

i (s))
(n−Rn

i (s)

n

)ℓ−1
ds

is the interaction term,

f1,n(t) = f1,n1 (t) + f1,n2 (t)

:=
1

n

∑
i

∫
[0,t]

ϕ′(X̂1,n
i (s−))dÊn

i (s)−
1

n

∑
i

∫
[0,t]

ϕ′(X̂1,n
i (s−))dM̂dep,n

i (s),

f2,n(t) = ⟨ϕ, ξ̄nt ⟩ − ⟨ϕ, ξ̄1,nt ⟩,

f3,n(t) =
1

n

∑
i

e2,ni (t),

f4,n(t) = b̂n1

∫ t

0
⟨ϕ′, ξ̄1,ns ⟩ds− b1

∫ t

0
⟨ϕ′, ξ̄ns ⟩ds,

f5,n(t) =
1

2n

∑
i

∫
[0,t]

ϕ′′(X̂2,n
i (s)){d[Ên

i ](s) + d[M̂dep,n
i ](s)} − σ2

2

∫ t

0
⟨ϕ′′, ξ̄ns ⟩ds,

f6,n(t) =
1

n

∑
i

∫
[0,t]

ϕ′(X̂2,n
i (s))dÂn

i (s)− Γn(t)

are “error” terms, and

ξ̄1,nt = n−1
∑
i∈[n]

δ
X̂n,1

i (t)
.

Note that the terms f5,n and f6,n, which involve X̂2,n
i , are well defined, for their evaluation

requires the values of X̂2,n
i (t) only at J n

i .

Lemma 4.1. With ϕ as in (4.35), for 1 ≤ j ≤ 6, f j,n → 0 in probability in D(R+,R).

We note that one of the reasons the proof is somewhat involved is that we work under
minimal moment assumptions. For example, the second order term f5,n involves martingales
given in terms of squares of the primitive data ζni (k). These martingales do not, in general,
possess moments higher than first because only the second moments of ζni (k) are assumed finite.
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Hence estimates on these martingales based on their quadratic variation are not available. Our
treatment of this difficulty is based on Lemma 3.4.

Proof. Step 1. Estimating f1,n. The cross variation between independent Poisson processes
is zero, hence [Ên

i , Ê
n
j ](t) = 0 for i ̸= j. Hence by Lemma 3.3,

[f1,n1 ](t) ≤ cn−2
∑
i

[Ên
i ](t) ≤ cn−3

∑
i

En
i (t).

Since each En
i is a Poisson process of intensity ≤ cn, E{[f1,n1 ](t)} ≤ ctn−1, and it follows by

the BDG inequality that f1,n1 → 0 in probability. As for f1,n2 , we have by Lemma 3.3.ii that

[M̂dep,n
i , M̂dep,n

j ](t), i ̸= j, has zero mean. Hence by Lemma 3.3.i,

E{[f1,n2 ](t)} ≤ cn−2
∑
i

E{[M̂dep,n
i ](t)} ≤ cn−3

∑
i

E{Dn
i (t)} ≤ cn−1t.

Thus f1,n2 → 0 in probability, and we conclude that f1,n → 0 in probability.

Step 2. We show that for all t > 0 and ε > 0,

(4.40) lim
n→∞

max
i∈[n]

P(∥e1,ni ∥∗t > ε) = 0.

In accordance with (2.13) we denote Z̃n
i (k) = µ̃nZn

i (k), k ≥ 1. By the definition of e1,ni (t) and
Tn
i (t) ≤ t,

|e1,ni (t)| ≤ Z̃n
i (0) ∨ ∥R̃n

i ∥∗t ≤ max{Z̃n
i (k) : 0 ≤ k ≤ Sn

i (t)}
≤ max{Z̃n

i (k) : 0 ≤ k ≤ S0,n
i (t)}.(4.41)

Thus, by (2.13) and the fact that the law of ((Z̃n
i (k), k ≥ 1), S0,n

i (t)) does not depend on i, it
suffices to prove that

Ỹ n := max{Z̃n
1 (k) : 1 ≤ k ≤ S0,n

1 (t)} → 0 in probability.

This can be argued via the C-tightness of {Ŝ0,n
1 } as follows. Given n and t1 < t2, we have

(4.42) if S0,n
1 (t1) = S0,n

1 (t2) then Ŝ
0,n
1 (t1)− Ŝ0,n

1 (t2) = µ̃n(t2 − t1).

This shows that

max{Zn
1 (k) : 1 ≤ k ≤ S0,n

1 (t)− 1} ≤ 2(µ̃n)−1∥Ŝ0,n
1 ∥∗t .

To include also k = S0,n
1 (t), let the residual time process R0,n

1 be defined analogously to Rn
1 , for

S0,n
1 in place of Sn

1 . Note that if R0,n
1 (t) > 1 holds then (4.42) holds with t1 = t and t2 = t+1

hence Ŝ0,n
1 (t) − Ŝ0,n

1 (t + 1) = µ̃n. Because µ̃n → ∞ and ∥Ŝ0,n
1 ∥∗t+1 are tight, this shows that

w.h.p., R0,n
1 (t) ≤ 1. As a result, again by (4.42), w.h.p.,

Y n := max{Zn
1 (k) : 1 ≤ k ≤ S0,n

1 (t)} ≤ 2(µ̃n)−1∥Ŝ0,n
1 ∥∗t+1.
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This shows that Y n → 0 in probability. Next, given δ > 0, on the event Y n < δ, we have by
(4.42),

wt+1(Ŝ
0,n
1 , δ) ≥ sup{|Ŝ0,n

1 (t1)− Ŝ0,n
1 (t2)| : 0 ≤ t1 < t2 ≤ t+ 1, S0,n

1 (t1) = S0,n
1 (t2)}

≥ µ̃n sup{t2 − t1 : 0 ≤ t1 < t2 ≤ t+ 1, S0,n
1 (t1) = S0,n

1 (t2)}
≥ µ̃nY n.

Hence, w.h.p., Ỹ n = µ̃nY n ≤ wt+1(Ŝ
0,n
1 , δ). Using the C-tightness of Ŝ0,n

1 , sending n→ ∞ and

then δ → 0 shows that Ỹ n → 0 in probability. This proves (4.40).

Step 3. We can now control f2,n and f4,n. Recall (3.23). Then, denoting by mϕ(·) the modulus
of continuity of ϕ, for any δ > 0,

∥f2,n∥∗t ≤
1

n

∑
i

∥ϕ(X̂n
i )− ϕ(X̂1,n

i )∥∗t ≤ mϕ(δ) +
2∥ϕ∥∞
n

#{i : ∥e1,ni ∥∗t > δ}.

Given ε > 0 let δ > 0 be such that mϕ(δ) < ε/2. Then

P(∥f2,n∥∗t > ε) ≤ 4∥ϕ∥∞ε−1max
i

P(∥e1,ni ∥∗t > δ).

Sending n→ ∞, the above converges to 0 by (4.40), proving that f2,n → 0 in probability.

Next, similarly, ⟨ϕ′, ξ̄1,n⟩ − ⟨ϕ′, ξ̄n⟩ → 0 in probability, and

∥f4,n∥∗t ≤ t |b̂n1 | ∥⟨ϕ′, ξ̄1,n⟩ − ⟨ϕ′, ξ̄n⟩∥∗t + |b̂n1 − b1|
∫ ·

0
⟨ϕ′, ξ̄ns ⟩ds.

The first term on the right converges to 0 in probability by the argument shown for f2,n and
the boundedness of b̂n1 . In the second term, the integral is bounded by t∥ϕ′∥∞, hence the

convergence of this term to zero follows from b̂n1 → b1. This proves f
4,n → 0 in probability.

Step 4. To estimate f3,n, note that, for any δ > 0,

∥f3,n∥∗t ≤
mϕ′(δ)

n

∑
i

L̂n
i (t) +

2∥ϕ′∥∞
n

∑
i

1{∥e1,ni ∥∗t>δ}L̂
n
i (t).

Hence

E[∥f3,n∥∗t ] ≤
mϕ′(δ)

n

∑
i

E[L̂n
i (t)] +

2∥ϕ′∥∞
n

∑
i

P(∥e1,ni ∥∗t > δ)1/2(E[L̂n
i (t)

2])1/2.

Since by Lemma 3.5.iii, maxi∈[n] E[L̂n
i (t)

2] < c, it follows that

E[∥f3,n∥∗t ] ≤ cmϕ′(δ) + cmax
i∈[n]

P(∥e1,ni ∥∗t > δ).

In view of (4.40), if we take n→ ∞ and then δ → 0, the expression on the right converges to
0, hence f3,n → 0 in probability.

Step 5. Recall

f5,n(t) =
1

2n

∑
i

∫
[0,t]

ϕ′′(X̂2,n
i (s)){d[Ên

i ](s) + d[M̂dep,n
i ](s)} − σ2

2

∫ t

0
⟨ϕ′′, ξ̄ns ⟩ds,
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[Ên
i ](t) = n−1En

i (t) [M̂dep,n
i ](t) = n−1

Dn
i (t)∑
k=1

ζni (k)
2.

Let

f5,n1 =
1

n

∑
i

∫
[0,t]

ϕ′′(X̂1,n
i (s−))d[Ên

i ](s)− λ

∫ t

0
⟨ϕ′′, ξ̄1,ns ⟩ds,

f5,n2 =
1

n

∑
i

∫
[0,t]

ϕ′′(X̂1,n
i (s−))d[M̂dep,n

i ](s)− λσ2ser

∫ t

0
⟨ϕ′′, ξ̄1,ns ⟩ds,

f5,n3 =

∫ t

0
⟨ϕ′′, ξ̄ns ⟩ds−

∫ t

0
⟨ϕ′′, ξ̄1,ns ⟩ds

f5,n4 =
1

n

∑
i

∫
[0,t]

(ϕ′′(X̂2,n
i (s))− ϕ′′(X̂1,n

i (s−))){d[Ên
i ](s) + d[M̂dep,n

i ](s)}.

Then f5,n =
∑

j f
5,n
j . For f5,n1 , write

f5,n1 =
1

n

∑
i

∫
[0,t]

ϕ′′(X̂1,n
i (s−))n−1dEn

i (s)− λ

∫ t

0
⟨ϕ′′, ξ̄1,ns ⟩ds

=
1

n

∑
i

∫
[0,t]

ϕ′′(X̂1,n
i (s−))n−1/2dÊn

i (s) +
1

n

∑
i

∫ t

0
ϕ′′(X̂1,n

i (s))n−1/2λ̂nds.

In the first sum, each term is a martingale having expected quadratic variation bounded by
cn−2λnt ≤ cn−1t where we use Lemma 3.3.i, and c does not depend on i or n. Hence the first
normalized sum is a martingale whose expected quadratic variation is ≤ cn−2t. In particular,
it converges to zero in probability. In the second sum, each term is bounded in absolute value
by ctn−1/2, hence the second normalized sum converges to zero. This shows f5,n1 → 0 in
probability.

Using Lemma 3.3 for the expression for [M̂dep,n
i ] and denoting

Pn
i (t) = ϕ′′(X̂1,n

i (t)), Qn
i (t) =

Dn
i (t)∑
k=1

qni (k), qni (k) = ζni (k)
2 − σ2ser,

write f5,n2 as

f5,n2 =
1

n

∑
i

∫
[0,t]

Pn
i (s−)n−1dQn

i (s) +
σ2ser
n

∑
i

∫
[0,t]

Pn
i (s−){n−1dDn

i (s)− λds}.(4.43)

To estimate the first term above, note that, by (3.10),

Dn
i (t) = Sn

i (T
n
i (t)) ≤ Sn

i (t) = n1/2Ŝn
i (t) + µnt ≤ n1/2Ŝn

i (t) + c1nt,

for a constant c1. For any β > 2c1t,

max
i∈[n]

P(Dn
i (t) > βn) ≤ max

i∈[n]
P(Ŝn

i (t) > n1/2β/2) ≤ cn−1β−2,
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by Lemma 3.5.iii, where c = c(t). Denote by 0 ≤ tni (1) < tni (2) < · · · the jump times

of Dn
i and let mn

i (N) =
∑N

k=1 P
n
i (t

n
i (k)−)qni (k). Then the first term in (4.43) is given by

n−2
∑

im
n
i (D

n
i (t)), which we write as

(4.44)
1

n2

∑
i

mn
i (D

n
i (t) ∧ (βn)) +

1

n2

∑
i

{mn
i (D

n
i (t)−mn

i (D
n
i (t) ∧ (βn))}.

Now, mn
i (·) is a discrete parameter martingale with increments bounded by ∥ϕ′′∥∞|qni (k)|.

Moreover, qni (k) are IID in k and i, and possesses a first moment in view of our second moment
assumption on the service times. Hence Lemma 3.4 is applicable, showing that

N−1E∥mn
i ∥∗N < A(N) → 0 as N → ∞,

where A(·) does not depend on n ot i. Hence

E
∣∣∣ 1
n2

∑
i

mn
i (D

n
i (t) ∧ (βn))

∣∣∣ ≤ 1

n

∑
i

n−1E[∥mn
i ∥∗βn] ≤ n−1βnA(βn) = βA(βn),

where throughout this paragraph βn should be read as ⌊βn⌋. Hence the limit of the above
expression is 0 for any β. Next, using Dn

i ≤ Sn
i ,

E
∣∣∣ 1
n2

∑
i

{mn
i (D

n
i (t)−mn

i (D
n
i (t) ∧ (βn))}

∣∣∣ ≤ ∥ϕ′′∥∞n−2
∑
i

1{Sn
i (t)>βn}

Sn
i (t)∑

k=βn+1

|qni (k)|

= cn−2
∑
i

(Sn
i (t)−βn)+∑

k=1

|qni (k − βn)|

= cn−2
∑
i

E[(Sn
i (t)− βn)+]E[|qni (1)|]

≤ cn−1max
i∈[n]

E[(Sn
i (t)− βn)+],

where Wald’s identity is used on the third line. Since it follows from Lemma 3.5.iii that
n−1Sn

i (t) are uniformly integrable in i and n,

lim
β→∞

lim sup
n

n−1max
i∈[n]

E[(Sn
i (t)− βn)+] = 0.

As a result, the expression in (4.44) converges to zero in probability.

As for the second term in (4.43). In view of Lemma 3.5.iii and (2.8), one has

max
i∈[n]

∥n−1Sn
i − λι∥∗t → 0 in probability.

Also from Lemma 3.5.iii and the relation (2.12) between L̂n
i and Tn

i , maxi∈[n] ∥Tn
i − ι∥∗t → 0 in

probability. HenceDn
i = Sn

i (T
n
i ) also satisfies κn := maxi∈[n] ∥n−1Dn

i −λι∥∗t → 0 in probability.
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Denote ε = t/j, sk = kε and P̃n
i (s) = Pn

i (s−). Then∫
(0,t]

P̃n
i (s){n−1dDn

i (s)− λds} =

j−1∑
k=0

{∫
(sk,sk+1]

(P̃n
i (s)− P̃n

i (sk)){n−1dDn
i (s)− λds}

+ P̃n
i (sk){n−1Dn

i (sk+1)− n−1Dn
i (sk)− λε}

}
.

This gives ∣∣∣ ∫
(0,t]

P̃n
i (s){n−1dDn

i (s)− λds}
∣∣∣ ≤ wT (P̃

n
i , ε)(n

−1Dn
i (t) + λt) + ∥P̃n

i ∥∗t 2jκn(4.45)

≤ wT (P̃
n
i , ε)(2λt+ κn) + ∥ϕ′′∥∞2jκn.

We recall from Lemma 3.5.iii that X̂n
i are uniformly C-tight. Along with the uniform estimate

(4.40) on e1,ni , this shows that so are P̃n
i . In particular, these processes satisfy (3.26). Hence,

on sending n→ ∞ and then ε→ 0, it follows that the right side of (4.45) converges to zero in

probability, uniformly in i ∈ [n]. Hence the second term in f5,n2 converges to zero in probability,

and we conclude that f5,n2 → 0 in probability.

Next, recalling the result regarding f2,n and replacing ϕ by ϕ′′ shows that f5,n3 → 0 in
probability.

To bound f5,n4 , fix ε > 0 and let δ > 0 be such that |x− y| < δ implies |ϕ′′(x)− ϕ′′(y)| < ε.

Let J n,δ
i = {s ∈ J n

i : |X̂2,n
i (s)− X̂1,n

i (s−)| > δ}. For n sufficiently large, the size of jumps of

Ên (which is n−1/2) is smaller than δ, hence, by (4.37), the corresponding jump times are not

members of J n,δ
i . Thus the i-th term in f5,n4 is bounded, in absolute value, by

ε([Ên
i ](t) + [M̂dep,n

i ](t)) + 2∥ϕ′′∥∞
∑

s∈J n,δ
i ,s≤t

∆[M̂dep,n
i ](s)

≤ εn−1
(
En

i (t) +

Dn
i (t)∑
k=1

ζni (k)
2
)
+ cn−1

Dn
i (t)∑
k=1

ζni (k)
21{n−1/2|ζni (k)|>δ}

where we used the fact that for s ∈ J n,δ
i , |∆X̂1,n

i (s)| = |∆M̂dep,n
i (s)| by (3.24). Using (3.15),

the expected value of the above expression is

≤ εn−1(λni t+ σ2serE[Dn
i (t)]) + cn−1E[ζn1 (1)21{n−1/2|ζn1 (1)|>δ}]E[D

n
i (t)],

where for the last term we used Wald’s identity in exactly the same way as in the proof of
Lemma 3.3. In view of Lemma 3.5.iii, E[Sn

i (t)] < cn, where c does not depend on i or n. Since
Dn

i (t) ≤ Sn
i (t), it follows that

E[|f5,n4 |] ≤ cε+ cE[ζn1 (1)21{n−1/2|ζn1 (1)|>δ}].

Taking n→ ∞ then ε→ 0 shows that f5,n4 → 0 in probability.

Step 6. Finally,

f6,n(t) =
1

n

∑
i

∫
[0,t]

[ϕ′(X̂2,n
i (s))− ϕ′(X̂n

i (s))]dÂ
n
i (s) +

1

n

∑
i

∫
[0,t]

ϕ′(X̂n
i (s))dÂ

n
i (s)− Γn(t).
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By Lemma 3.3.iii,

1

n

∑
i

∫
[0,t]

ϕ′(X̂n
i (s−))dÂn

i (s) = λn0n
−3/2

∑
i

∫ t

0
ϕ′(X̂n

i (s))pn,Rn
i (s)

ds+ M̄A,n(t),

M̄A,n(t) =
1

n

∑
i

∫
[0,t]

ϕ′(X̂n
i (s−))dM̂A,n

i (s).

By Lemma 3.3.iii, [M̄A,n](t) ≤ cn−3
∑

iA
n
i (t) = cn−3An

0 (t). Since An
0 is a Poisson process of

intensity λn0 ≤ cn3/2 (by (2.9)), it follows that M̄A,n → 0 in probability.

Now, writing

pn,r =
ℓ

n

(n− r)(n− r − 1) · · · (n− r − ℓ+ 2)

(n− 1)(n− 2) · · · (n− ℓ+ 1)

shows that

(4.46) pn,r =
ℓ

n

[(
1− r

n

)ℓ−1
+ αn,r

]
, αn := max

r∈[n]
|αn,r| → 0.

Hence

λn0n
−3/2

∑
i

∫ t

0
ϕ′(X̂n

i (s))pn,Rn
i (s)

ds− Γn(t)

=
∑
i

∫ t

0
ϕ′(X̂n

i (s))
[
λn0n

−3/2pn,Rn
i (s)

− b0
n

(n−Rn
i (s)

n

)ℓ−1]
ds

=
∑
i

∫ t

0
ϕ′(X̂n

i (s))
(n−Rn

i (s)

n

)ℓ−1[
λn0n

−3/2 ℓ

n
− b0
n

]
ds

+
∑
i

∫ t

0
ϕ′(X̂n

i (s))λ
n
0n

−3/2 ℓ

n
αn,Rn

i (s)
ds.

We have λn0n
−3/2ℓ → bℓ = b0, which shows that the first sum converges to 0. From the fact

αn → 0 we also have that the last sum converges to 0.

To bound the first term in f6,n, note that Ân
i are nondecreasing. Also, since the jumps of

Ân
i are of size n−1/2, one has |ϕ′(X̂2,n

i (s) − ϕ′(X̂1,n
i (s))| ≤ mϕ′(n−1/2) at any jump time s of

Ân
i . Moreover, maxi∈[n] |ϕ′(X̂1,n

i (s) − ϕ′(X̂n
i (s))| ≤ maxi∈[n]mϕ′(∥e1,ni ∥∗t ) → 0 in probability,

by (4.40). Hence

max
i∈[n]

∣∣∣ ∫
[0,t]

[ϕ′(X̂2,n
i (s))− ϕ′(X̂n

i (s))]dÂ
n
i (s)

∣∣∣ ≤ max
i∈[n]

{(mϕ′(n−1/2) +mϕ′(∥e1,ni ∥∗t ))Ân
i (t)}

converges to 0 in probability, where Lemma 3.5.iii is used for a uniform estimate on Ân
i (t). It

follows that f6,n → 0 in probability. □

4.2. Interaction term under limit. In this subsection we prove the following.
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Lemma 4.2. Given a subsequence along which ξ̄n ⇒ ξ, one has Γn ⇒ Γ in C(R+,R) along
the subsequence, where

Γ (t) =
b0
ℓ

∫ t

0

∫
R+

ϕ′(x)S(ξs[x,∞), ξs(x,∞))ξs(dx)ds.

Recall that if ξt is atomless for all t > 0 then the integrand in the above expression simplifies
to ℓϕ′(x)ξs[x,∞)ℓ−1, in which case Γ is directly related to the form of the interaction term in
equations (1.3), (1.5) and (2.16). However, the atomless property has not been established at
this stage of the proof.

Proof. Invoking the Skorohod representation theorem, assume without loss of generality that
ξ̄n → ξ a.s. Because 0 ≤ Rn

i ≤ n, the integrands in (4.39) are bounded by ∥ϕ′∥∞. Hence by
bounded convergence, it suffices to prove that, a.s., for every t,

(4.47) γn(t) :=
1

n

∑
i

ϕ′(X̂n
i (t))R̄c,n

i (t)ℓ−1 → 1

ℓ

∫
R+

ϕ′(x)S(ξt[x,∞), ξt(x,∞))ξt(dx),

where
Rc,n

i (t) = n−Rn
i (t), R̄c,n

i (t) = n−1Rc,n
i (t).

Fix t and ε > 0. The function x 7→ ξt(x,∞) has at most countably many discontinuities. Hence
one can find a finite sequence x∗ = y0 < y1 < . . . < yK = x∗ such that [x∗, x

∗] contains the
compact support of ϕ′ (recall (4.35)), yk − yk−1 < ε, k = 1, . . . ,K, and moreover ξt({yk}) = 0,
k = 0, . . . ,K. Because yk are not charged, both ξ̄nt (yk−1, yk) and ξ̄

n
t [yk−1, yk] converge a.s. to

ξt(yk−1, yk). Define by rankc(i;x) = n − rank(i;x), x ∈ Rn, i ∈ [n] the complementary rank.
Then 0 ≤ rankc(i;x) ≤ n− 1 and by (2.3),

rankc(i;x) = #{j : xj > xi}+#{j > i : xj = xi}.
Denote xi = X̂n

i (t), x = (x1, . . . , xn), and for k = 1, . . . ,K,

Ik = [yk−1, yk), Vk = {i : xi ∈ Ik}, Pk = ξnt (Ik), Qk = ξnt [yk,∞).

Fix k, and for i ∈ Vk let j(i) = rank(i; (xl)l∈Vk
). This is a relabeling of Vk according to the

rank of its members within Vk. With this notation we have

rankc(i;x) = Qk + Pk − j(i), i ∈ Vk.

Because j(i) take all values between 1 and Pk as i varies in Vk, we have∑
i∈Vk

rankc(i;x)ℓ−1 =

Pk∑
j=1

(Qk + Pk − j)ℓ−1 =

Pk−1∑
j=0

(Qk + j)ℓ−1.

If pn is a sequence s.t. n−1pn → p ≥ 0 then n−1
∑pn

j=0(j/n)
ℓ−1 →

∫ p
0 z

ℓ−1dz = ℓ−1pℓ. Noting,

as mentioned, that n−1Pk → ξt(Ik), we get

(4.48)
1

n

∑
i∈Vk

R̄c,n
i (t)ℓ−1 → 1

ℓ
(ξt(yk−1,∞)ℓ − ξt(yk,∞)ℓ) =

1

ℓ
ξt(Ik)S(ξt(yk−1,∞), ξt(yk,∞)).

Fix a sequence εm > 0, εm → 0. For each m, let points as the above yk, corresponding to εm,
be denoted by ymk . For x ∈ [x∗, x

∗] let x(m) and x
(m) be the unique two points ymk−1 and ymk ,

respectively, for which x ∈ [ymk−1, y
m
k ). This gives x(m) → x, x(m) > x. By right-continuity of
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x 7→ ξt(x,∞), it follows that ξt(x
(m),∞) → ξt(x,∞) for every x ∈ [x∗, x

∗]. Similarly, by left
continuity of x 7→ ξt[x,∞), and x(m) → x, x(m) ≤ x, we obtain ξt(x(m),∞) → ξt[x,∞). Let

h(m)(x) = inf{ϕ′(z) : z ∈ [x(m), x
(m)]}, h(m)(x) = sup{ϕ′(z) : z ∈ [x(m), x

(m)]}.
Summing over k in (4.48), we have for every m,

lim inf
n

γn(t) ≥ 1

ℓ

∫
[x∗,x∗]

h(m)(x)S(ξt(x(m),∞), ξt(x
(m),∞))ξt(dx)(4.49)

lim sup
n

γn(t) ≤ 1

ℓ

∫
[x∗,x∗]

h(m)(x)S(ξt(x(m),∞), ξt(x
(m),∞))ξt(dx).(4.50)

It remains to show the expressions of the r.h.s. of (4.49) and (4.50) both converge to the
r.h.s. of (4.47) as m → ∞. By bounded convergence, it suffices that the integrands in both
these integrals converge, for every x, to ϕ′(x)S(ξt[x,∞), ξt(x,∞)). The latter convergence

holds because, by continuity of ϕ′, h(m)(x) → ϕ′(x) and h(m)(x) → ϕ′(x), and moreover

ξt(x(m),∞) → ξt[x,∞) and ξt(x
(m),∞) → ξt(x,∞). This completes the proof. □

4.3. PDE satisfied by the limit. We take limits along an arbitrary convergent subsequence.
By (4.38), (4.39), Lemma 4.1 and Lemma 4.2, we have now established that every limit point
ξ satisfies (2.19).

Again, fix a convergent subsequence and denote its limit by ξ. Some notation used below is
as follows. For a right-continuous nondecreasing function V : R → [0, 1] with V (0−) = 0, let
V (dx) denote the Stieltjes measure induced on R+. Let

v(x, t) = ξt(x,∞), ṽ(x, t) = 1− v(x, t) = ξt[0, x].

These are right continuous functions for every t. Thus ṽ(dx, t) = ξt(dx). Next, for V as above,
let the pure jump part and continuous part be denoted, respectively, by

V jmp(x) =
∑

y∈[0,x]

∆V (y), V cts(x) = V (x)− V jmp(x).

Lemma 4.3. v is a weak solution to (2.18).

Proof. By equations (4.38) and (4.39) and Lemmas 4.1 and 4.2,

⟨ϕ, ξt⟩ = ⟨ϕ, ξ0⟩+
∫ t

0
⟨b1ϕ′ + aϕ′′, ξs⟩ds+ Γ (t).

Write Γ (t) as b0ℓ
−1

∫ t
0 A(s)ds where

A(t) =

∫
ϕ′(x)S(v(x−, t), v(x, t))ṽ(dx, t).

Let ṽ(x, t) = ṽcts(x, t)+ṽjmp(x, t) denote the decomposition alluded to above. Let also U(x, t) =
1− v(x, t)ℓ. Then

U(dx, t) = ℓv(x, t)ℓ−1ṽ(dx, t).

Hence

U cts(dx, t) = ℓv(x, t)ℓ−1ṽcts(dx, t), U jmp(dx, t) = ℓv(x, t)ℓ−1ṽjmp(dx, t).
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Now,

A(t) =

∫
ϕ′(x)ℓv(x, t)ℓ−1ṽcts(dx, t) +

∫
ϕ′(x)

v(x−, t)ℓ − v(x, t)ℓ

v(x−, t)− v(x, t)
ṽjmp(dx, t).

The second integral on the right is∑
x∈[0,∞)

ϕ′(x)(v(x−, t)ℓ − v(x, t)ℓ) =
∑

x∈[0,∞)

ϕ′(x)(U(x, t)− U(x−, t)) =
∫
ϕ′(x)U jmp(dx, t).

Therefore, using ϕ′(0) = 0,

A(t) =

∫
ϕ′(x)(U cts(dx, t) + U jmp(dx, t)) =

∫
ϕ′(x)U(dx, t)

= −
∫
ϕ′′(x)U(x, t)dx =

∫
ϕ′′(x)v(x, t)ℓdx.

Using integration by parts we have ⟨ϕ, ξt⟩ =
∫
R+

(v(x, t) − 1)ϕ′(x)dx. Recalling ϕ′ = ϕ̃ and

combining the above calculations, we obtain∫
ϕ̃(x)(v(x, t)− 1)dx =

∫
ϕ̃(x)(v(x, 0)− 1)dx

+

∫ t

0

∫
(b1ϕ̃

′(x) + aϕ̃′′(x))(v(x, s)− 1)dxds+
b0
ℓ

∫ t

0

∫
ϕ̃′(x)v(x, t)ℓdxds.

Thus ∫
ϕ̃(x)v(x, t)dx =

∫
ϕ̃(x)v(x, 0)dx+

∫ t

0

∫
(b1ϕ̃

′(x) + aϕ̃′′(x))v(x, s)dxds

+ a

∫ t

0
ϕ̃′(0)ds+

b0
ℓ

∫ t

0

∫
ϕ̃′(x)v(x, t)ℓdxds.

According to Definition 2.4, this shows that v is a weak solution of (2.18) once it is verified
that v ∈ L∞

loc(R+,L1(R+)).

This property can otherwise be stated as supt∈(0,T ]

∫∞
0 ξt[x,∞)dx <∞ a.s., for every T <∞.

Invoking Skorohod’s representation theorem we may assume w.l.o.g. that, along the chosen
convergent subsequence, one has ξ̄n → ξ a.s. Arguing by contradiction, let there exist a
sequence tN ∈ (0, T ] and an event of positive P measure on which

∫∞
0 ξtN [x,∞)dx→ ∞. Now,

for each fixed t ∈ (0, T ], by Fatou’s lemma,

E
∫ ∞

0
ξt[x,∞)dx ≤ lim inf

n
E
∫ ∞

0
ξ̄nt [x,∞)dx

≤ lim inf
n

1

n

∑
i∈[n]

EX̂n
i (t)

≤ sup
n

max
i∈[n]

E∥X̂n
i ∥∗T ≤ c <∞,

where c = c(T ) and the last assertion follows from Lemma 3.5.iii. This contradicts the as-
sumption, and hence the uniform L1 property follows. □
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4.4. Proof of main results. We can now prove Theorems 2.2, 2.5, 2.6, 2.8, 2.9 and Propo-
sitions 2.3 and 2.7.

Proof of Theorem 2.5. Having proved uniqueness in Lemma 3.2, we proceed to the remaining
assertions. Existence of a C∞(R+× (0,∞)) solution is well known; see e.g. [23, Lemma 3.2, p.
68].

In the case f(z) = c1z − bzℓ and v0(x) = ξ0(x,∞), we have proved in Lemma 4.3 that
the function v induced by any subsequential limit ξ is a weak solution. By uniqueness it
must be equal to the smooth function mentioned above. Since x 7→ v(x, t) is automatically
nonincreasing, the function u := −vx is nonnegative and smooth. Using this in (2.17), an
integration by parts gives the first 3 parts of (1.3) as well as that u integrates to 1 for each
t > 0.

As for the initial condition stated as u(·, t)dx → ξ0(dx) in (1.3), again using (2.17) with
−vx = u gives

∫
ϕ′(x)u(x, t)dx =

∫
ϕ′(x)ξ0(dx) + O(t) as t → 0, which proves that the initial

condition is satisfied. This shows that u thus defined forms a classical solution to (1.3). □

Proof of Proposition 2.3. The fact that ustat given in (1.4) is a stationary solution is verified
directly. As for uniqueness, for any solution u, the function v =

∫∞
· u(x)dx takes values in

[0, 1], is monotone, and satisfies

f(v)′ + av′′ = 0, v(0) = 1, lim
x→∞

v(x) = 0.

Integrating we obtain f(v) + av′ = c1, where c1 is a constant. Since f(0) = 0, we obtain by the
condition at infinity that limx→∞ v′(x) = c1/a, which can only hold if c1 = 0. Thus v must
satisfy the ODE

v′ = −a−1f(v), on R+, v(0) = 1.

Since f is Lipschitz on [0, 1], the result follows by ODE uniqueness. □

Proof of Theorem 2.2. The existence of a classical solution has been shown in the proof of
Theorem 2.5 above. The property supt∈(0,T ]

∫
xu(x, t)dx < ∞ follows from the fact that v ∈

L∞
loc(R+;L1(R+)). The uniqueness in the class of C2,1 functions satisfying the above uniform

integrability follows directly from uniqueness of weak solutions to (2.16), via integration by
parts. □

Proof of Theorem 2.6. The C-tightness of ξ̄n stated in Lemma 3.6, the fact stated in
Lemma 4.3 that for any limit point ξ, v(x, t) := ξt(x,∞) is a weak solution of (2.18), and the
uniqueness stated in Lemma 3.1 imply that ξ̄n possesses a deterministic weak limit ξ, and that
ξ ∈ C(R+,M1). The assertion that ξ is given by ξt(dx) = u(x, t)dx, where the latter is the
unique classical solution to (1.3), follows now from Lemma 4.3 and Theorem 2.5. □

Proof of Proposition 2.7. First we show that, under the strengthened moment condition,
for t fixed,

(4.51) sup
n

max
i∈[n]

E[X̂n
i (t)

2+ε] <∞.

We do this by reviewing the proof of (3.25) in Lemma 3.5.iii. Thanks to the assumption that
Φser has a finite 2 + ε moment, the moment estimate (3.28) can now be strengthened to

sup
n

E[(∥Ŝ0,n
1 ∥∗t )2+ε] <∞,
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again by [28, Appendix 1]. With this and the further 2+ ε moment assumptions on the initial
condition, the proof of (4.51) now follows very closely to that of (3.25). We omit the details.

Next, (4.51) implies, using Minkowski’s inequality, that n−1
∑

i X̂
n
i (t)

2 =
∫
x2ξ̄nt (dx) are

uniformly integrable. Hence it suffices to show
∫
x2ξ̄nt (dx) →

∫
x2ξt(dx) in probability, and

a similar statement for the empirical first moment. We have from Theorem 2.6 that ξ̄nt → ξt
in probability in M1. Using the Skorohod representation theorem, we assume without loss of
generality that this convergence holds a.s. Then

∫
x2ξ̄nt (dx) →

∫
x2ξt(dx) a.s. will follow once

the uniform integrability condition supn
∫
x2+εξ̄nt (dx) < ∞ a.s. is verified. But this follows

from Fatou’s lemma in view of (4.51). □

Proof of Theorem 2.8. By Lemma 3.3.iii and Lemma 3.5.i, for i ∈ [k],

(4.52) X̂n
i (t) = X̂n

i (0−)+ Ên
i (t)− Ŝn

i (T
n
i (t))+ b̂

n
1 t+ λ̂

n
0n

−1/2

∫ t

0
pn,Rn

i (s)
ds+M̂A,n

i (t)+ L̂n
i (t),

and
∫
X̂n

i (t)dL̂
n
i (t) = 0. From Step 5 in the proof of Lemma 4.1 we have that Tn

i → ι

in probability. Recall that (Ên
i , Ŝ

n
i ) ⇒ (Ei, Si) and that Ei − Si are equal in law to σiWi,

where Wi are mutually independent standard BMs. Since (X̂n
i (0−))i∈[k] ⇒ (Xi(0))i∈[k] by

assumption, using the dependence structure (2.7), we obtain

(X̂n
i (0−) + Ên

i − Ŝn
i (T

n
i )) ⇒ (Xi(0) + σiWi)i∈[k],

where (Xi(0))i∈[k]) is independent of (Wi)i∈[k].

From (3.29) in the proof of Lemma 3.5 we have that M̂A,n
i → 0 in probability. From

Lemma 3.5.iii, we have C-tightness of (X̂n
i , L̂

n
i )i∈[k]. If we denote the integral term in (4.52)

by K̂n
i , we have tightness of the tuple (X̂

n
i , X̂

n
i (0−)+ Ên

i − Ŝn
i (T

n
i ), K̂

n
i , L̂

n
i )i∈[k], and denoting

a subsequential weak limit point by (Xi, Xi(0) + σWi,Ki, Li)i∈[k], one has, for i ∈ [k],

Xi(t) = Xi(0) + σWi(t) + b1t+Ki(t) + Li(t),

∫
XidLi = 0.

By uniqueness in law of the system of SDE (1.5), the result will be proved once it is shown that

Ki(t) = b0
∫ t
0 v(Xi(s))

ℓ−1ds. Using Skorohod’s representation theorem we assume without loss
that the convergence along the subsequence is a.s. Thus, in view of (4.46), it suffices to show
that, along the subsequence, one has

(4.53) (R̄c,n
i )i∈[k] → (v(Xi(·), ·))i∈[k],

a.s., in the uniform topology on [t0, T ], for any 0 < t0 < T .

To this end, recall that Theorem 2.6 establishes, in particular, that ξ̄n → ξ in D(R+,M1),
where ξ ∈ C(R+,M1), and ξt is atomless for every t > 0. Again it may be assumed that the
convergence is a.s. Hence, with dL the Levy-Prohorov metric, ∥dL(ξ̄n, ξ)∥∗T → 0 a.s. Because
for any t0 > 0 and x0 > 0, v is uniformly continuous on [0, x0]× [t0, T ], this gives

(4.54) sup
t0≤t≤T

sup
x≤x0

|ξ̄nt [x,∞)− ξt[x,∞)| → 0, a.s.

By the atomless property of ξt, t > 0, we know that

k̄n := sup{ξ̄nt ({x}) : (x, t) ∈ [0, x0]× [t0, T ]} → 0, a.s.
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Now, R̄c,n
i = n−1(n−Rn

i ) satisfies

ξ̄nt [X̂
n
i (t),∞)− k̄n ≤ R̄c,n

i (t) ≤ ξ̄nt [X̂
n
i (t),∞) + k̄n, (x, t) ∈ [0, x0]× [t0, T ], i ∈ [k].

Using this in (4.54) shows

sup
t0≤t≤T

|R̄c,n
i (t)− v(X̂n

i (t), t)|1{X̂n
i (t)≤x0} → 0, a.s.

Hence (4.53) follows by the a.s. convergence X̂n
i → Xn and a.s. finiteness of ∥Xi∥∗T , i ∈ [k],

completing the proof. □

Proof of Theorem 2.9. The assumed exchangeability of X̂n
i (0−) for every n, along with the

convergence in probability of their empirical law ξ̄n0− to the deterministic limit ξ0, imply the

convergence (X̂n
i (0−))i∈[k] ⇒ (Xi(0))i∈[k] where the latter are mutually independent and each

is ξ0-distributed [42, Proposition 2.2]. Hence the hypotheses of Theorem 2.8 hold. Because

Theorem 2.8 asserts that (X̂n
i , L̂

n
i )i∈[k] converge in law to the solution of the system (1.5), in

which (Wi) are mutually independent and are independent of (Xi(0)), the additional mutual
independence of (Xi(0)) that has just been shown completes the proof. □

Remark 4.4. (Sampling with replacement). If instead of sampling without replacement the
algorithm employs sampling with replacement, one has the expression

p̃n,r =
(n− r + 1

n

)ℓ
−
(n− r

n

)ℓ

instead of pn,r from (2.4). The proofs remain valid because the asymptotic of p̃n,r is as that

of pn,r. More precisely, analogously to (2.5), we have maxr∈[n] p̃n,r = ℓ
n + o( 1n). Moreover, it

is easy to check that (4.46) holds true for p̃n,r. As a result, the proof of Lemma 3.5.iii, where
(2.5) is used, and of Lemma 4.1 (Step 6), where (4.46) is used, hold verbatim. These are the
only places where the expression for pn,r is used in the proofs.

Acknowledgement. The first author was supported by ISF (grant 1035/20).

References

[1] P. Agarwal and K. Ramanan. Invariant states of hydrodynamic limits of randomized load balancing net-
works. arXiv preprint arXiv:2008.08510, 2020.

[2] R. Aghajani, X. Li, and K. Ramanan. The PDE method for the analysis of randomized load balancing
networks. Proceedings of the ACM on Measurement and Analysis of Computing Systems, 1(2):1–28, 2017.

[3] R. Aghajani and K. Ramanan. The hydrodynamic limit of a randomized load balancing network. The
Annals of Applied Probability, 29(4):2114–2174, 2019.

[4] R. Atar, I. Keslassy, G. Mendelson, A. Orda, and S. Vargaftik. Persistent-idle load-distribution. Stochastic
Systems, 10(2):152–169, 2020.

[5] R. Atar and D. Lipshutz. Heavy traffic limits for join-the-shortest-estimated-queue policy using delayed
information. Mathematics of Operations Research, 46(1):268–300, 2021.

[6] S. Banerjee, A. Budhiraja, and B. Estevez. Load balancing in parallel queues and rank-based diffusions.
arXiv preprint arXiv:2302.10317, 2023.

[7] S. Banerjee and D. Mukherjee. Join-the-shortest queue diffusion limit in Halfin–Whitt regime: Tail asymp-
totics and scaling of extrema. The Annals of Applied Probability, 29(2):1262–1309, 2019.

[8] S. Banerjee and D. Mukherjee. Join-the-shortest queue diffusion limit in Halfin–Whitt regime: Sensitivity
on the heavy-traffic parameter. The Annals of Applied Probability, 30(1):80–144, 2020.



INVARIANCE PRINCIPLE FOR LOAD BALANCING 41

[9] E. Bayraktar, A. Budhiraja, and A. Cohen. Rate control under heavy traffic with strategic servers. The
Annals of Applied Probability, 29(1):1–35, 2019.

[10] P. Billingsley. Convergence of Probability Measures. John Wiley & Sons, 2013.
[11] M. Bramson, Y. Lu, and B. Prabhakar. Randomized load balancing with general service time distributions.

ACM SIGMETRICS performance evaluation review, 38(1):275–286, 2010.
[12] M. Bramson, Y. Lu, and B. Prabhakar. Asymptotic independence of queues under randomized load bal-

ancing. Queueing Systems, 71:247–292, 2012.
[13] M. Bramson, Y. Lu, and B. Prabhakar. Decay of tails at equilibrium for FIFO join the shortest queue

networks. The Annals of Applied Probability, 23(5):1841–1878, 2013.
[14] A. Braverman. Steady-state analysis of the join-the-shortest-queue model in the Halfin–Whitt regime.

Mathematics of Operations Research, 45(3):1069–1103, 2020.
[15] H. Chen and H.-Q. Ye. Asymptotic optimality of balanced routing. Operations Research, 60(1):163–179,

2012.
[16] K. L. Chung and R. J. Williams. Introduction to Stochastic Integration, volume 2. Springer, 1990.
[17] D. J. Daley and M. Miyazawa. A martingale view of Blackwell’s renewal theorem and its extensions to a

general counting process. Journal of Applied Probability, 56(2):602–623, 2019.
[18] M. V. der Boor, S. C. Borst, J. S. Van Leeuwaarden, and D. Mukherjee. Scalable load balancing in networked

systems: A survey of recent advances. SIAM Review, 64(3):554–622, 2022.
[19] P. Eschenfeldt and D. Gamarnik. Supermarket queueing system in the heavy traffic regime. short queue

dynamics. arXiv preprint arXiv:1610.03522, 2016.
[20] P. Eschenfeldt and D. Gamarnik. Join the shortest queue with many servers. The heavy-traffic asymptotics.

Mathematics of Operations Research, 43(3):867–886, 2018.
[21] S. Foss and A. L. Stolyar. Large-scale join-idle-queue system with general service times. Journal of Applied

Probability, 54(4):995–1007, 2017.
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