
Stochastic Processes and their Applications 192 (2026) 104789 

A
0
(

 

Contents lists available at ScienceDirect

Stochastic Processes and their Applications

journal homepage: www.elsevier.com/locate/spa  

A Durrett–Remenik particle system in R𝑑

Rami Atar
Technion–Israel Institute of Technology

A R T I C L E  I N F O

MSC:
35R35
60J80
82C22

Keywords:
Branching-selection particle systems
Hydrodynamic limits
Free boundary problems

 A B S T R A C T

This paper studies a branching-selection model of motionless particles in R𝑑 , with nonlocal 
branching, introduced by Durrett and Remenik in dimension 1. The assumptions on the fitness 
function, 𝐹 , and on the inhomogeneous branching distribution, are mild. The evolution equation 
for the macroscopic density is given by an integro-differential free boundary problem in R𝑑 , 
in which the free boundary represents the least 𝐹 -value in the population. The main result is 
the characterization of the limit in probability of the empirical measure process in terms of the 
unique solution to this free boundary problem.

1. Introduction

A system of particles living in R𝑑 , 𝑑 ≥ 1, that undergo branching and selection, is described as follows. An initial configuration 
is given by {𝑥𝑖, 1 ≤ 𝑖 ≤ 𝑁}, where 𝑥𝑖 are R𝑑 -valued random variables. An independent Poisson clock of rate 1 is attached to each 
particle, according to which it gives birth to new ones. The location of a particle born from one located at 𝑦 is drawn according to 
a probability density 𝜌(𝑦, ⋅) defined on R𝑑 . All particles stay put throughout their lifetime. When a particle is born, the particle that 
has the least 𝐹 -value among the living ones (including the newborn) is removed, where 𝐹 ∶ R𝑑 → R is a given ‘fitness’ function. 
Tie breaking (which may be needed for the initial particles) occurs according to particle labels. Note that the number of particles 
remains 𝑁 at all times. The label of the particle that gets removed is transferred to the new particle, so that at all times, the living 
particles are labeled as 1, 2,… , 𝑁 . The location of particle 𝑖 at time 𝑡 is denoted by 𝑋𝑖(𝑡) (suppressing the dependence on 𝑁), the 
configuration measure by 𝜉𝑁𝑡 =

∑ δ𝑋𝑖(𝑡), and the empirical measure by 𝜉𝑁𝑡 = 𝑁−1𝜉𝑁𝑡 . This model was introduced and studied in [1] 
for 𝑑 = 1 and 𝐹 (𝑥) = 𝑥, where its hydrodynamic limit was characterized in terms of an integro-differential free boundary problem 
(FBP).

This result is extended in this paper. Under mild assumptions on 𝜌 and 𝐹 , it is shown that the empirical measure process converges 
in probability to a deterministic path in measure space, whose density uniquely solves an integro-differential FBP in R𝑑 . This is the 
problem of finding a pair (𝑢,𝓁), where 𝓁 ∶ R+ → R is càdlàg  and the function 𝑢 ∶ R𝑑×R+ → R+ is 𝐶0,1 in {(𝑥, 𝑡) ∈ R×R+ ∶ 𝐹 (𝑥) > 𝓁𝑡}, 
and one has

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜕𝑡𝑢(𝑥, 𝑡) = ∫R𝑑
𝑢(𝑦, 𝑡)𝜌(𝑦, 𝑥)𝑑𝑦 (𝑥, 𝑡) ∶ 𝐹 (𝑥) > 𝓁𝑡, 𝑡 > 0,

𝑢(𝑥, 𝑡) = 0 (𝑥, 𝑡) ∶ 𝐹 (𝑥) ≤ 𝓁𝑡, 𝑡 > 0,

∫R𝑑
𝑢(𝑥, 𝑡)𝑑𝑥 = 1, 𝑡 > 0,

𝑢(⋅, 0) = 𝑢0, 𝓁0 = 𝜆0.
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The function 𝑢 and the free boundary 𝓁 represent the density and, respectively, the least 𝐹 -value in the population at the macroscopic 
scale, with 𝑢0 and 𝜆0 their initial conditions.

The relation between particle system with selection and FBP is an active research field. Particle systems with selection were 
proposed in [2,3] as models for natural selection in population dynamics, where the position of a particle on the real line represents 
the degree of fitness of an individual to its environment, and those that are least fitted get removed. In [1], the aforementioned 
Durrett–Remenik model for motionless particles was introduced, where, in addition to hydrodynamic limits, traveling wave solutions 
were also studied. The monograph [4] studied hydrodynamic limits of Brownian particle systems with injection and selection, 
relating them to FBP. A model for Brownian particles with branching and selection, referred to as 𝑁-particle branching Brownian 
motion (𝑁-BBM), related to the ones proposed in [2,3], was introduced in [5], and studied at the hydrodynamic limit in [6,7]. 
A variant of 𝑁-BBM with nonlocal branching and its relation to FBP was studied in [8]. Other hydrodynamic limit results for 
branching-selection models were studied in [9,10]. Apart from selection models, particle systems that give rise to FBP include a 
simple exclusion process with boundary behavior [11] and the Atlas model [12,13].

The works mentioned above all address FBP in dimension 1. In higher dimension, [14] studied the asymptotic shape of the cloud 
of particles of the 𝑁-BBM with fitness function 𝐹 (𝑥) = ‖𝑥‖ and 𝐹 (𝑥) = 𝜆 ⋅ 𝑥. The papers [15,16] considered the hydrodynamic limit 
of the 𝑁-BBM with 𝐹 (𝑥) = −‖𝑥‖, characterizing it in terms of a FBP, studying convergence rates as well as long time behavior. This 
treatment used in a crucial way the symmetry of 𝐹 , by which the radial projection of the macroscopic dynamics is governed by an 
autonomous equation, and thus the motion of the free boundary is dictated by an equation in one dimension.

Our motivation in this work is to study a branching-selection model for which the macroscopic evolution equation is truly 
multidimensional, in the sense that it does not reduce to a FBP in one spatial dimension. This is relevant also from the application 
viewpoint. For example, in the context of natural selection, consider scores given to different traits, each represented by one of the 
coordinates 𝑥𝑖 of the state 𝑥 of an individual. In this case, the fitness functions 𝐹 (𝑥) = min𝑖 𝑥𝑖 and 𝐹 (𝑥) = max𝑖 𝑥𝑖 may be of interest, 
as they represent scenarios where the worst (resp., best) score among the various traits governs extinction.

The Durrett–Remenik and 𝑁-BBM models in R𝑑 are both multidimensional branching-selection models, and so they share some 
similarities, but there are significant differences as far as their analysis is concerned. The most obvious one is an integro-differential 
FBP studied here for the former versus a second order parabolic FBP studied in [15,16] for the 𝑁-BBM. The tools required are 
different, where, for example, the very question of existence of classical solutions to the PDE of [15,16] is difficult. Their results not 
only obtain the hydrodynamic limit but also large time asymptotics, which we do not address here. In this paper, FBP uniqueness 
builds on monotonicity of the free boundary 𝓁, whereas this property does not hold in general for 𝑁-BBM. Finally, for the 𝑁-BBM, 
establishing the hydrodynamic limit for general fitness functions under which the dynamics do not reduce to one dimension is a 
challenging open question.

The rest of this article is organized as follows. In Section 2, assumptions are introduced, the main result is stated, and the proof is 
outlined. The proof is given in Section 3, starting with Section 3.1 where uniqueness of solutions to the FBP is proved. In Section 3.2, 
it is shown that the empirical measure processes form a tight sequence and that limits are supported on solutions to the FBP, which 
completes the proof. A construction required for one of the steps in Section 3.2 is provided in the Appendix.

Notation. Denote R+ = [0,∞). Let (R𝑑 ) denote the class of Borel subsets of R𝑑 . In R𝑑 , denote the Euclidean norm by ‖ ⋅ ‖ and 
let B𝑟 = {𝑥 ∈ R𝑑 ∶ ‖𝑥‖ ≤ 𝑟}. Denote by (R𝑑 ) the space of finite signed Borel measures on R𝑑 endowed with the topology of weak 
convergence. Let (R𝑑 ) ⊂ +(R𝑑 ) ⊂ (R𝑑 ) denote the subsets of probability and, respectively positive measures, and give them 
the inherited topologies. For 𝜇, 𝜈 ∈ +(R𝑑 ), write 𝜇 ⊏ 𝜈 if 𝜇(𝐴) ≤ 𝜈(𝐴) for all 𝐴 ∈ (R𝑑 ).

For (𝑋, 𝑑𝑋 ) a Polish space let 𝐶(R+, 𝑋) and 𝐷(R+, 𝑋) denote the space of continuous and, respectively, càdlàg  paths, endowed 
with the topology of uniform convergence on compacts and, respectively, the Skorohod 𝐽1 topology. Let 𝐶↑(R+,R+) denote the 
subset of 𝐶(R+,R+) of nondecreasing functions that vanish at zero. For 𝑓 ∶ R+ → R𝑑 denote

𝑤𝑇 (𝑓, 𝛿) = sup{‖𝑓 (𝑡) − 𝑓 (𝑠)‖ ∶ 0 ≤ 𝑠 ≤ 𝑡 ≤ (𝑠 + 𝛿) ∧ 𝑇 },

‖𝑓‖∗𝑇 = sup{‖𝑓 (𝑠)‖ ∶ 𝑠 ∈ [0, 𝑇 ]}.

2. Assumptions and main result

2.1. Assumptions and macroscopic dynamics

Recall that the empirical measure is given by 𝜉𝑁𝑡 = 𝑁−1 ∑ δ𝑋𝑖(𝑡). In particular, the initial empirical measure is 𝜉𝑁0 = 𝑁−1 ∑ δ𝑥𝑖 . 
Following is our assumption on 𝐹 , 𝜌 and 𝜉𝑁0 . Denote 𝓁𝑁0 = min{𝐹 (𝑦) ∶ 𝑦 ∈ supp(𝜉𝑁0 )}.

Assumption 2.1.  (i) 𝐹 ∈ 𝐶(R𝑑 ,R), inf𝑥 𝐹 (𝑥) = −∞, sup𝑥 𝐹 (𝑥) = ∞, and for every 𝑎 ∈ R, 𝐹−1{𝑎} has Lebesgue measure zero.
(ii) There exists a probability density 𝜌̃ and a constant 𝑐 such that 𝜌(𝑥, 𝑦) ≤ 𝑐𝜌̃(𝑦−𝑥). Moreover, 𝜌(𝑥, 𝑦) is continuous in 𝑦 uniformly 

in (𝑥, 𝑦), and for 𝑎 ∈ R and 𝑥 ∈ 𝐹−1(𝑎,∞), one has ∫𝐹−1(𝑎,∞) 𝜌(𝑥, 𝑦)𝑑𝑦 > 0.
(iii) As 𝑁 → ∞, (𝜉𝑁0 ,𝓁𝑁0 ) → (𝜉0, 𝜆0) in probability, where the latter tuple is deterministic, 𝜉0(𝑑𝑥) = 𝑢0(𝑥)𝑑𝑥 and 𝜆0 ∈ R. 

Moreover, 𝑢0 is bounded and continuous on 𝐹−1(𝜆0,∞) (and necessarily vanishes on 𝐹−1(−∞, 𝜆0)), and for every 𝛿 > 0 and 𝜆 ≥ 𝜆0, 
∫ 𝑢 (𝑥)𝑑𝑥 > 0.
𝐹−1(𝜆,𝜆+𝛿) 0

2 
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Further notation is 𝓁𝑁𝑡 = min{𝐹 (𝑦) ∶ 𝑦 ∈ supp(𝜉𝑁𝑡 )} for the minimal 𝐹 -value of all living particles at time 𝑡, and 𝐽𝑁  for the 
removal counting process. By construction, 𝐽𝑁  is a Poisson process of rate 𝑁 .

Next is an equation for the macroscopic dynamics, in the form of an integro-differential FBP. Denote by  the set of pairs (𝑢,𝓁), 
where 𝓁 ∈ 𝐷(R+,R) and 𝑢 ∶ R𝑑 × R+ → R+ is 𝐶0,1 in {(𝑥, 𝑡) ∈ R × R+ ∶ 𝐹 (𝑥) > 𝓁𝑡} and bounded on R𝑑 × [0, 𝑇 ] for any 𝑇 . Consider 
the system 

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(𝑖) 𝜕𝑡𝑢(𝑥, 𝑡) = ∫R𝑑
𝑢(𝑦, 𝑡)𝜌(𝑦, 𝑥)𝑑𝑦 (𝑥, 𝑡) ∶ 𝐹 (𝑥) > 𝓁𝑡, 𝑡 > 0,

(𝑖𝑖) 𝑢(𝑥, 𝑡) = 0 (𝑥, 𝑡) ∶ 𝐹 (𝑥) ≤ 𝓁𝑡, 𝑡 > 0,

(𝑖𝑖𝑖) ∫R𝑑
𝑢(𝑥, 𝑡)𝑑𝑥 = 1, 𝑡 > 0,

(𝑖𝑣) 𝑢(⋅, 0) = 𝑢0, 𝓁0 = 𝜆0.

(2.1)

A solution to (2.1) is defined as a member of  satisfying (2.1).

2.2. Main result

Theorem 2.2.  Let Assumption  2.1 hold. Then there exists a unique solution to (2.1), denoted by (𝑢,𝓁). Moreover, 𝓁 − 𝜆0 ∈ 𝐶↑(R+,R+). 
Furthermore, (𝜉𝑁 ,𝓁𝑁 ) → (𝜉,𝓁), in probability, in 𝐷(R+,(R𝑑 )) ×𝐷(R+,R+), where 𝜉𝑡(𝑑𝑥) = 𝑢(𝑥, 𝑡)𝑑𝑥.

Remark 2.3.  Most parts of Assumption  2.1 are quite mild. The parts that may require some comment are the last part of Assumption 
2.1(ii) and the last part of Assumption  2.1(iii). These are used to show that 𝓁 is monotone whenever (𝑢,𝓁) is a solution of the FBP 
(see Lemma  3.1), and, respectively, that 𝓁𝑁  are 𝐶-tight (see Lemma  3.3).

Remark 2.4.  Because, as stated above, the 𝓁 component of any solution to (2.1) is nondecreasing, (2.1)(i) can be written in integral 
form as

𝑢(𝑥, 𝑡) = 𝑢0(𝑥) + ∫

𝑡

0 ∫R𝑑
𝑢(𝑦, 𝑠)𝜌(𝑦, 𝑥)𝑑𝑦𝑑𝑡, (𝑥, 𝑡) ∶ 𝐹 (𝑥) > 𝓁𝑡, 𝑡 > 0.

In a more general setting not covered in this paper, where the mass conservation condition is replaced by ∫R𝑑 𝑢(𝑥, 𝑡)𝑑𝑥 = 𝑚(𝑡), with 
𝑚(𝑡) given, 𝓁 need not be nondecreasing. In this case the system (2.1) (with 1 replaced by 𝑚(𝑡) on the r.h.s. of (iii)) is not sufficient 
for characterizing (𝑢,𝓁). Roughly speaking, a boundary condition 𝑢(𝓁𝑡, 𝑡) = 0 should be added at times when 𝓁𝑡 is decreasing. A 
precise way to write this is

𝑢(𝑥, 𝑡) = 𝑢0(𝑥)1{𝜏(𝑡,𝑥)=0} + ∫

𝑡

𝜏(𝑡,𝑥) ∫R𝑑
𝑢(𝑦, 𝑠)𝜌(𝑦, 𝑥)𝑑𝑦𝑑𝑡, (𝑥, 𝑡) ∶ 𝐹 (𝑥) > 𝓁𝑡, 𝑡 > 0,

where 𝜏(𝑥, 𝑡) = inf{𝑠 ∈ [0, 𝑡] ∶ 𝓁𝜃 < 𝑥 for all 𝜃 ∈ (𝑠, 𝑡)}.

Remark 2.5.  Our proof corrects a mistake in the proof of uniqueness of solutions to the integro-differential FBP in [1] (this is 
equation (FB), corresponding to (2.1) above in the case 𝑑 = 1 and 𝐹 (𝑥) = 𝑥; see [17, Remark 2.10] for details about the mistake). 
Addressing uniqueness via a different approach, our treatment validates the uniqueness statement of [1].

2.3. Proof outline

The proof of Theorem  2.2 is based on the compactness–uniqueness approach, and proceeds in three main steps.
(a) Uniqueness. This is the content of Section 3.1, where it is shown that (2.1) has at most one solution.
For a quick sketch of the idea, consider the case 𝑑 = 1 and 𝐹 (𝑥) = 𝑥. If (𝑢,𝓁) and (𝑣, 𝑚) are solutions then, for each 𝑡 > 0, 𝑢(𝑥, 𝑡)

vanishes for 𝑥 < 𝓁𝑡 and 𝑣(𝑥, 𝑡) vanishes for 𝑥 < 𝑚𝑡. This and the fact that 𝑢 and 𝑣 have the same mass imply

∫R
|𝑢(𝑥, 𝑡) − 𝑣(𝑥, 𝑡)|𝑑𝑥 ≤ 2∫

∞

𝓁𝑡∨𝑚𝑡
|𝑢(𝑥, 𝑡) − 𝑣(𝑥, 𝑡)|𝑑𝑥.

For both 𝑢 and 𝑣, the r.h.s. now involves only (𝑥, 𝑡) for which the integro-differential equation (2.1)(i) holds. Integrating it over time 
allows the use of Gronwall’s lemma.

(b) Tightness. In particular, in Lemma  3.3 of Section 3.2, it is shown that (𝜉𝑁 ,𝓁𝑁 ) forms a 𝐶-tight sequence.
(c) Subsequential limits form FBP solutions. This is shown in the remainder of Section 3.2.
The idea here is to use the standard fact that normalized configuration measures of particle systems with fixed boundary converge 

as 𝑁 → ∞ to solutions to integro-differential equations with fixed boundary.
To exploit this fact, upper and lower piecewise constant (but random) envelopes of the prelimit free boundary 𝓁𝑁  are selected. 

Then, auxiliary particle systems, with piecewise constant boundaries given by these envelopes, are constructed. It is argued that the 
configuration measures of the auxiliary particle systems form lower and upper bounds on 𝜉𝑁𝑡 , in the sense of measure inequalities. 
The aforementioned convergence as 𝑁 → ∞ can then be applied in order to sandwich any subsequential limit of 𝜉𝑁𝑡  in terms of 
solutions to the corresponding integro-differential equations. Because 𝓁𝑁  are 𝐶-tight, the upper and lower envelopes can be made 
arbitrarily close to each other locally uniformly. A lemma showing that the solutions of the auxiliary integro-differential equations 
are continuous with respect to perturbations in the boundary then completes the argument.
3 
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3. Proof of main result

3.1. Uniqueness

Before implementing the argument outlined in Section 2.3 part (a), we need the following.

Lemma 3.1.  Let (𝑢,𝓁) ∈  be a solution of (2.1). Then 𝓁 is nondecreasing.

Proof.  Arguing by contradiction, assume there exists 𝑡 > 0 such that 𝓁𝑡 < 𝐿𝑡 ∶= sup𝑠∈[0,𝑡] 𝓁𝑠. There are two possibilities.
1. There is 𝑠 < 𝑡 such that 𝓁𝑠 = 𝐿𝑡. In this case, 𝓁𝜃 ≤ 𝓁𝑠 for all 𝜃 ∈ [𝑠, 𝑡]. If for some 𝑥 𝐹 (𝑥) > 𝓁𝑠 then 𝐹 (𝑥) > 𝓁𝜃 for all 𝜃 ∈ [𝑠, 𝑡], 

and we can integrate (2.1)(i). Thus 

𝑢(𝑥, 𝑡) = 𝑢(𝑥, 𝑠) + ∫

𝑡

𝑠 ∫R𝑑
𝑢(𝑦, 𝜃)𝜌(𝑦, 𝑥)𝑑𝑦𝑑𝜃, 𝑥 ∈ 𝐹−1(𝓁𝑠,∞). (3.1)

We obtain

1 = ∫R𝑑
𝑢(𝑥, 𝑡)𝑑𝑥 ≥ ∫𝐹−1(𝓁𝑠 ,∞)

[

𝑢(𝑥, 𝑠) + ∫

𝑡

𝑠 ∫R𝑑
𝑢(𝑦, 𝜃)𝜌(𝑦, 𝑥)𝑑𝑦𝑑𝜃

]

𝑑𝑥

≥ 1 + ∫

𝑡

𝑠 ∫𝐹−1(𝓁𝑠 ,∞) ∫𝐹−1(𝓁𝑠 ,∞)
𝑢(𝑦, 𝜃)𝜌(𝑦, 𝑥)𝑑𝑦𝑑𝑥𝑑𝜃.

For every 𝑦 ∈ 𝐹−1(𝓁𝑠,∞), one has 𝜓(𝑦) ∶= ∫𝐹−1(𝓁𝑠 ,∞) 𝜌(𝑦, 𝑥)𝑑𝑥 > 0, by Assumption  2.1(ii). Since 𝓁𝑠 ≥ 𝓁𝜃 for all 𝜃 ∈ [0, 𝑡], we have, 
similarly to (3.1), that

𝑢(𝑦, 𝜃) = 𝑢0(𝑦) + ∫

𝜃

0 ∫R𝑑
𝑢(𝑦′, 𝜃′)𝜌(𝑦′, 𝑦)𝑑𝑦′𝑑𝜃′, 𝑦 ∈ 𝐹−1(𝓁𝑠,∞).

Hence for such 𝑦 and all 𝜃 ∈ [𝑠, 𝑡] one has 𝑢(𝑦, 𝜃) ≥ 𝑢0(𝑦). Hence the triple integral above is bounded below by

(𝑡 − 𝑠)∫𝐹−1(𝓁𝑠 ,∞)
𝑢0(𝑦)𝜓(𝑦)𝑑𝑦.

But ∫𝐹−1(𝓁𝑠 ,∞) 𝑢0(𝑦)𝑑𝑦 > 0 by assumption, hence the above integral is positive, a contradiction.
2. There is 𝑠 ≤ 𝑡 such that 𝓁𝑠− = 𝐿𝑡, and 𝓁𝑠 < 𝓁𝑠−. In this case there exists 𝑡′ > 𝑠 such that 𝓁𝜃 ≤ 𝓁𝑠− for all 𝜃 ∈ [𝑠, 𝑡′]. We first 

show 

∫𝐹−1(𝓁𝑠− ,∞)
𝑢(𝑥, 𝑠)𝑑𝑥 = 1. (3.2)

Let 𝑠𝑛 ↑ 𝑠. Then 𝓁𝑠𝑛 → 𝓁𝑠− and by assumption, 𝓁𝑠𝑛 ≤ 𝓁𝑠−. Now,

∫𝐹−1(𝓁𝑠− ,∞)
𝑢(𝑥, 𝑠)𝑑𝑥 = ∫𝐹−1(𝓁𝑠𝑛 ,∞)

𝑢(𝑥, 𝑠𝑛)𝑑𝑥 + ∫𝐹−1(𝓁𝑠𝑛 ,∞)
(𝑢(𝑥, 𝑠) − 𝑢(𝑥, 𝑠𝑛))𝑑𝑥 (3.3)

− ∫𝐹−1(𝓁𝑠𝑛 ,𝓁𝑠−)
𝑢(𝑥, 𝑠)𝑑𝑥.

The first term on the right is 1, and the last term converges to zero as 𝑛 → ∞. As for the second term, since for all 𝜃 ∈ [𝑠𝑛, 𝑠] one 
has 𝐹−1(𝓁𝑠−,∞) ⊂ 𝐹−1(𝓁𝜃 ,∞), one can integrate in (2.1)(i) and get

∫𝐹−1(𝓁𝑠− ,∞)
|𝑢(𝑥, 𝑠) − 𝑢(𝑥, 𝑠𝑛)|𝑑𝑥 ≤ ∫

𝑠

𝑠𝑛
∫R𝑑

𝑢(𝑦, 𝜃)𝑑𝑦𝑑𝜃 = 𝑠 − 𝑠𝑛.

The above expression and the second term in (3.3) have the same limit by the assumed boundedness of 𝑢 on R𝑑 × [0, 𝑠]. This shows 
(3.2).

Using (3.2) and 𝐹−1(𝓁𝑠−,∞) ⊂ 𝐹−1(𝓁𝑡′ ,∞), we have ∫𝐹−1(𝓁𝑡′ ,∞) 𝑢(𝑥, 𝑠)𝑑𝑥 = 1. We can thus repeat the argument above in 1, with 
(𝑠,𝓁𝑠−, 𝑡′,𝓁𝑡′ ) in place of (𝑠,𝓁𝑠, 𝑡,𝓁𝑡). Namely,

1 = ∫𝐹−1(𝓁𝑡′ ,∞)
𝑢(𝑥, 𝑡′)𝑑𝑥 = ∫𝐹−1(𝓁𝑡′ ,∞)

[

𝑢(𝑥, 𝑠) + ∫

𝑡′

𝑠 ∫R𝑑
𝑢(𝑦, 𝜃)𝜌(𝑦, 𝑥)𝑑𝑦𝑑𝜃

]

𝑑𝑥

≥ 1 + ∫

𝑡′

𝑠 ∫

∞

𝐹−1(𝓁𝑠− ,∞) ∫𝐹−1(𝓁𝑠− ,∞)
𝑢(𝑦, 𝜃)𝜌(𝑦, 𝑥)𝑑𝑦𝑑𝑥𝑑𝜃.

The argument now completes exactly as in case 1. □

Lemma 3.2.  Let (𝑢,𝓁) and (𝑣, 𝑚) be solutions of (2.1). Then (𝑢,𝓁) = (𝑣, 𝑚).

Proof.  If 𝑤 ∈ 𝐿1(R𝑑 ) and ∫R𝑑 𝑤(𝑥)𝑑𝑥 = 0 then we have ‖𝑤‖1 = 2‖𝑤+
‖1 = 2‖𝑤−

‖1, where we denote ‖ ⋅ ‖1 = ‖ ⋅ ‖𝐿1 . If in addition 
𝑤 ≥ 0 on some domain 𝐷 then

2‖𝑤−
‖ = 2‖𝑤−1 ‖ ≤ 2‖𝑤1 ‖ .
1 𝐷𝑐 1 𝐷𝑐 1
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A similar statement holds with 𝑤 ≤ 0 and 𝑤+. Hence if 𝑤 is either nonnegative on 𝐷 or nonpositive on 𝐷, 
‖𝑤‖1 ≤ 2‖𝑤1𝐷𝑐‖1. (3.4)

Consider (𝑥, 𝑡) such that 𝐹 (𝑥) > 𝓁𝑡. Then 𝐹 (𝑥) > 𝓁𝑠 for all 𝑠 ≤ 𝑡. Therefore (2.1)(i) is valid with (𝑥, 𝑡) replaced by (𝑥, 𝑠) for all such 
𝑠, and

𝑢(𝑥, 𝑡) = 𝑢0(𝑥) + ∫

𝑡

0 ∫R𝑑
𝑢(𝑦, 𝑠)𝜌(𝑦, 𝑥)𝑑𝑦𝑑𝑠.

Similarly, if 𝐹 (𝑥) > 𝑚𝑡, the above is satisfied by 𝑣. Denote 𝛥 = 𝑢 − 𝑣. Consider (𝑥, 𝑡) such that 𝐹 (𝑥) > 𝓁𝑡 ∨ 𝑚𝑡. Then 

𝛥(𝑥, 𝑡) = ∫

𝑡

0 ∫R𝑑
𝛥(𝑦, 𝑠)𝜌(𝑦, 𝑥)𝑑𝑦𝑑𝑠. (3.5)

Now, for each 𝑡, ∫R𝑑 𝛥(𝑥, 𝑡)𝑑𝑥 = 1−1 = 0. Moreover, in 𝐹−1(−∞,𝓁𝑡 ∨𝑚𝑡), either 𝑢 or 𝑣 vanishes, therefore 𝛥(⋅, 𝑡) is either nonnegative 
or nonpositive. Hence we can apply (3.4) and then (3.5) to get

∫R𝑑
|𝛥(𝑥, 𝑡)|𝑑𝑥 ≤ 2∫𝐹−1(𝓁𝑡∨𝑚𝑡 ,∞)

|𝛥(𝑥, 𝑡)|𝑑𝑥

≤ 2∫𝐹−1(𝓁𝑡∨𝑚𝑡 ,∞) ∫

𝑡

0 ∫R𝑑
|𝛥(𝑦, 𝑠)|𝜌(𝑦, 𝑥)𝑑𝑦𝑑𝑠𝑑𝑥

≤ 2∫

𝑡

0 ∫R𝑑
|𝛥(𝑦, 𝑠)|𝑑𝑦𝑑𝑠.

The above is true for all 𝑡 ≥ 0, hence by Gronwall’s lemma, the integral on the left vanishes for all 𝑡. This shows that for every 
𝑡, 𝑢(𝑥, 𝑡) = 𝑣(𝑥, 𝑡) for a.e. 𝑥. Next, for every 𝑡, both 𝑢(⋅, 𝑡) and 𝑣(⋅, 𝑡) are continuous in each of the domains {𝐹 (𝑥) ≤ 𝓁𝑡 ∧ 𝑚𝑡}, 
{𝓁𝑡 ∧ 𝑚𝑡 < 𝐹 (𝑥) ≤ 𝓁𝑡 ∨ 𝑚𝑡} and {𝐹 (𝑥) > 𝓁𝑡 ∨ 𝑚𝑡}, and therefore must be equal everywhere. This shows 𝑢 = 𝑣.

It remains to show that 𝓁 = 𝑚. Since 𝑢 = 𝑣, (𝓁, 𝑢) and (𝑚, 𝑢) are solutions. Arguing by contradiction, assume that, say, 𝓁𝜃 < 𝑚𝜃
for some 𝜃. By right continuity, there exists an interval [𝜃, 𝜃1] such that

sup
𝑡∈[𝜃,𝜃1]

𝓁𝑡 < inf
𝑡∈[𝜃,𝜃1]

𝑚𝑡.

Let 𝓁 be defined by 𝓁𝑡 = 𝑚𝑡 for 𝑡 < 𝜃1 and 𝓁𝑡 = 𝓁𝑡 for 𝑡 ≥ 𝜃1. Then 𝓁 is càdlàg . Moreover, the differential equation (2.1)(i) holds when 
𝐹 (𝑥) > 𝓁𝑡 (because it holds in the larger domain 𝐹 (𝑥) > 𝓁𝑡), and the vanishing condition (2.1)(ii) holds when 𝐹 (𝑥) ≤ 𝓁𝑡 (because 
it holds in the larger domain 𝐹 (𝑥) ≤ 𝑚𝑡). Hence (𝓁, 𝑢) is a solution. However, by construction, 𝓁 is not a nondecreasing trajectory, 
which contradicts the monotonicity property proved earlier. This shows that 𝓁 = 𝑚. □

3.2. Proof of Theorem  2.2

In this section it is proved first, in Lemma  3.3, that tightness holds, and then the main remaining task is to show that limits satisfy 
(2.1)(i). As outlines in Section 3.2, this is achieved by constructing upper and lower bounds on the density given in terms of limits 
of particle systems with piecewise constant boundary, for which convergence is a consequence of earlier work. These piecewise 
constant boundaries are constructed to form upper and lower envelopes of the prelimit free boundary 𝓁𝑁 .

Lemma 3.3.  The sequence of laws of (𝜉𝑁 ,𝓁𝑁 ) is 𝐶-tight. Moreover, every subsequential limit (𝜉,𝓁) satisfies a.s.,
𝜉𝑡(𝐹−1(−∞,𝓁𝑡)) = 0,  for all 𝑡 ∈ (0,∞).

Proof.  We first argue 𝐶-tightness of 𝓁𝑁 . Since 𝐽𝑁  is a rate-𝑁 Poisson process, 𝐽𝑁 = 𝑁−1𝐽𝑁  converges in probability to the 
identity map from R+ to itself. Next, by construction, the path 𝑡 ↦ 𝓁𝑁𝑡  is nondecreasing, because when a new particle is born at 
𝑡 in the domain 𝐹−1[𝓁𝑁𝑡−,∞) one has 𝓁𝑁𝑡 ≥ 𝓁𝑁𝑡−, and if it is born outside this domain, it is removed immediately and 𝓁𝑁𝑡 = 𝓁𝑁𝑡−. In 
particular, 𝓁𝑁𝑡 ≥ 𝓁𝑁0 → 𝜆0 in probability. Fix 𝑇 > 0. We show that the random variables 𝓁𝑁𝑇  are tight. To this end, denote by 𝜁𝑁  the 
configuration measure associated with non-local branching without removals. That is, they are constructed as our original system, 
but without removing any particles, and the systems are coupled so that at all times, the configuration of the original system is a 
subset of that of the enlarged one. Then there exists a (deterministic) finite measure on R𝑑 , 𝜁𝑇 , such that 𝜁𝑁𝑇 → 𝜁𝑇  in probability 
by [18, Theorem 5.3]. As a result, there exists a compact 𝐾 ⊂ R𝑑 such that lim sup𝑁 P(𝜁𝑁𝑇 (𝐾𝑐 ) > 1

2 ) = 0. Let 𝑘 = max{𝐹 (𝑥) ∶ 𝑥 ∈ 𝐾}. 
Then lim sup𝑁 P(𝜁𝑁𝑇 (𝐹−1(𝑘,∞)) > 1

2 ) = 0. Since 𝜉𝑁𝑇  is dominated by 𝜁𝑁𝑇  a.s.,
P(𝓁𝑁𝑇 > 𝑘) = P(𝜉𝑁𝑇 (𝐹−1(𝑘,∞)) = 𝑁) ≤ P(𝜁𝑁𝑇 (𝐹−1(𝑘,∞)) ≥ 1),

showing lim sup𝑁 P(𝓁𝑁𝑇 > 𝑘) = 0.
Next, for 𝓁𝑁  to increase over a time interval [𝑡, 𝑡+ℎ] by more than 𝛿, the particles located at time 𝑡 in 𝐷𝑁 (𝑡, 𝛿) ∶= 𝐹−1[𝓁𝑁𝑡 ,𝓁

𝑁
𝑡 +𝛿)

must be removed by time 𝑡 + ℎ. Because 𝓁𝑁  is monotone, all particles in the initial configuration within the domain 𝐷𝑁 (𝑡, 𝛿) are 
still present at time 𝑡. Hence the event 𝓁𝑁𝑡+ℎ > 𝓁𝑁𝑡 + 𝛿 is contained in

𝜉𝑁 (𝐷𝑁 (𝑡, 𝛿)) ≤ 𝐽𝑁 − 𝐽𝑁 .
0 𝑡+ℎ 𝑡
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As a result, the event 𝑤𝑇 (𝓁𝑁 , ℎ) > 𝛿 is contained in
inf

𝑡∈[0,𝑇−ℎ]
𝜉𝑁0 (𝐷𝑁 (𝑡, 𝛿)) ≤ 𝑤𝑇 (𝐽𝑁𝑡 , ℎ).

Hence for any 𝛿, ℎ, 𝜀 > 0,

P(𝑤𝑇 (𝓁𝑁 , ℎ) > 𝛿) ≤ P(𝓁𝑁𝑇 > 𝑘) + P(𝑤𝑇 (𝐽𝑁 , ℎ) > 𝜀)

+ P
(

inf
𝑡∈[0,𝑇−ℎ]

𝜉𝑁0 (𝐷𝑁 (𝑡, 𝛿)) ≤ 𝜀, 𝓁𝑁𝑇 ≤ 𝑘
)

.

Thus

lim sup
𝑁

P(𝑤𝑇 (𝓁𝑁 , ℎ) > 𝛿) ≤ lim sup
𝑁

P(𝑤𝑇 (𝐽𝑁 , ℎ) > 𝜀)

+ lim sup
𝑁

P
(

inf
𝑎∈[𝜆0 ,𝑘]

𝜉𝑁0 (𝐹−1[𝑎, 𝑎 + 𝛿)) < 𝜀
)

. (3.6)

Let 𝛿 > 0 be given. By assumption, 𝜂(𝑎, 𝛿) ∶= ∫𝐹−1(𝑎,𝑎+𝛿) 𝑢0(𝑥)𝑑𝑥 > 0, 𝑎 ≥ 𝜆0. Moreover, by the boundedness of 𝑢0, 𝑎 ↦ 𝜂(𝑎, 𝛿) is 
continuous. Therefore inf𝑎∈[𝜆0 ,𝑘] 𝜂(𝑎, 𝛿) > 0. This and the convergence 𝜉𝑁0 → 𝜉0 = 𝑢0(𝑥)𝑑𝑥 in probability show that one can find 𝜀 > 0
such that the second term on the r.h.s. of (3.6) vanishes. Given such 𝜀, using the fact that limits of 𝐽𝑁  are 1-Lipschitz, the first term 
on the r.h.s. of (3.6) also vanishes provided ℎ is sufficiently small. This completes the proof of 𝐶-tightness of 𝓁𝑁 .

Next, 𝐶-tightness of 𝜉𝑁  is shown. Denote by 𝑑L the Levy–Prohorov metric on (R𝑑 ), which is compatible with weak convergence 
on this space. We will show that (i) for every 𝜀 > 0 and 𝑡 there exists a compact set 𝐾𝜀,𝑡 ⊂ (R𝑑 ) such that lim inf𝑁 P(𝜉𝑁𝑡 ∈ 𝐾𝜀,𝑡) > 1−𝜀; 
and (ii) for every 𝜀 > 0 there exists 𝛿 > 0 such that

lim sup
𝑁

P(𝑤𝑇 (𝜉𝑁 , 𝛿) > 𝜀) < 𝜀.

This will establish 𝐶-tightness of 𝜉𝑁  in view of [19, Corollary 3.7.4 (p. 129)] and because we use 𝑤 rather than 𝑤′ [19, (3.6.2) (p. 
122)].

To show (i), let
𝐾𝑛(𝑟) = {𝛾 ∈ (R𝑑 ) ∶ 𝛾(B𝑐𝑟 ) < 𝑛

−1}, 𝑛 ∈ N, 𝑟 ∈ (0,∞).

By Prohorov’s theorem, for any 𝑛0 and sequence {𝑟𝑛}, the closure of 𝐾≥𝑛0 ({𝑟𝑛}) ∶= ∩𝑛≥𝑛0𝐾𝑛(𝑟𝑛), as a subset of (R𝑑 ), is compact. 
Suppose we show that there exists a sequence 𝑟𝑛 such that, for every 𝑡 ∈ [0, 𝑇 ], 

lim inf
𝑁

P(𝜉𝑁𝑡 ∈ 𝐾𝑛(𝑟𝑛)) ≥ 1 − 2−𝑛. (3.7)

Then, given 𝜀 > 0, taking 𝑛0 such that 
∑

𝑛≥𝑛0 2
−𝑛 < 𝜀, it would follow that

lim inf
𝑁

P(𝜉𝑁𝑡 ∈ 𝐾≥𝑛0 ({𝑟𝑛})) > 1 − 𝜀,

showing that (i) holds. To this end, note that the convergence of 𝜁𝑁𝑇  implies that there exists a sequence {𝑟𝑛} such that
lim inf

𝑁
P(𝜁𝑁𝑇 (B𝑐𝑟𝑛 ) < 𝑛

−1) > 1 − 2−𝑛.

But

sup
𝑡∈[0,𝑇 ]

𝜉𝑁𝑡 (B𝑐𝑟𝑛 ) ≤ 𝜁𝑁𝑇 (B𝑐𝑟𝑛 ),

hence (3.7) follows, and (i) is proved.
Next we show (ii). Given a set 𝐶 ⊂ R let 𝐶𝜀 denote its 𝜀-neighborhood. Let 0 ≤ 𝑠 < 𝑡 ≤ 𝑇  be such that 𝑡 − 𝑠 ≤ 𝛿. Then for any 

Borel set 𝐶, one has
|𝜉𝑁𝑡 (𝐶) − 𝜉𝑁𝑠 (𝐶)| ≤ 𝐽𝑁𝑡 − 𝐽𝑁𝑠 .

Hence, on the event 𝑤𝑇 (𝐽𝑁 , 𝛿) ≤ 𝜀,

𝜉𝑁𝑠 (𝐶) ≤ 𝜉𝑁𝑡 (𝐶𝜀) + 𝜀, and 𝜉𝑁𝑡 (𝐶) ≤ 𝜉𝑁𝑠 (𝐶𝜀) + 𝜀,

and thus 𝑑L(𝜉𝑁𝑠 , 𝜉𝑁𝑡 ) ≤ 𝜀. This shows that for sufficiently small 𝛿,
lim sup

𝑁
P(𝑤𝑇 (𝜉𝑁 , 𝛿) > 𝜀) ≤ 𝜀,

and the proof of (ii) is complete.
For the second assertion of the lemma, note that by the definition of 𝓁𝑁 , one has for all 𝑁 , 𝜉𝑁𝑡 (𝐹−1(−∞,𝓁𝑁𝑡 )) = 0. Invoking 

Skorohod’s representation, one has (𝜉𝑁 ,𝓁𝑁 ) → (𝜉,𝓁) a.s. along the convergent subsequence. Hence for 𝑡 > 0 and 𝜀 > 0, because 
𝐹−1(−∞,𝓁𝑡 − 𝜀) is open,

𝜉 (𝐹−1(−∞,𝓁 − 𝜀)) ≤ lim inf 𝜉𝑁 (𝐹−1(−∞,𝓁 − 𝜀))
𝑡 𝑡 𝑁 𝑡 𝑡
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≤ lim inf
𝑁

𝜉𝑁𝑡 (𝐹−1(−∞,𝓁𝑁 )) = 0,

a.s. Taking 𝜀 ↓ 0, 𝜉𝑡(𝐹−1(−∞,𝓁𝑡)) = 0, a.s. To deduce the a.s. statement simultaneously for all 𝑡, it suffices to note that for 𝑡𝑛 ↓ 𝑡, by 
monotonicity of 𝓁, one has

𝜉𝑡(𝐹−1(−∞,𝓁𝑡)) ≤ lim inf
𝑛

𝜉𝑡𝑛 (𝐹
−1(−∞,𝓁𝑡)) ≤ lim inf

𝑛
𝜉𝑡𝑛 (𝐹

−1(−∞,𝓁𝑡𝑛 )) = 0. □

Proof of Theorem  2.2.  In view of Lemmas  3.2 and 3.3, the proof will be complete once it is shown that for every limit (𝜉,𝓁) there 
exists a measurable density 𝑢 such (𝑢,𝓁) ∈  and (𝑢,𝓁) satisfies (2.1). Fix a convergent subsequence and denote its limit by (𝜉,𝓁).

To argue the existence of a density let us go back to the particle system with no removals, mentioned in the proof of Lemma 
3.3. The normalized process 𝜁𝑁 → 𝜁 , in probability, where 𝜁 is deterministic and for every 𝑡, 𝜁𝑡 has a density, as follows from [18, 
Theorem 5.3 and Proposition 5.4]. Throughout what follows, denote this density by 𝑧(⋅, 𝑡).

For any bounded continuous 𝑔 ∶ R𝑑 → [0,∞), one has E ∫ 𝑔(𝑥)𝜉𝑁𝑡 (𝑑𝑥) ≤ E ∫ 𝑔(𝑥)𝜁𝑁𝑇 (𝑑𝑥), 𝑡 ∈ [0, 𝑇 ]. Hence E ∫ 𝑔(𝑥)𝜉𝑡(𝑑𝑥) ≤
∫ 𝑔(𝑥)𝜁𝑇 (𝑑𝑥), 𝑡 ∈ [0, 𝑇 ]. In particular, 𝜉𝑡(𝑑𝑥) ≪ 𝑑𝑥, 𝑡 ≤ 𝑇 , and since 𝑇  is arbitrary, this statement holds for all 𝑡. Assuming 𝜉 = 0
outside the full measure event, we finally obtain that for every (𝑡, 𝜔) ∈ (0,∞) × 𝛺, 𝜉𝑡(𝑑𝑥, 𝜔) ≪ 𝑑𝑥. We can now appeal to [20, 
Theorem 58 in Chapter V (p. 52)] and the remark that follows. The measurable spaces denoted in [20] by (𝛺, ) and (𝑇 ,  ) are 
taken to be (R𝑑 ,(R𝑑 )) and ((0,∞) × 𝛺,((0,∞)) ⊗  ), respectively. According to this result there exists a (R𝑑 ) ⊗ ((0,∞)) ⊗  -
measurable function 𝑢(𝑥, 𝑡, 𝜔), such that for every (𝑡, 𝜔) ∈ (0,∞)×𝛺, 𝑢(⋅, 𝑡, 𝜔) is a density of 𝜉𝑡(𝑑𝑥, 𝜔) with respect to 𝑑𝑥. We also have 
𝑢(𝑥, 𝑡, 𝜔) ≤ 𝑧(𝑥, 𝑡).

Items (ii), (iii) and (iv) of (2.1) can be verified plainly: In view of Lemma  3.3, 𝑢 has a version satisfying 𝑢(𝑥, 𝑡) = 0 for all (𝑥, 𝑡)
such that 𝐹 (𝑥) < 𝓁𝑡, and this extends to 𝐹 (𝑥) ≤ 𝓁𝑡 using Assumption  2.1(i) by which Leb𝐹−1{𝓁𝑡} = 0 for all 𝑡. This verifies (2.1)(ii). 
Items (iii) and (iv) are obvious from our assumptions. It remains to show (2.1)(i), which by the nondecreasing property of 𝓁 can be 
expressed as 

𝑢(𝑥, 𝑡) = 𝑢0(𝑥) + ∫

𝑡

0 ∫R𝑑
𝑢(𝑦, 𝑠)𝜌(𝑦, 𝑥)𝑑𝑦𝑑𝑠, (𝑥, 𝑡) ∶ 𝐹 (𝑥) > 𝓁𝑡, 𝑡 > 0. (3.8)

Note that as soon as the above is established, the uniform continuity of 𝜌 and the local integrability of 𝑢 imply the existence of a 
version of 𝑢 for which 𝑥↦ 𝑢(𝑥, 𝑡) and 𝑡↦ 𝜕𝑡𝑢(𝑥, 𝑡) are continuous, hence (𝑢,𝓁) ∈  . We will achieve (3.8) in several steps.

Step 1. Integro-differential systems with piecewise constant boundary. Fix 𝑇 > 0 throughout. For 𝛿, 𝜀 ∈ (0, 1) such that 𝐻 ∶= 𝛿−1𝑇 ∈ N, 
let 𝑀 = 𝑀(𝛿, 𝜀) denote the collection of right-continuous piecewise constant nondecreasing trajectories 𝑚 ∶ [0, 𝑇 ) → R such that, 
with 𝑡𝑗 = 𝑗𝛿, for each 𝑗 = 0, 1,… ,𝐻 −1, on [𝑡𝑗 , 𝑡𝑗+1), 𝑚 takes a constant value in 𝜀Z. Denote 𝑎𝑗 (𝑚) = 𝑚(𝑡𝑗 ). For 𝑚 ∈𝑀 and 𝑎𝑗 = 𝑎𝑗 (𝑚), 
consider the set of equations 

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜕𝑡𝑢(𝑥, 𝑡) = ∫R𝑑
𝑢(𝑦, 𝑡)𝜌(𝑦, 𝑥)𝑑𝑦 (𝑥, 𝑡) ∶ 𝐹 (𝑥) > 𝑎𝑗 , 𝑡 ∈ (𝑡𝑗 , 𝑡𝑗+1),

𝑢(𝑥, 𝑡) = 0 (𝑥, 𝑡) ∶ 𝐹 (𝑥) ≤ 𝑎𝑗 , 𝑡 ∈ (𝑡𝑗 , 𝑡𝑗+1),
𝑢(𝑥, 𝑡𝑗 ) = 𝑢(𝑥, 𝑡𝑗−)1{𝐹−1[𝑎𝑗 ,∞)}(𝑥) 1 ≤ 𝑗 ≤ 𝐻 − 1,

𝑢(𝑥, 0) = 𝑢0(𝑥)1{𝐹−1[𝑎0 ,∞)}(𝑥).

(3.9)

It is clear, by induction, that this set uniquely determines a solution, denoted 𝑢(𝑚). If 𝜁 (𝑚)𝑡 (𝑑𝑥) = 𝑢(𝑚)(𝑥, 𝑡)𝑑𝑥, 𝑡 ∈ [0, 𝑇 ), then the map 
𝑀 ∋ 𝑚 ↦ 𝜁 (𝑚) ∈ 𝐷([0, 𝑇 ),+(R𝑑 )) is denoted by .

Step 2. A continuity property of . We prove the following claim. There exists a function 𝛾 ∶ R+ → R+ such that 𝛾(0+) = 0 and 
the following holds. Let 𝑘, 𝑚 ∈𝑀 and 𝑤 = 𝑢(𝑘), 𝑣 = 𝑢(𝑚). Denote 𝛥 = 𝑤 − 𝑣. Then 

sup
𝑡<𝑇

‖𝛥(⋅, 𝑡)‖1 ≤ 𝛾(‖𝑚 − 𝑘‖∗𝑇 ), 𝑘, 𝑚 ∈𝑀. (3.10)

To prove the claim, denote
𝜂(𝑘, 𝑚) = max

𝑗≤𝐻−1
𝜁𝑇 (𝐹−1(𝑎𝑗 (𝑘) ∧ 𝑎𝑗 (𝑚), 𝑎𝑗 (𝑘) ∨ 𝑎𝑗 (𝑚))).

Note that

𝑤(𝑥, 𝑡) = 𝑤0(𝑥) + ∫

𝑡

0 ∫R𝑑
𝑤(𝑦, 𝑠)𝜌(𝑦, 𝑥)𝑑𝑦𝑑𝑠, (𝑥, 𝑡) ∶ 𝐹 (𝑥) > 𝑘𝑡, 𝑡 > 0, (3.11)

𝑣(𝑥, 𝑡) = 𝑣0(𝑥) + ∫

𝑡

0 ∫R𝑑
𝑣(𝑦, 𝑠)𝜌(𝑦, 𝑥)𝑑𝑦𝑑𝑠, (𝑥, 𝑡) ∶ 𝐹 (𝑥) > 𝑚𝑡, 𝑡 > 0, (3.12)

and 𝑤 (resp., 𝑣) vanishes to the left of 𝑘 (resp., 𝑚). Also note that 𝑤(𝑥, 𝑡) ∨ 𝑣(𝑥, 𝑡) ≤ 𝑧(𝑥, 𝑇 ). For 𝑡 ∈ [0, 𝑇 ),

‖𝛥(⋅, 𝑡)‖1 ≤ ‖𝛥(⋅, 0)‖1 + ∫𝐹−1(𝑘𝑡 ,∞)▵𝐹−1(𝑚𝑡 ,∞)
(𝑤 ∨ 𝑣)(𝑥, 𝑡)𝑑𝑥

+ ∫𝐹−1(𝑘𝑡∨𝑚𝑡 ,∞) ∫

𝑡

0 ∫R𝑑
|𝛥(𝑦, 𝑠)|𝜌(𝑦, 𝑥)𝑑𝑦𝑑𝑠𝑑𝑥

≤ ‖𝛥(⋅, 0)‖1 + 𝜂(𝑘, 𝑚) + 𝑐
𝑡
‖𝛥(⋅, 𝑠)‖1𝑑𝑠.
∫0
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Since ‖𝛥(⋅, 0)‖1 ≤ 𝜂(𝑘, 𝑚), Gronwall’s lemma gives
‖𝛥(⋅, 𝑡)‖1 ≤ 2𝜂(𝑘, 𝑚)𝑒𝑐𝑇 , 𝑡 < 𝑇 .

Hence (3.10) will be proved once it is shown that 𝑈 (0+) = 0, where
𝑈 (𝜅) = sup{𝜁𝑇 (𝐹−1(𝑏, 𝑏 + 𝜅)) ∶ 𝑏 ∈ R}, 𝜅 > 0.

Assuming the contrary, there exists 𝜅′ > 0 and {𝑏𝑛} such that, along a subsequence, 
𝜁𝑇 (𝐹−1(𝑏𝑛, 𝑏𝑛 + 𝑛−1)) > 𝜅′. (3.13)

Now, {𝑏𝑛} must be bounded. For if there is a subsequence with 𝑏𝑛 → ∞, by the continuity of 𝐹 , for every compact 𝐾 the 
set 𝐹−1(𝑏𝑛,∞) ∩ 𝐾 must be empty for large 𝑛, which shows that (3.13) cannot hold. If there is a subsequence 𝑏𝑛 → −∞ then 
𝐹−1(−∞, 𝑏𝑛+𝑛−1)∩𝐾 must be empty for all large 𝑛 and again (3.13) cannot hold. Hence 𝑏𝑛 is bounded. Let 𝑏 be a limit. Then, given 
𝜅1 > 0, (𝑏𝑛, 𝑏𝑛 + 𝑛−1) ⊂ (𝑏 − 𝜅1, 𝑏 + 𝜅1) for large 𝑛 along a subsequence, showing

𝜅′ ≤ 𝜁𝑇 (𝐹−1(𝑏 − 𝜅1, 𝑏 + 𝜅1)).

Hence 𝜁𝑇 (𝐹−1{𝑏}) > 0, contradicting our assumption Leb(𝐹−1{𝑎}) = 0 for every 𝑎. This proves (3.10).
Step 3. Particle systems with piecewise constant boundary. Given 𝑚 ∈ 𝑀 we construct a particle system in which, for every 

𝑡 ∈ [0, 𝑇 ), all particles lie within 𝐹−1[𝑚𝑡,∞). Its initial configuration is given by the restriction of {𝑥𝑖} to 𝐹−1[𝑚0,∞). During any 
interval (𝑡𝑗 , 𝑡𝑗+1), the reproduction is according to 𝜌, but every newborn outside of 𝐹−1[𝑎𝑗 (𝑚),∞) is immediately removed. If for 
𝑗 ∈ {1,… ,𝐻 − 1}, 𝑡𝑗 is a continuity point of 𝑚, nothing happens at this time. Otherwise, 𝑚 necessarily performs a positive jump, 
hence the domain 𝐹−1[𝑚,∞) decreases. At this time, all particles outside 𝐹−1[𝑎𝑗 (𝑚),∞) are removed. Denote the configuration process 
by 𝜁 (𝑚),𝑁 .

We show that for every 𝑚 ∈ 𝑀 , 𝜁 (𝑚),𝑁 → 𝜁 (𝑚) ∶= (𝑚) in probability, uniformly on [0, 𝑇 ). For the initial condition, we have 
𝜁 (𝑚),𝑁0 = 𝜉𝑁0 1{𝐹−1[𝑎0 ,∞)}. The boundary of the domain 𝐹−1[𝑎0,∞) has Lebesgue measure zero, as follows from Assumption  2.1(i) upon 
noting that 𝜕𝐹−1[𝑎,∞) ⊂ 𝐹−1{𝑎} for every 𝑎 ∈ R. Because the limit 𝜉0 has a density, this implies 𝜁 (𝑚),𝑁0 → 𝜉01{𝐹−1[𝑎0 ,∞)} in probability.

Assume that for 𝑗 ≥ 0, 𝜁 (𝑚),𝑁𝑡𝑗
→ 𝜁 (𝑚)𝑡𝑗

. Then the convergence on the interval (𝑡𝑗 , 𝑡𝑗+1) to a measure-valued trajectory which has a 
density satisfying the integro-differential equation in (3.9) is as in the proof of [1, Proposition 2.1]; the proof there, based on [18], 
is for 𝑑 = 1 and the domain R, but the same proof is valid for 𝑑 ≥ 1 an arbitrary domain of R𝑑 , because that is the generality of the 
results of [18]. Because the trajectory is continuous on (𝑡𝑗 , 𝑡𝑗+1), the convergence is uniform there. Next, at the trimming time 𝑡𝑗+1, 
the convergence follows by the same argument as for 𝑡 = 0.

Step 4. Relation to the original particle system. Consider now, for each 𝑁 , two stochastic processes, 𝑘𝑁  and 𝑚𝑁 , with sample paths 
in 𝑀 , defined as follows. For 𝑥 ∈ R, let 𝑃−

𝜀 (𝑥) = max{𝑦 ∈ 𝜀Z ∶ 𝑦 ≤ 𝑥}, 𝑃+
𝜀 (𝑥) = min{𝑦 ∈ 𝜀Z ∶ 𝑦 ≥ 𝑥}, and let

𝑘𝑁𝑡 = 𝑃−
𝜀

(

inf
𝑠∈[𝑡𝑗 ,𝑡𝑗+1)

𝓁𝑁𝑠

)

− 𝜀, 𝑚𝑁𝑡 = 𝑃+
𝜀

(

sup
𝑠∈[𝑡𝑗 ,𝑡𝑗+1)

𝓁𝑁𝑠

)

+ 𝜀, 𝑡 ∈ [𝑡𝑗 , 𝑡𝑗+1).

By construction, 
𝑘𝑁𝑡 < 𝓁𝑁𝑡 < 𝑚𝑁𝑡 , 𝑡 ∈ [0, 𝑇 ). (3.14)

Constructing a particle system with piecewise constant boundary, as in Step 2, makes perfect sense even when the trajectories are 
random members of 𝑀 that anticipate the future of 𝜉𝑁 , such as 𝑘𝑁  and 𝑚𝑁 . To construct these systems, one first evaluates 𝓁𝑁 , 
and based on it, 𝑘𝑁  and 𝑚𝑁 , and then uses these random trajectories to construct the particle systems as in Step 2. A key point is 
that, thanks to (3.14), one can couple the three systems in such a way that the two auxiliary configuration measures form lower 
and upper bounds on 𝜉𝑁  in the sense of measure inequality. In particular, we have the following. 

Lemma 3.4.  There exists a coupling such that, a.s., 
𝜁 (𝑚

𝑁 ),𝑁
𝑡 ⊏ 𝜉𝑁𝑡 ⊏ 𝜁 (𝑘

𝑁 ),𝑁
𝑡 , 𝑡 ∈ [0, 𝑇 ), (3.15)

where the two particle configurations corresponding to the piecewise constant boundaries 𝑘𝑁  and 𝑚𝑁  are denoted by 𝜁 (𝑘𝑁 ),𝑁  and 𝜁 (𝑚𝑁 ),𝑁 .

The standard but tedious proof of this lemma appears in the Appendix.
Since the maps 𝑃±

𝜀  are not continuous, 𝑘𝑁  and 𝑚𝑁  may not converge in law. However, the tightness of the laws of 𝓁𝑁  and the 
specific structure of 𝑀 clearly give tightness of (𝑘𝑁 , 𝑚𝑁 ). Consider then any convergent subsequence (𝜉𝑁 ,𝓁𝑁 , 𝑘𝑁 , 𝑚𝑁 ) ⇒ (𝜉,𝓁, 𝑘̂, 𝑚̂). 
We claim that the limit in law of (𝜉𝑁 ,𝓁𝑁 , 𝑘𝑁 , 𝑚𝑁 , 𝜁 (𝑘𝑁 ),𝑁 , 𝜁 (𝑚𝑁 ),𝑁 ) exists and is given by

(𝜉,𝓁, 𝑘̂, 𝑚̂,(𝑘̂),(𝑚̂)).

To simplify the notation, we prove the claim only for the 3-tuple (𝜉𝑁 , 𝑚𝑁 , 𝜁 (𝑚𝑁 ),𝑁 ); the proof for the 6-tuple is very similar. Because 
the claim is concerned with convergence of probability measures, it suffices to prove vague convergence. Let 𝑓 ∶ 𝐷𝑇 → R be 
compactly supported, where 𝐷𝑇 ∶= 𝐷([0, 𝑇 ],(R𝑑 )) × 𝐷([0, 𝑇 ],R) × 𝐷([0, 𝑇 ],(R𝑑 )). Let 𝑀𝑓  be the set of 𝑚 ∈ 𝑀 for which 
𝑓 (⋅, 𝑚, ⋅) ≠ 0 and note that #𝑀𝑓 < ∞ because for 𝑐 > 0 there are only finitely many 𝑚 ∈ 𝑀 with ‖𝑚‖∗𝑇 < 𝑐. By the uniform 
continuity of 𝑓 , one has 𝛾𝑓 (0+) = 0, where

𝛾 (𝜅) = sup{|𝑓 (𝛼, 𝑚, 𝛽) − 𝑓 (𝛼, 𝑚, 𝛽′)| ∶ (𝛼, 𝑚, 𝛽) ∈ 𝐷 , 𝑑 (𝛽, 𝛽′) < 𝜅}.
𝑓 𝑇 L
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Now,

E𝑓 (𝜉𝑁 , 𝑚𝑁 , 𝜁 (𝑚𝑁 ),𝑁 ) =
∑

𝑚∈𝑀𝑓

E[1{𝑚}(𝑚𝑁 )𝑓 (𝜉𝑁 , 𝑚, 𝜁 (𝑚),𝑁 )]

=
∑

𝑚∈𝑀𝑓

E[1{𝑚}(𝑚𝑁 )𝑓 (𝜉𝑁 , 𝑚,(𝑚))] +𝑊 𝑁 ,

where

|𝑊 𝑁
| ≤

∑

𝑚∈𝑀𝑓

E[𝛾𝑓 (𝑑L)(𝜁 (𝑚),𝑁 ,(𝑚))] → 0,

by the convergence in probability proved in Step 3. Because each 𝑚 ∈𝑀 is isolated from all other members of 𝑀 , the convergence 
(𝜉𝑁 , 𝑚𝑁 ) ⇒ (𝜉, 𝑚̂) implies E[1{𝑚}(𝑚𝑁 )𝑔(𝜉𝑁 )] → E[1{𝑚}(𝑚̂)𝑔(𝜉)] whenever 𝑔 is bounded and continuous. This gives

E𝑓 (𝜉𝑁 , 𝑚𝑁 , 𝜁 (𝑚𝑁 ),𝑁 ) →
∑

𝑚∈𝑀𝑓

E[1{𝑚}(𝑚̂)𝑓 (𝜉, 𝑚,(𝑚))] = E[𝑓 (𝜉, 𝑚̂,(𝑚̂))],

proving the claim.
As a consequence of the above convergence and (3.15), we obtain a bound on the density 𝑢, namely, for every 𝑡 and a.e. 𝑥, 

𝑣̂(𝑥, 𝑡) ≤ 𝑢(𝑥, 𝑡) ≤ 𝑤̂(𝑥, 𝑡), (3.16)

where 𝑣̂ = 𝑢(𝑚̂) and 𝑤̂ = 𝑢(𝑘̂) are the random densities corresponding to (𝑚̂) and (𝑘̂).
Step 5. Completing the proof. Denoting 𝛥 = 𝑢 − 𝑣̂, 𝛥 = 𝑤̂ − 𝑣̂, and 𝑞 = ‖𝑚̂ − 𝑘̂‖∗𝑇 , we have by (3.16), ‖𝛥(⋅, 𝑡)‖1 ≤ ‖𝛥(⋅, 𝑡)‖1 ≤ 𝛾(𝑞), 

where (3.10) is used.
Note that 𝑤̂ and 𝑣̂ satisfy (3.11)–(3.12), with 𝑘 and 𝑚 replaced by the random 𝑘̂ and 𝑚̂. Let (𝑥, 𝑡) be such that 𝐹 (𝑥) > 𝑚̂𝑡, by 

which 𝐹 (𝑥) > 𝓁𝑡 ≥ 𝑘̂𝑡. Then
𝑢(𝑥, 𝑡) = 𝑣̂(𝑥, 𝑡) + 𝛥(𝑥, 𝑡)

= 𝑢0(𝑥) − 𝛥0(𝑥) + ∫

𝑡

0 ∫R𝑑
𝑢(𝑦, 𝑠)𝜌(𝑦, 𝑥)𝑑𝑦𝑑𝑠 − ∫

𝑡

0 ∫R𝑑
𝛥(𝑦, 𝑠)𝜌(𝑦, 𝑥)𝑑𝑦𝑑𝑠 + 𝛥(𝑥, 𝑡).

Denoting, for (𝑥, 𝑡) ∈ R𝑑 × [0, 𝑇 ),

𝛹 (𝑥, 𝑡) = |

|

|

𝑢(𝑥, 𝑡) − 𝑢0(𝑥) − ∫

𝑡

0 ∫R𝑑
𝑢(𝑦, 𝑠)𝜌(𝑦, 𝑥)𝑑𝑦𝑑𝑠||

|

,

we therefore have

∫R𝑑
𝛹 (𝑥, 𝑡)1{𝐹 (𝑥)>𝑚̂𝑡}𝑑𝑥 ≤ (2 + 𝑐𝑇 )𝛾(𝑞).

Moreover,

𝛹 (𝑥, 𝑡) ≤ 2𝑧(𝑥, 𝑇 ) + 𝑇 ∫R𝑑
𝑧(𝑦, 𝑇 )𝑐𝜌̃(𝑥 − 𝑦)𝑑𝑦𝑑𝑠.

Analogously to 𝑈 , define 𝑈̃ (𝜅) = sup{∫𝐹−1(𝑏,𝑏+𝜅) 𝜌̃(𝑥)𝑑𝑥 ∶ 𝑏 ∈ R}, and note, by similar reasoning, that 𝑈̃ (0+) = 0. Then

∫R𝑑
𝛹 (𝑥, 𝑡)1{𝓁𝑡<𝐹 (𝑥)≤𝑚̂𝑡}𝑑𝑥 ≤ 2𝑈 (𝑞) + 𝑇 𝑐 |𝜁𝑇 | 𝑈̃ (𝑞).

Hence there exists a constant 𝑐 such that
𝜓 ∶= sup

𝑡<𝑇 ∫R𝑑
𝛹 (𝑥, 𝑡)1{𝐹 (𝑥)>𝓁𝑡}𝑑𝑥 ≤ 𝑐(𝛾(𝑞) + 𝑈 (𝑞) + 𝑈̃ (𝑞)).

Given 𝜀, 𝛿′ > 0 choose 𝛿 > 0 so small that P(𝛺𝛿,𝜀) > 1 − 𝛿′, where 𝛺𝛿,𝜀 = {𝑤𝑇 (𝓁, 𝛿) < 𝜀}. By the definition of 𝑚𝑁  one has for every 
𝑗, 𝑚𝑁𝑡𝑗 ≤ sup[𝑡𝑗 ,𝑡𝑗+1) 𝓁

𝑁 + 2𝜀, hence 𝑚̂𝑡𝑗 ≤ sup[𝑡𝑗 ,𝑡𝑗+1) 𝓁 + 2𝜀. An analogous statement holds for 𝑘̂. This gives, on 𝛺𝛿,𝜀, 𝑚̂𝑡 − 𝑘̂𝑡 ≤ 5𝜀 for all 
𝑡 < 𝑇 , hence 𝑞 ≤ 5𝜀. As a result,

P(𝜓 > 𝑐(𝛾(5𝜀) + 𝑈 (5𝜀) + 𝑈̃ (5𝜀))) < 𝛿′.

Finally, 𝛿′ → 0 followed by 𝜀→ 0 shows 𝜓 = 0 a.s. This shows (3.8) and completes the proof. □
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Appendix. Proof of Lemma  3.4

The three particle systems will be constructed out of a single branching random walk (with labeled particles), which is a non-local 
branching model without selection. In this system, the initial 𝑁 particles are located at 𝑥𝑖, 1 ≤ 𝑖 ≤ 𝑁 . Each particle has a rate-1
Poisson clock according to which it gives birth at location drawn according to 𝜌(𝑦, ⋅), 𝑦 being the particle’s location. The first 𝑁
particles are labeled 1,… , 𝑁 , and for 𝑖 ≥ 𝑁 + 1, the 𝑖th particle to be born (regarding the initial 𝑁 particles as being born at 0) 
is labeled 𝑖. Let the birth time of particle 𝑖 ≥ 1 be denoted by 𝜎𝑖. Let 𝜏𝑖,𝑗 , 𝑗 ≥ 1, denote the times particle 𝑖 gives birth, and let 
𝜏𝑖(𝑡) = min{𝜏𝑖,𝑗 ∶ 𝜏𝑖,𝑗 > 𝑡} denote the next time after 𝑡 when particle 𝑖 gives birth. Let 𝑋𝑖 denote the position of particle 𝑖. With this 
notation, the configuration measure of the branching random walk is

𝜁𝑁𝑡 =
∑

𝑖∈(𝑡)
δ𝑋𝑖 , (𝑡) = {𝑖 ∶ 𝑡 ≥ 𝜎𝑖}.

For a nonempty finite set 𝑆 ⊂ N, denote by argmin𝑆 the particle 𝑖 ∈ 𝑆 for which one has 𝐹 (𝑋𝑖) ≤ 𝐹 (𝑋𝑗 ) for all 𝑗 ∈ 𝑆, with ties 
broken according to the particle labels.

The system studied in this paper can be represented as

𝜉𝑁𝑡 =
∑

𝑖∈(𝑡)
δ𝑋𝑖 ,

where (𝑡) ⊂ (𝑡) is defined inductively as follows. Starting with time 0, let (0) = {1,… , 𝑁} and 𝜃0 = 0. Next, for 𝑘 ≥ 0, given 𝜃𝑘
and {(𝑡), 𝑡 ≤ 𝜃𝑘}, define 𝜃𝑘+1 and {(𝑡), 𝑡 ≤ 𝜃𝑘+1} in the following way.

Define 𝜃𝑘+1 = min{𝜏𝑖(𝜃𝑘) ∶ 𝑖 ∈ (𝜃𝑘)} and let 𝑖𝑘+1 be the particle born at 𝜃𝑘+1. Thus, up to 𝜃𝑘+1 no particle among (𝜃𝑘) gives 
birth, whereas at 𝜃𝑘+1, a particle in this set gives birth to particle 𝑖𝑘+1. Let (𝑡) = (𝜃𝑘) for 𝑡 ∈ (𝜃𝑘, 𝜃𝑘+1) and

(𝜃𝑘+1) = (𝜃𝑘) ∪ {𝑖𝑘+1} − argmin((𝜃𝑘) ∪ {𝑖𝑘+1}).

It is clear that 𝜃𝑘 → ∞ a.s. as 𝑘→ ∞, and therefore (𝑡) is defined for all 𝑡, a.s., completing the construction of 𝜉𝑁𝑡 .
Recall that the set 𝑀 consists of piecewise constant trajectories whose jump times are denoted by 𝑡𝑗 . Let 𝑇 (𝑡) = min{𝑡𝑗 ∶ 𝑡𝑗 > 𝑡}. 

For an arbitrary 𝑚 ∈𝑀 (where 𝑚 will later stand for either 𝑚𝑁  or 𝑘𝑁 ), let

𝜁 (𝑚),𝑁𝑡 =
∑

𝑖∈(𝑚;𝑡)
δ𝑋𝑖 .

Here, (𝑚; 𝑡), abbreviated to (𝑡), is constructed as follows. Initially, (0) = {1,… , 𝑁}, and 𝑠𝑘 = 0. Given 𝑠𝑘 and the construction of 
(𝑡), 𝑡 ≤ 𝑠𝑘, let

𝑠𝑘+1 = min{𝜏𝑖(𝑠𝑘) ∶ 𝑖 ∈ (𝑠𝑘)} ∧ 𝑇 (𝑠𝑘).

Thus at 𝑠𝑘+1 either (a) one of the particles in (𝑠𝑘) gives birth, or (b) one of the 𝑡𝑗 has been reached. In case (a), denote the newborn 
particle by 𝑖𝑘+1 and let

(𝑠𝑘+1) =

{

(𝑠𝑘) ∪ {𝑖𝑘+1} if 𝐹 (𝑋𝑖𝑘+1 ) ≥ 𝑚(𝑠𝑘),
(𝑠𝑘) if 𝐹 (𝑋𝑖𝑘+1 ) < 𝑚(𝑠𝑘).

Thus the new particle is accepted if its fitness is ≥ 𝑚(𝑠𝑘) = 𝑚(𝑠𝑘+1). In case (b),

(𝑠𝑘+1) = (𝑠𝑘) − {𝑖 ∈ N ∶ 𝐹 (𝑋𝑖) < 𝑚(𝑠𝑘+1)},

rejecting all particles whose fitness is < 𝑚(𝑠𝑘+1). This completes the construction of 𝜁 (𝑚),𝑁 .
In view of the inequalities (3.14), the lemma will be proved once it is shown that

 if 𝑚(𝑡) < 𝓁𝑁 (𝑡) for all 𝑡 then (𝑡) ⊂ (𝑡) for all 𝑡, (A.1)

 if 𝑚(𝑡) > 𝓁𝑁 (𝑡) for all 𝑡 then (𝑡) ⊂ (𝑡) for all 𝑡. (A.2)

We only provide the proof of (A.1) as that of (A.2) is similar. Arguing by contradiction, assume (A.1) is false, and let 𝑠 be the first 
time it is violated. That is, at 𝑠, for the first time, there is a particle in (𝑠) that is not in (𝑠). At such 𝑠, one of these must occur:

- A new particle whose fitness is ≥ 𝓁𝑁 (𝑠) has been introduced into (𝑠) (and not immediately rejected), that is a child of a 
particle in the set (𝑠−). Because (𝑠−) ⊂ (𝑠−), this particle was also introduced into (𝑠), and because 𝑚(𝑠) < 𝓁𝑁 (𝑠), it was not 
immediately rejected. This contradicts the assumption (𝑠) ⊄ (𝑠).

- At 𝑠, 𝑚 makes a jump upward, that is, 𝑚(𝑠) > 𝑚(𝑠−). As a result, some particles in (𝑠−) are removed and do not appear in 
(𝑠), whereas at least one of them appears in (𝑠). Thus the fitness of this particle is ≥ 𝓁𝑁 (𝑠), which contradicts the fact that it also 
must be < 𝑚(𝑠).

This completes the proof of Lemma  3.4. □
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